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Abstract 

If a suspension of magnetic micron-sized and nano-sized particles is subjected to a 

homogeneous magnetic field, the nanoparticles are attracted to the microparticles and form 

thick anisotropic halos (clouds) around them. Such clouds can hinder approach of 

microparticles and result in effective repulsion between them [Lopez-Lopez et al. Soft Matter, 

6, 4346 (2010)]. In this paper, we present detailed experimental and theoretical studies of 

nanoparticle concentration profiles and of the equilibrium shapes of nanoparticle clouds 

around a single magnetized microsphere taking into account interactions between 

nanoparticles. We show that at strong enough magnetic field, the ensemble of nanoparticles 

experiences a gas/liquid phase transition such that a dense liquid phase is condensed around 

the magnetic poles of a microsphere while a dilute gas phase occupies the rest of the 

suspension volume. Nanoparticle accumulation around a microsphere is governed by two 

dimensionless parameters – the initial nanoparticle concentration (φ0) and the magnetic-to-

thermal energy ratio (α) – and the three accumulation regimes are mapped onto a α-φ0 phase 

diagram. Our local thermodynamic equilibrium approach gives a semi-quantitative agreement 

with the experiments on equilibrium shapes of nanoparticle clouds. The results of this work 

could be useful for the development of the bimodal magnetorheological fluids and of the 

magnetic separation technologies used in bio-analysis and water purification systems. 
 

1. Introduction 

Bimodal colloidal mixtures of nano- and microparticles may show different phase behaviors 

depending on interparticle interactions and on the volume fractions of both species. If the 

nanoparticles bear a relatively strong electric charge and the microparticles are weakly 

charged then the suspension experiences a phase transition from a colloidal gel to a stable 

fluid and back to colloidal gel with increasing nanoparticle concentration [1]. The 

stabilization of such binary mixture was attributed to formation of thin shells (halos) with 

high local nanoparticle concentration around microparticles; such stabilization phenomenon is 

being referred to as haloing. Monte Carlo simulations and theoretical studies based on integral 

equations have shown that the haloing effect appears as a result of the interplay between a 
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strong electrostatic repulsion between nanoparticles and a weak colloidal attraction of 

nanoparticles to large microparticles [2-5]. 

In the above cited studies the haloing phenomenon was governed by the competition 

between electrostatic and van der Waals interactions. Any additional interaction between 

microparticles and nanoparticles is expected to strongly affect the phase behavior of the 

mixture, especially if this interaction is long-ranged. This is the case of bimodal suspensions 

composed of magnetizable micro- and nanoparticles, whose colloidal stability has been 

studied in [6,7]. Addition of a few volume per cent of magnetite nanoparticles to the initial 

suspension of carbonyl iron microspheres has been found to avoid aggregation of 

microspheres under van der Waals forces and, consequently, to considerably decrease their 

sedimentation. At the same time, nanoparticle clouds of the thickness of the order of 0.1D 

were observed around microspheres (here D is the microsphere diameter). The halo 

appearance was qualitatively explained by the competition between steric repulsion between 

oleate-coated nanoparticles and weak magnetic attraction between microsphere and 

surrounding nanoparticles, which occurs due to the remnant magnetization of the former. In 

the presence of an external magnetic field, the microspheres get magnetized and attract each 

other forming field aligned structures while the presence of magnetic nanoparticles can either 

enhance or weaken the mechanical properties of the mixture depending on the nanoparticle 

size. In the case of relatively small nanoparticles (with diameter d<10 nm), the magnetic 

attractive force between two microspheres is enhanced by a factor equal approximately to the 

magnetic permeability of the nanoparticle phase of the bimodal suspension [8]. In the case of 

larger nanoparticles (d>15 nm), nanoparticle/nanoparticle and nanoparticle/microsphere 

interactions become strong enough to induce a significant migration of nanoparticles towards 

the microspheres resulting in thick nanoparticle clouds that hinder approach of the two 

microspheres and create an effective repulsion between them [9]. Clearly, if the addition of 

nanoparticles leads to a strong increase in inter-sphere gap, the force required to separate two 

micro-spheres could be significantly reduced, which will lead to a decrease of the 

magnetorheological effect of the suspension. Therefore, a deep understanding of the effects of 

nanoparticle size and volume fraction is crucial for the development of the novel 

magnetorheological fluids based on bimodal magnetic suspensions. 

For a better understanding of this phenomenon, a more detailed investigation of the 

field-induced halo formation around a single micro-sphere is highly desirable. This problem 

approaches the well studied phenomena of the diffusion and accumulation of magnetic 

nanoparticles around either a magnetized wire or a spherical magnetic microparticle, both 

modeling the collector unit of high gradient magnetic separators. These devices are being 

extensively used in ore beneficiation industry [10], in the separation of magnetically labeled 

biological molecules or cells [11], as well as in recent laboratory experiments on magnetically 

assisted water purification systems [12]. The existing theoretical studies were mostly carried 

out under approximation of non-interacting magnetic nanoparticles. They report concentration 

profiles of magnetic nanoparticles [13,14], as well as the size and shape of the nanoparticle 

cloud (region with a high particle volume fraction) around a magnetized wire [15-17]. 

According to these theories, the static equilibrium concentration profiles follow the 
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Boltzmann statistical distribution while the nanoparticle static built-up (cloud) around a 

magnetized collector is simply considered as a region where the particle volume fraction 

(given by the Boltzmann distribution) exceeds the maximum packing fraction of about 0.6. 

Clearly, the approximation of non-interacting nanoparticles is irrelevant for the predictions of 

the shape and the size of closely packed particle built-ups. Furthermore, even at the initial 

stage of the particle capture without any built-up around the collector, the nanoparticles of the 

size as small as 15-20 nm may already exhibit a rather strong attraction between them and 

even show a condensation phase transition above some critical magnetic field and volume 

fraction [18-20]. A few attempts have been made to take into account the interactions between 

nanoparticles in magnetic separation systems [15,21,22]. However, they seem to be very 

approximate, and the effect of interparticle interactions on the nanoparticle capture efficiency 

was poorly analyzed. To the best of our knowledge, the rigorous equilibrium thermodynamic 

approach has never been employed for these systems, consequently, eventual phase transitions 

have never been considered. Furthermore, only a few visualization experiments on 

nanoparticle accumulation around a magnetized wire have been reported [23,24]. These 

studies are restricted to some limited sets of experimental parameters (external magnetic field, 

nanoparticle size, elapsed time) and do not allow a quantitative comparison with the theories. 

