On (in)elastic non-dissipative Lorentz gases and the (in)stability of classical pulsed and kicked rotors - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Physics A: Mathematical and Theoretical Année : 2011

On (in)elastic non-dissipative Lorentz gases and the (in)stability of classical pulsed and kicked rotors

Résumé

We study numerically and theoretically the d dimensional Hamiltonian motion of fast particles through a field of scatterers, modeled by bounded, localized, (time-dependent) potentials. We illustrate the wide applicability of a random walk picture previously developed for a field of scatterers with random spatial and/or time-dependence by applying it to four other models. First, for a periodic array of spherical scatterers in d>=2, with a smooth (quasi)periodic time-dependence, we show Fermi acceleration: the ensemble averaged kinetic energy <||p(t)||^2> grows as t^(2/5). Nevertheless, the mean squared displacement <||q(t)||^2> ~ t^2 behaves ballistically. These are the same growth exponents as for random time-dependent scatterers. Second, we show that in the soft elastic and periodic Lorentz gas, where the particles' energy is conserved, the motion is diffusive, as in the standard hard Lorentz gas, but with a diffusion constant that grows as ||p_0||^5, rather than only as ||p_0||. Third, we note the above models can also be viewed as pulsed rotors: the latter are therefore unstable in dimension d>=2. Fourth, we consider kicked rotors, and prove them, for sufficiently strong kicks, to be unstable in all dimensions with <||p(t)||^2> ~ t and <||q(t)||^2> ~ t^3. Finally, we analyze the singular case d=1, where the kinetic energy remains bounded in time for time-dependent non-random potentials whereas it grows at the same rate as above in the random case.
Fichier principal
Vignette du fichier
pulsed1006.pdf (711.92 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00781555 , version 1 (28-01-2013)

Identifiants

Citer

Bénédicte Aguer, Stephan de Bievre. On (in)elastic non-dissipative Lorentz gases and the (in)stability of classical pulsed and kicked rotors. Journal of Physics A: Mathematical and Theoretical, 2011, 43 (47), pp.47001. ⟨10.1088/1751-8113/43/47/474001⟩. ⟨hal-00781555⟩
124 Consultations
73 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More