In the present paper, we report a systematic experimental and theoretical study of the 

magnetic nanoparticle accumulation around a single magnetic microsphere in the presence of 

an external magnetic field. The experimental part focuses on the effect of the nanoparticle size 

(d), the initial volume fraction (φ0) and the external magnetic field (H0) on the redistribution 

of nanoparticle concentration and, particularly, on the size and shape of the concentrated 

regions of nanoparticles – so called nanoparticle clouds – around a microsphere. As in the 

study of phase separation in magnetic colloids [18,25], the theoretical approach of these 

effects is based on the local thermodynamic equilibrium approach, in which the dipole-dipole 

and hard sphere potentials acting between nanoparticles are naturally introduced in the 

thermodynamic functions of the magnetic nanoparticle suspension. The constitutive equations 

of state of the nanoparticle suspension (osmotic pressure and chemical potential as function of 

the nanoparticle concentration) are formulated. The gas-liquid phase transition in the 

nanoparticle suspension is then studied and the binodal curves separating different phases are 

calculated. The particle concentration profile around a microsphere is found from the 

condition of the uniformity of the chemical potential of nanoparticles across the suspension 

taking into account eventual phase transitions. The nanoparticle clouds are expected to 

correspond to regions of condensed liquid state of the ensemble of nanoparticles around a 

microsphere, rather than to regions of closely packed nanoparticles, as follows from the 

existing theories. The present theory and experiments will allow us to establish an important 

fundamental and practical result: we shall find the threshold parameters (d, φ0, H0), above 

which the thermodynamic equilibrium between the nanoparticle liquid phase (nanoparticle 

cloud) and gas phase (the rest of the nanoparticle suspension) is no more possible, meaning 

that the clouds grow infinitely, adsorbing all the surrounding nanoparticles. This study is 

motivated by practical applications in both magnetorheological smart technologies and 

magnetic separation techniques. 
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The present paper is organized as follows. In Sec. II, we shall describe the experimental setup 

and characterize the synthesized nanoparticle suspensions. The Sec. III will be devoted to the 

experimental results on the visualization of accumulation of nanoparticles around a 

microsphere. In Sec. IV, we shall present the local thermodynamic equilibrium approach and 

calculate the concentration profiles and the shape and size of the nanoparticle clouds. In the 

same section we shall compare our theory to experimental results. In Sec. V, the concluding 

remarks will be outlined and perspectives for further investigations will be discussed. 

 

II. Experimental 

A. Experimental setup  

The experimental cell used for visualization of the redistribution of magnetic nanoparticle 

concentration around a magnetized microsphere is shown schematically in Fig.1. First, a 

bimodal aqueous suspension of magnetite nanoparticles and nickel microspheres was 

prepared by a dilution of a primary concentrated ferrofluid up to a desired nanoparticle 

volume fraction (ranging from φ0=0.005% to 0.16%) with a subsequent addition of an 

extremely small quantity of nickel micropowder. Nickel microparticles possessed a well 

defined spherical shape and a narrow size distribution with a mean diameter D≈5 µm. 

Magnetite nanoparticles (or rather aqueous ferrofluids) were synthesized by two different 

methods described in Sec II-B. A drop of the bimodal suspension was then sandwiched 

between two glass plates separated by a gap of 0.13-0.17 mm. This fixture was then placed 

under the transmitted light optical microscope (Carl Zeiss Photomicroscope III) equipped with 

a color CMOS camera PixelInk PL-B742U. An external magnetic field, parallel to the glass 

plates, of an intensity ranging from H0=0 to 16 kA/m, was generated by a pair of Helmholtz 

coils placed around the microscope. Iron yokes were introduced into Helmholtz coils in order 

to reinforce the magnetic field. Nevertheless, measurements showed that the magnetic field 

was homogeneous, within a few percent tolerance, in the location of the bimodal suspension 

drop. Therefore, nickel microspheres did not migrate towards one or another coil during 3 

hours of experiments. A 50-fold objective (Olympus LMPlanFl 50x0.50) was used for 

observation of the suspension. Once the magnetic field was applied, nickel microspheres were 

magnetized and the magnetite nanoparticles started to migrate towards the microspheres such 

that their volume fraction increased in the vicinity of the magnetic poles of microspheres 

forming clouds extended along the direction of the external magnetic field. Such 

redistribution of nanoparticle concentration was detected by the change in contrast of the 

suspension. Pictures of the observed microsphere with its nanoparticle clouds were taken each 

30 seconds during 30 minutes starting from the moment when the magnetic field was applied. 

The sequence of pictures was then analyzed using ImageJ software to extract the geometrical 

parameters of the nanoparticle clouds (longitudinal size). In some experiments, the formation 

of nanoparticle clouds was a relatively long process and the duration of observation was 

increased up to 3h. To avoid water evaporation from the nanoparticle suspension during long-

time experiments, we sandwiched between two glass plates a ring pattern of a mixture of 

PMMA micro-beads (Microbeads Spheromers® CA) with acyanocrylate glue and introduced 

a drop of the magnetic suspension with the help of a micro needle inside the so-formed ring 

seal. In these specific experiments, the monodisperse PMMA beads of diameter of 31µm 
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served as well calibrated separators between two glass plates. The quantity of nickel 

microspheres in the suspension was small enough such that they were sufficiently spaced 

from each other, their dipolar interactions were weak enough and they did not attract each 

other. The nanoparticle clouds of neighboring microspheres did not interact with each other, 

so, the experimental conditions were close to the case considered in our theory – a single 

microsphere placed in an infinite volume of a nanoparticle suspension. 

 

 
Fig.1. (Color online) Experimental cell used for visualization of nanoparticle accumulation around microspheres 

 

B. Nanoparticle synthesis and characterization 

We used two kinds of magnetite in water solutions (ferrofluids) with different nanoparticle 

sizes. Both samples were prepared by a co-precipitation of ferrous and ferric salts in an alkali 

medium [26]. Magnetite nanoparticles were subsequently stabilized by either electrostatic 

(ionic, [27]) or entropic (steric double layer, [28]) repulsion, these two samples are hereinafter 

denoted by (I) and (S), respectively. 

Both kinds of magnetite nanoparticles and their aqueous solutions were characterized 

by the transmission electron microscopy (TEM, JEOL JEM 1400), dynamic light scattering 

(DLS, Malvern ZetaSizer Nano ZS), pH measurements (Mettler Toledo GmBH Seven Easy 

pH), conductivity and ζ-potential measurements (Malvern ZetaSizer Nano ZS) and vibrating 

sample magnetometry (VSM 4500 EG&G Princton Applied Research). Some physical 

properties of both primary ferrofluids are summarized in the Table1. 
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Table 1. Properties of the primary ferrofluids and particle size characteristics 

Sample Density, 

ρ, g/cm3 
Particle 

volume 

fraction, 

φ, % 

Saturation 

magnetization, 

Ms, kA/m 

Initial 

magnetic 

susceptibility, 

χ 

Particle size 

by TEM 

Particle/cluster size by DLS 

volume mean 

diameter d43, 

nm 

volume mean 

diameter, nm 

z-average 

diameter, 

nm 

Polidispersity 

index 

(I) 1.045 1.07 4.38 0.077 11 18 25 0.27 

(S) 1.175 4.2 21.9 0.78 13 62 82 0.20 

 

The TEM pictures of both samples are shown in Fig.2 and the corresponding 

nanoparticle size distribution is shown in Fig. 3a. Both samples (I) and (S) have a size 

distribution extended from 4 to about 20 nm with the volume mean diameters, d43
TEM

, equal to 

11 and 13 nm, respectively. The nanoparticles of the sample (I) seem to be weakly aggregated 

while those of the sample (S) are gathered in irregular shaped clusters with a mean size 

estimated to be of the order of 50-70 nm. Such aggregation of oleic-acid stabilized 

nanoparticles has already been reported in [28] but its cause remains unexplained. Appearance 

of the clusters in the sterically stabilized ferrofluid (S) did not affect its sedimentation stability 

during at least half a year but improved considerably their capture efficiency compared to that 

of quasi-isolated nanoparticles of the ferrofluid (I). The particle size distribution obtained by 

DLS (for diluted ferrofluids at particle volume fraction φ=0.005%) is shown in Fig.3b and the 

volume mean diameter for sample (I), d
DLS

=18nm, appears to be about 1.6 times the one 

obtained from TEM pictures. This corroborates a weak particle aggregation revealed by TEM 

[Fig.2a]. The sample (S) shows a much more pronounced difference between the TEM and 

the DLS size distributions: the DLS volume mean diameter, d
DLS

=62 nm, appears to be about 

5 times the TEM diameter and corresponds approximately to the mean size of nanoparticle 

clusters observed by TEM.  

 
Fig. 2 TEM images of the two ferrofluid samples: a) ionoic stabilization ; b) steric stabilization with a double-

layer oleic surfactant. 
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Fig. 3. Nanoparticle size distribution obtained from transmission electron microscopy (a) and dynamic light 

scattering (b): dashed line - ferrofluid sample (I); continuous line - ferrofluid sample (S) 

 

The results of the measurements of the particle ζ-potential and of the electric conductivity of 

(I) and (S)-types dilute suspensions are summarized in the Table 2 for particle volume 

fractions, φ=0.005% and φ=1.6%, covering the concentration range used in visualization 

experiments. As expected, the (I)-samples have an acidic pH, their nanoparticles bear a 

positive electric charge characterized by a relatively high ζ-potential, 50ζ +∼ mV, which is 

approximately the same within the particle concentration range considered. On the contrary, 

the conductivity and, consequently, the ionic strength of (I)-type suspensions decreases 6 

times with the decrease in particle concentration from φ=0.16% to φ=0.005%. This can be 

explained by a decrease of concentrations of H
3
O

+
 and Fe

3+
 ions when the nanoparticle 

suspension is progressively diluted. In any event, the suspension ionic strength is low enough 

(I<20mM) to avoid a significant screening of electric charges on the particle surface. Using 

the classical DLVO theory [29] completed with magnetic dipolar interactions, we have 

estimated the potential energy of the resultant interaction between two particles in the case 

when their magnetic moments are aligned along the line connecting the particle centers. The 

value, max 4U kT∼  of the potential barrier does not seem to be high enough to provide a long-

time stability of the suspension, even though the secondary minimum of the potential energy 

appears to be quite small: min 0.5U kT−∼ . This likely corroborates the weak aggregation state 

revealed by TEM and DLS measurements. However, the sedimentation tests show that, in the 

considered concentration range, the (I)-suspensions remain stable during at least half a year. 
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Table 2. Electrostatic properties of the nanoparticles/nanoclusters surface 

Suspension Particle 

volume 

fraction, 

φ, % 

Suspension 

pH 

Suspension 

electric 

conductivity, 

σ, µSm/cm 

ζ-potential, 

mV 
Ionic 

strength, 

I, mM 

Debye 

length, 

κ-1, nm 
Potential 

barrier(a), 

Umax/kT 

(I) 0.005 4.0 170 +47 2.6 6.1 8.3(4.5)(b) 

(I) 0.16 3.1 990 +49 15 2.5 7.4(4.1)(b) 

(S) 0.005 8.3 280 -59 4.2 4.8 83(c) 

(S) 0.16 9.5 450 -57 6.8 3.8 72(c) 

(a) The potential energy vs. interparticle separation was estimated with the help of the DLVO theory [29] using the linear superposition 

approximation for the electrostatic interaction (with the ζ-potential values used for the surface potential ψ0) and the classical Hamaker 

approximation (with the non-retarded Hamaker constant for magnetite-water system AH≈33·10-21J [30]) 

(b) The mean diameter of isolated nanoparticles was taken from TEM measurements: d=11 nm. The values in brackets are estimated 

taking into account the magnetic interactions between nanoparticles with magnetic moments aligned along the line connecting the particle 

centers 

(c) The mean diameter of nanoclusters was taken from DLS measurements: d=62 nm. Estimations are done for zero magnetic field 

 

On the other hand, the stability of the relatively large nanoclusters of the (S)-type 

suspensions is not evident. The oleic-based surfactant double layer as thin as 1 or 1.5 nm 

[31,32] cannot by itself avoid aggregation, as follows from the estimation of the van der 

Waals interaction potential between two nanoclusters of a mean diameter d=62 nm at a 

separation equal to 2-3 nm. Hopefully, the clusters with their double layers bear a relatively 

high negative charge corresponding to the ζ-potential about -60 mV. The conductivity and the 

ionic strength of the both tested (S)-suspensions are relatively low (I<10mM), so, the 

electrostatic repulsion is again favored providing the potential barrier in the absence of the 

magnetic field about max 70U kT∼  and a negligible secondary minimum min 0.01U kT−∼ . In 

the presence of the magnetic field, nanoclusters get magnetized and their dipolar attraction 

lowers substantially the potential barrier level, and a pronounced secondary minimum 

appears. For instance, at the magnetic field H=48 kA/m (like the one in the vicinity of the 

magnetic microspheres in our experiments), the resultant interaction between two 

nanoclusters is strongly attractive (with min 50U kT−∼ ) at any interparticle separations larger 

than the thickness of the surfactant double-layer. This corresponds to a strong field-induced 

aggregation of nanoclusters observed in experiments at magnetic fields H>10 kA/m. 

However, the reversible character of this aggregation proofs the efficiency of the surfactant 

double layer: at high magnetic fields, the electrostatic repulsion is not strong enough to 

separate the nanoclusters but the surfactant layer avoids the close contact between them; when 

the magnetic field is switched off, the overlapping electric double layers of nanoclusters repel 

each other and reestablish initial dispersion state of the suspension, which does not lose its 

sedimentation stability after switching off of the magnetic field. Such combined 

steric/electrostatic mechanism of stabilization of aqueous solutions of magnetite nanoparticles 

covered with an oleate double-layer has been reported in [33], where it was shown that the 

absolute value of the nanoparticle ζ-potential increased gradually with the growth of sodium 

oleate adsorbed on the particle surface and became quasi-insensitive to the suspension pH 

providing a good colloidal stability in the wide pH range. 

Magnetization M(H) curves of both primary concentrated ferrofluids are shown in 

Fig.4, with H being magnetic field intensity and M – magnetization. The time steps of the 

measurements were sufficiently long to ensure equilibrium structure of the ferrofluid at each 
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imposed magnetic field intensity H. The magnetization saturation, MS, of the ferrofluids (see 

Table 1) was found by extrapolation of M vs. 1/H dependencies to zero value of 1/H in the 

range of high values / 1H M �  [26]. The magnetization of nanoparticles was simply 

estimated as the ratio of ferrofluid saturation magnetization to the particle volume fraction φ 

of ferrofluids, /p SM M φ= , and was found to be close to the saturation magnetization of bulk 

magnetite (480-520 kA/m) for both samples. The shape of M(H)-curves was essentially 

similar for both ferrofluids (I) and (S) without a distinguishable hysteresis. Nevertheless, the 

magnetization mechanism is expected to be rather different because the (S)-sample 

experienced a reversible phase separation under applied magnetic field, while the (I)-sample 

did not, as follows from optical microscopy. Relatively dilute (I)-sample (φ=1.07%) 

composed of quasi-isolated superparamagnetic particles should presumably follow the 

Langevin magnetization law [26]: [ ]0 0coth( / ) /( )SM M µ mH kT kT µ mH= − , where µ0=4π·10
-

7
 H/m is the magnetic permeability of vacuum, p pm M V=  is the particle magnetic moment, 

3 / 6pV dπ=  – particle volume, d –mean particle diameter, k=1.38·10
-23

J/K – Boltzmann 

constant and T≈300 K – absolute temperature of the suspension. The mean particle size, d, of 

the sample (I) was estimated by fitting the experimental magnetization curve to the Langevin 

function, which gave the value dmagn≈9nm close to the one obtained by TEM. 

 

 
Fig.4. Magnetization curve of both synthesized ferrofluids: solid line corresponds to the sterically stabilized (S)-

sample and dashed line – to the ionically stabilized (I)-sample 

 

The (S)-sample was composed of nanoparticle clusters of the mean diameter of 60-70 

nm. Each individual cluster contains a few dozens of closely spaced nanoparticles at an 

internal volume fraction of the order of int 0.5φ ∼ , as estimated from TEM pictures. Clearly, in 

the presence of an external field, the magnetization of these clusters should be strongly 

affected by many-body interactions between fluctuating magnetic dipoles of each 

superparamagnetic nanoparticle. Therefore, we expect a strong deviation of the nanocluster 

magnetization from the Langevin law. Furthermore, upon application of a strong enough 

magnetic field, the nanoclusters are assembled into long columns aligned with the field lines. 

Thus, the ferrofluid magnetization will depend, among other things, on its internal structure. 

Searching for a theoretical magnetization law for the clustered ferrofluid sample (S) becomes 
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a difficult task. However, for the interpretation and the modeling of the nanocluster capture 

process, we do not need the precise form of the magnetization law of the primary ferrofluid 

but rather the initial magnetic susceptibility, χc, of the nanoclusters. This magnitude is more 

easily estimated from the measurements of the magnetization of a compacted dry extract of 

the primary ferrofluid. These measurements give the value χc≈9 of the nanocluster 

susceptibility. 

 

III. Overview of observation results 

 

The most part of visualization experiments was carried out with the (S)-ferrofluid sample 

because the nanoclusters of this sample were sufficiently large and experienced a rather strong 

interaction with microspheres – the most important case for practical applications. Sequences 

of pictures illustrating the nanocluster accumulation around a magnetic microsphere are 

shown in Fig.5 for an external magnetic field, H0=16kA/m, for different initial concentrations 

of nanoparticles, φ0, and different times after the onset of the magnetic field. As we see in 

those pictures, the nanoparticle clouds have a lobe shape and show an axial symmetry with 

respect to the microsphere axis parallel to the external magnetic field. Such anisotropy of 

nanoparticle clouds comes from the anisotropy of magnetic interactions between the 

nanoclusters and the microsphere: this interaction is attractive within the regions where the 

magnetic field H is higher than the external field H0 while it is repulsive in the regions where 

H<H0. The attractive regions are therefore formed in the vicinity of the two magnetic poles of 

the microsphere and the repulsive region is adjacent to the microsphere equator, where 

magnetite nanoclusters never accumulate. Fig.5 also shows that the volume of nanoparticle 

clouds increases both with elapsed time and with the initial concentration of nanoparticles φ0 

in the suspension. The latter effect is explained by stronger dipolar interactions between 

nanoclusters in more concentrated suspension. This enhances their response to the applied 

magnetic field and ensures a stronger attraction to the magnetic microsphere. The transmitted 

light intensity and, consequently, the nanoparticle concentration inside the clouds seem to 

increase considerably with φ0: at concentrations, 0 0.04%φ ≥ , a large part of the cloud 

becomes opaque that makes impossible the measurements of the concentration profiles by 

means of the image processing. As we shall see in the next section, the theory suggests that, 

starting from some critical initial volume fraction φ0, the local nanocluster concentration 

reaches high enough values, and a condensation phase transition takes place in the proximity 

of the magnetic poles of the microsphere. Therefore, the opaque regions of nanoparticle 

clouds at 0 0.04%φ ≥  could be interpreted as liquid-state phase with high (but not necessarily 

closely packed) nanocluster concentration. 
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Fig5. (Color online) Influence of the initial volume fraction of nanoparticles, φ0, on the size of the nanoparticle 

clouds. The nanocluster concentration is related to the nanoparticle concentration through the relation Φ0=φ0 /φint, 

with φint≈0.5 being the internal volume fraction of nanoclusters. Magnetic field intensity is H0=16 kA/m; the 

image sequence from up to the bottom corresponds to different elapsed times: 0, 5, 10, 15 and 20 min. 

The effect of the intensity of the external magnetic field on the cloud formation is 

shown in Fig.6 for the initial nanoparticle concentration, φ0=0.04%. As is seen in this figure, 

the nanoparticle clouds become larger, thicker and more extended along the magnetic field 

lines, as the magnetic field intensity increases. This is simply interpreted by increasing 

magnetic interactions between the nanoclusters and the microsphere as well as between the 

nanoclusters themselves. The later effect could favor the condensation phase transition around 

microspheres. Again, the opaque zones of the clouds near the microsphere at 0 12H ≥ kA/m 

likely stand for the liquid-state phase of the nanocluster ensemble. Concentration and 

magnetic field effects on the cloud size and shape are studied in more details in Sec. IV-C in 

conjunction with the theory. 
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Fig.6. (Color online) Influence of the magnetic field intensity H0 on formation of the nanoparticle clouds in the 

sterically stabilized (S) nanoparticle suspension. Initial nanoparticle volume fraction is φ0=0.04%; the image 

sequence from up to the bottom corresponds to different elapsed times: 0, 5, 10, 15 and 20 min.  

 

It should be pointed out that, in short time experiments presented in Figs. 5-6, we 

observed a rather smooth transition between a concentrated, presumably, liquid-state phase of 

the nanocluster ensemble and a dilute gas-state phase outside the cloud. The absence of the 

sharp boundary between both phases may come from a polydispersity of the nanocluster 

suspension: larger nanoclusters are accumulated in the vicinity of the microsphere forming a 

dense liquid-state phase, while smaller nanoclusters form sparse clouds around the latter. In 

addition to it, the nanocluster accumulation is likely a long process hindered by Brownian 

motion. To check if the equilibrium was reached, we have conducted long-time experiments 

(3 hours) taking special care to avoid degradation of the sample. First, we remark that the 

distinct boundary between the liquid and the gas phases has only been observed for the most 

concentrated sample with φ0=0.16%. Second, the nanocluster accumulation process seems to 

be achieved for the most dilute sample (φ0=0.005%, Fig. 7a), resulting in relatively small and 

transparent clouds. For more concentrated suspensions (φ0=0.08% and φ0=0.16%, Figs. 7b 

and 7c), the nanoparticle clouds did not cease to grow, at least during 3h. We also observed 

the formation of field-induced rod-like aggregates in the bulk of the concentrated suspensions, 

while these aggregates were not detected in dilute suspension. Such a phase separation in the 

two last samples is a long time process (several hours), and its time scale is similar to the one 

of the nanocluster accumulation. After a certain elapsed time, sufficient for the formation of 

long enough aggregates, we observed the motion of these aggregates towards the microsphere 

such that the nanoparticle clouds continued to grow absorbing the neighboring aggregates. 

Thus, the cloud growth process could have stopped only if all the ferrofluid aggregates were 

absorbed by the clouds leading to very large clouds, whose size depends on the total quantity 

of nanoclusters in the initial ferrofluid. Such a tendency could be discerned in Fig.7c for the 

suspension with φ0=0.16%. In the limit of infinite volume of the nanocluster suspension, the 

clouds are expected to grow around microspheres infinitely without reaching thermodynamic 

equilibrium with the ambient suspension. These observations allow us to suppose that an 
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infinite cloud growth is associated with the field induced structuring of the initial nanocluster 

suspension, while, in the absence of the structuring at lower concentrations/magnetic fields, 

clouds of finite size are expected. Our theory developed in the next section fully confirms this 

hypothesis. 

 

 

Fig.7. (Color online) Long-time (3h) observation of the nanoparticle clouds of the samples (S) at the external 

magnetic field intensity H0=8kA/m and initial volume fractions φ0=0.005% (a), 0.08% (b) and 0.16% (c) 

In order to understand the influence of the nanoparticle/nanocluster size on their 

accumulation around microspheres, we compared in Fig.8 the pictures taken for both (I) and 

(S)-types of synthesized nanoparticles at the same external magnetic field, H0=16kA/m, and at 

the same initial volume fraction, φ0=0.16%. The small quasi-isolated nanoparticles of the (I)-

sample with a mean diameter about d≈10nm build very small halos in the vicinity of the 

magnetic poles of the microsphere, extended to a distance of about 0.1D from the microsphere 

surface, with D≈5µm being the microsphere diameter. On the contrary, the larger nanoclusters 

of the (S)-sample with the mean diameter about d≈60 nm build large clouds extended along 

the magnetic field lines to a distance equal to several microsphere diameters. Such a 

difference comes from the fact that the energy of both nanoparticle/microsphere and 

nanoparticle/nanoparticle magnetic interactions is proportional to the nanoparticle volume, 

thus to d
 3

; these interactions are much more pronounced for bigger (S)-type nanoclusters 

leading to a condensation phase transition of nanoclusters in the vicinity of microspheres. 
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Fig.8. (Color online) Influence of the nanoparticle/nanocluster size on the cloud formation at the magnetic field 

H0=16kA/m and at the initial volume fraction φ0=0.16%. The left column corresponds to the small size (I)-type 

nanoparticles (dDLS=11mm); the right column stands for the bigger (S)-type nanoclusters (dDLS=62 mm). The 

image sequence from up to the bottom corresponds to different elapsed times: 0, 5, 10, 15 and 20 minutes. 

 

As a short demonstration of stabilization of a bimodal non Brownian magnetic 

suspension (by dispersion of micron-sized magnetic particles in a dilute (0.16%) aqueous 

solution of (S)-type nanoclusters), we show in Fig.9 two nickel microspheres subjected to an 

external magnetic field, H0=16 kA/m, and remained separated from each other at a distance of 

about ten microsphere diameters thanks to the effective repulsion between overlapping 

nanoparticle clouds. As already mentioned, such effect has been first discovered by Lopez-

Lopez et al. [9] and was observed in a relatively concentrated ferrofluid at nanoparticle 

volume fraction about a few percents. In the present work, we reproduced this effect with a 

dilute ferrofluid composed of large nanoclusters, the ferrofluid being stable to sedimentation. 

 

 
Fig.9. Effective repulsion between two nickel microspheres subjected to an external magnetic field of an 

intensity H0=16 kA/m and parallel to the line connecting the centers of both microspheres. The volume fraction 

of the (S)-nanoclusters is 0.16% 

 

IV. Theory and discussion 

 

We now develop a thermodynamic theory allowing prediction of the concentration profiles as 

well as the size and the shape of the nanoparticle clouds taking into account interparticle 

interactions and eventual gas-liquid phase transition. The thermodynamic state of the 
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nanocluster suspension at each its point is described by a set of intensive thermodynamic 

variables, such as temperature, particle volume fraction, osmotic pressure, magnetic field 

intensity, chemical potential. If the local thermodynamic equilibrium holds, the relationships 

between these variables (equations of state) do not depend on their space distribution around a 

microsphere. Therefore, they can be determined by considering an infinite volume of the 

nanoparticle suspension subjected to an external uniform magnetic field. Using this approach, 

we find in Sec. IV-A the chemical potential and the osmotic pressure of the suspension as 

functions of the nanocluster volume fraction and the magnetic field intensity. Then, in Sec. 

IV-B, we use these relations to study a gas-liquid phase transition. After that, in Sec. IV-C, on 

the basis of the obtained equations of state and phase diagrams, we calculate the equilibrium 

concentration profiles of nanoclusters around the microsphere and compare the theory to 

experimental results. Finally, in Sec. IV-D, we develop a pressure balance model and estimate 

the size and the shape of the clouds in the case of a finite volume of the nanocluster 

suspension. 

 

A. Thermodynamic variables 

Let us consider an infinite volume of homogeneous suspension of sterically stabilized 

spherical magnetic nanoclusters at a volume fraction Φ=φ/φint, subjected to an external 

uniform magnetic field of intensity H0 (as previously, φ and int 0.5φ ∼  stand for the volume 

fraction of nanoparticles in the suspension and the volume fraction of nanoparticles inside 

nanoclusters). We seek for the chemical potential of nanoclusters, ξ(Φ, H0) and for the 

osmotic pressure of the suspension p(Φ, H0). These variables will be found under the 

following considerations:  

1. The nanoclusters interact with each other via electrostatic and steric repulsion, van 

der Waals attraction and magnetic dipolar interactions. Estimations of inter-cluster potentials 

show that, the first three interactions are short-ranged and the magnetic interaction is long-

ranged. This allows us to apply a simple approach, in which the non-magnetic and magnetic 

interaction potentials give additive and completely independent contributions to the total free 

energy of the colloid. The contribution of all non-magnetic terms is therefore approximated 

by the hard sphere repulsion described by the radial distribution function not altered by the 

magnetic field, while the magnetic contribution follows from the continuum electrodynamics. 

Such an approach was successfully used to predict phase transitions in ferrofluids [34] and 

magnetorheological fluids [35]. 

2. We neglect the change of free energy associated with the formation of chains of 

nanoclusters. This assumption should not seriously contradict to the formation of rod-like 

aggregates observed experimentally. These aggregates are relatively thick and can, in the 

simplest case, be regarded as elongated highly concentrated liquid drops composed of closely 

spaced but individual nanoclusters [36]. Although the appearance of these aggregates can 

affect the phase diagram, we shall see in the following that this approximation gives a good 

enough representation of nanoparticle capture. 

3. For the sake of simplicity, we neglect the size distribution of nanoclusters and 

consider all of them to be of the same diameter d, which is taken to be equal to the mean 
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volume diameter, d
DLS≈62 nm, measured by DLS. Strictly speaking, this assumption is not 

verified in experiments, so, it may induce some errors on the calculated concentration profiles 

and cloud shapes. Possible effects of the nanocluster polydispersity are briefly discussed 

below in conjunction with comparison of the theory versus the experiments. 

Under these approximations, the free energy of a homogeneous suspension composed 

of N magnetic nanoclusters dispersed in a volume V at a temperature T and subjected to a 

uniform magnetic field, H, is given by the following constitutive relation: 

3

02

0

4 3
ln

(1 )

N
F NkT NkT NkT d

V
µ⎡ ⎤⎛ ⎞Λ − Φ= − + Φ − ⋅⎢ ⎥⎜ ⎟ − Φ⎝ ⎠⎣ ⎦ ∫H m H   (1) 

where Λ is the thermal de Broglie wavelength of the nanocluster and m  is the magnetic 

moment of the whole suspension. The first term in the right hand side of this equation 

represents the free energy of an ideal gas of spherical nanoclusters [37], the second term 

stands for the hard-sphere repulsion between nanoclusters and follows from the Carnahan-

Starling theory [38,25], while the last term is the magnetic contribution to the free energy 

[39], which includes both nanocluster/external field and nanocluster/nanocluster magnetic 

interactions. The calculation of this term requires further approximations. 

 4. As has been stated in Sec. II-B, the magnetic nanoclusters, composed of a large 

number of superparamagnetic nanoparticles, are expected to be paramagnetic, i.e. not having 

any permanent magnetic moment but being reversibly magnetized by an external magnetic 

field. Estimations show that the magnetic susceptibility χc of the nanoclusters changes by 

about only 20% within the range of magnetic fields used in our experiments. Therefore, in the 

first approximation, we consider χc to be independent of the applied field and equal to the 

initial magnetic susceptibility estimated from magnetization measurements: χc≈9. 
 5. Since the magnetic susceptibilities χc and χ are considered to be isotropic and field-

independent, the magnetic moment, Vχ=m H , of the nanocluster suspension is collinear 

with the magnetic field vector, H , and proportional to the magnetic field intensity such that 

the last term in Eq. (1) takes the following form: 2

0 0

0

(1/ 2)d H Vµ µ χ− ⋅ = −∫H m H , with 

H = H . 

6. The full definition of the free energy requires a specific expression for the magnetic 

susceptibility χ of the colloid as function of its concentration, which should correctly account 

for magnetic interactions between nanoclusters. A great number of effective medium theories 

have been proposed for calculations of effective dielectric/magnetic properties of composite 

materials [see for instance, 40,41]. The most popular Maxwell-Garnett theory was found to 

strongly underestimate magnetic susceptibility of composites at high concentrations. 

Therefore, we choose the theory of Looyenga-Landau-Lifshitz [39,42], which was initially 

derived for composites with low dielectric/magnetic contrast but found to be reasonably 

accurate for the dielectric/magnetic inclusions with a moderate susceptibility (generally less 

than ten) in the wide concentration range [43, Table 6 in 41]. This theory gives the following 

expression for the magnetic susceptibility, χ, of the nanocluster suspension: 
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     1/3 1/3 1/3( 1) ( 1) (1 )( 1)c sχ χ χ+ = Φ + + − Φ +     (2) 

 

where χs≈0 is the magnetic susceptibility of the solvent (water). 

Finally, using the standard thermodynamic relations, we derive the following 

equations for the chemical potential, ξ, and the osmotic pressure, p, of the suspension: 

 

3 2

3
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( / ) 8 9 3
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c
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χα⎡ ⎤∂ Φ∂ ∂ + Φ + Φ − Φ⎛ ⎞ ⎛ ⎞= − = − + Φ = Φ − Φ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂Φ − Φ ∂Φ⎝ ⎠ ⎝ ⎠ ⎣ ⎦  (4) 

 

with 3 / 6cV dπ=  being the nanocluster volume and 2

0( ) /(2 )cH V kTα µ=  - magnetic field 

parameter characterizing the ratio of the nanocluster magnetic energy to the thermal energy. 

While deriving the last two equations, we took into account that the number density of 

nanoclusters is related to their volume fraction via the expression / / cN V V= Φ . The last 

terms in brackets in the right-hand side of Eqs. (3), (4) stand for the magnetic contributions to 

the chemical potential and the osmotic pressure, respectively, and are easily obtained by 

replacing the magnetic susceptibility, χ, by the one found from the Eq. (2), that yields: 
2/ 3 (1 )y yχ∂ ∂Φ = + Φ  and [ ]2 2 2/ / (3 2 )y yχΦ ∂ Φ ∂Φ = Φ + Φ  with 1/3( 1) 1cy χ= + − . 

 

B. Phase transition  

Beyond some critical magnetic field, the concentration dependencies of the chemical potential 

[Eq. 3] and of the osmotic pressure [Eq. 4] appear to be non monotonically increasing. They 

have an N-shape with a decreasing branch at intermediate concentrations, similar to that of the 

van der Waals gas and inherent for a gas-liquid phase transition. The equilibrium phase 

behavior in the nanocluster suspension will be governed by the equality of temperatures, 

chemical potentials and osmotic pressures in both phases [29,37]. Thus, in our isothermal 

nanocluster suspension, the binodals (curves corresponding to coexistence of both phases) of 

the gas-liquid equilibrium will be defined by the following transcendental equations: 

 

   ( , ) ( , )L Gξ α ξ αΦ = Φ ,       (5.1) 

   ( , ) ( , )L Gp pα αΦ = Φ        (5.2) 

 

where the subscripts “L” and “G” stand for the liquid and gas phases, respectively. 

The system of two equations (5) is solved numerically with respect to the two 

unknowns, ΦL and ΦG, and both binodal concentrations are found as functions of the 

magnetic field parameter α. The α-Φ phase diagram is plotted in Fig. 10 for the nanoclusters 

of the magnetic susceptibility χc=9. The critical point is identified as the minimum of the 

binodal curve and corresponds to the magnetic field parameter αc≈2.3 and to the nanocluster 
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volume fraction Φc≈0.13. Similarly to the case of the van der Waals gas, both the binodal 

curve and the curve α=αc divide the phase diagrams into four regions corresponding to a gas 

phase, a liquid phase, a gas/liquid mixture and a supercritical state existing at low magnetic 

fields, 0 cα α≤ ≤ , at which the condensation phase transition does not occur. As is seen in 

Fig. 10, the left branch of the binodal curve has a relatively small slope such that the gas-

liquid phase transition may occur at relatively low volume fractions of nanoclusters, 
410 0.01%−Φ < = , at the parameter α >4 corresponding to magnetic fields as small as 

H>14.5kA/m. 

 

 

Fig.10. α−Φ phase diagram of the suspension of magnetite nanoclusters. The two curves divide the phase 

diagram into four regions: L- liquid state, G – gas state, L+G – gas/liquid mixture and S – supercritical state, at 

which no condensation phase transition occur whatever the particle volume fraction is. The dashed curve 

corresponds to the critical magnetic field, αc≈2.3; this curve is similar to the critical isotherm of a van der Waals 

gaz.  

 

C. Nanoparticle clouds: the thermodynamic model  

Consider now a magnetizable microsphere of a radius a, introduced into an infinite volume 

suspension of sterically stabilized nanoclusters and subjected to an external uniform magnetic 

field, H0, as depicted in Fig. 11. The polar coordinate system (r,θ) is introduced in such a way 

that its origin coincides with the microsphere center and the angle θ is counted in the 

counterclockwise direction from the magnetic field vector, H0. 

 

 
Fig.11. (Color online) Sketch of the problem geometry. Distribution of the magnetic field intensity (according to 

Eq. 6) around a microsphere is shown schematically by different colors. 
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We seek for the concentration profile Φ(r,θ) of the nanoclusters around the 

microsphere as well as for the shape of the nanocluster cloud, using the following 

assumptions/considerations:  

1. The microsphere is supposed to be made of a magnetically soft material of high 

magnetic susceptibility, 100msχ ∼  (like nickel in our experiments). The magnetic 

susceptibility, χ, of the medium surrounding the microsphere varies from point to point as 

function of the nanocluster concentration, Φ. It takes the maximum value in the vicinity of the 

magnetic poles of the microsphere and minimum near the microsphere equator. Using the 

Eq.(2), these values are estimated to be about max 4χ ≈  and min 0χ ≈ . Thus, the magnetic 

contrast between the microsphere and the surrounding medium remains very high at any point 

of the latter, which allows us to neglect, at the first approximation, the spatial variation of the 

magnetic susceptibility χ and to apply the well-known relations for the magnetic field 

distribution around a magnetized sphere [26]: 

 

0 3

2
1 cosrH H

r

β θ⎛ ⎞= +⎜ ⎟⎝ ⎠ , 0 3
1 sinH H

r
θ

β θ⎛ ⎞= − −⎜ ⎟⎝ ⎠ , 2 2

rH H Hθ= +  (6) 

 

where ( ) /( 2 3) 1ms msβ χ χ χ χ= − + + ≈  is the magnetic contrast factor approximately equal to 

unity. Using the last equations, we can assign the magnetic field parameter 
2

0( , ) ( , ) /(2 )cr H r V kTα θ µ θ⎡ ⎤= ⎣ ⎦  to any point (r,θ) around a microsphere. 

2. At local thermodynamic equilibrium, the chemical potential, ξ, and the osmotic 

pressure, p, are defined at any point of the nanocluster suspension as functions of the local 

concentration Φ(r, θ). These functions are given by Eqs. (3), (4) for any thermodynamic state 

of the suspension except for the gas/liquid mixture. The later is characterized by so-called 

condensation plateau, for which both the osmotic pressure and the chemical potential are 

independent of the nanocluster concentration at a given fixed magnetic field intensity, H. For 

the better understanding, we plot two curves of the constant magnetic field (α=3 and α=3.90) 

in the ξ-Φ phase diagram in Fig.12a. These curves show an initial increase of the chemical 

potential with the concentration in the gas phase, a condensation plateau in the gas/liquid 

mixture region and a final steep increase in the liquid phase – the shape qualitatively similar 

to the one of the van der Waals isotherms. 
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Fig.12. Determination of the critical field along the cloud boundary with the help of the phase diagrams ξͲΦ. The 

figure (a) corresponds to the situation where the initial nanocluster concentration Φ0 is too low to induce the 

phase transition in the nanocluster suspension at the infinity from the microsphere. Nevertheless, the magnetic 

field near the microsphere is high enough to induce condensation of the nanoclusters and formation of a dense 

liquid-state phase around the microsphere. The figure (b) corresponds to the initial nanocluster concentration Φ0 
high enough to induce the phase separation at the infinity from the microsphere. Infinite clouds are expected in 

infinite volume nanocluster suspension. In reality, finite volume clouds will appear in a large-but-finite volume 

suspension, and their shape is defined by the pressure balance model (Sec. IV-D). 

3. The nanocluster suspension reaches local thermodynamic equilibrium when its 

chemical potential becomes homogeneous over the whole volume, ( , )r constξ θ =  [37]. In the 

infinite volume suspension, the concentration of nanoclusters at the infinity from the 

microsphere remains unchanged and is equal to the initial concentration, Φ0, in the absence of 

the magnetic field. This explicitly determines the chemical potential at the infinity, 

0 0 0( , )ξ ξ α≡ Φ  and allows one to calculate the nanocluster concentration Φ(r,θ) at any point 

by the following relation: 

 

0 0( ( , ), ( , )) ( , )r r constξ θ α θ ξ αΦ = = Φ     (7) 

 

with 2

0 0 0( ) /(2 )cH V kTα µ=  being the magnetic field parameter at the infinity, corresponding 

to the external magnetic field, H0. The concentration Φ(r,θ) is obtained by a numerical 

solution of Eq.(7) together with Eqs. (6) and (3) for both gas and liquid phases of the 

nanocluster ensemble. 

Dense nanoparticle clouds around a microsphere are associated with the liquid phase 

of the nanocluster ensemble, while the dilute regions around the clouds correspond to the gas 

state. To find the shape of the nanoparticle cloud or rather the interface between the liquid and 

the gas phases, we should make difference between the two following cases: (1) the 

condensation phase transition does not occur at the infinity from the microsphere but does at 

some finite distance from the microsphere; (2) the condensation phase transition occurs at the 

infinity. As we shall see, in the former case, finite size nanoparticle clouds are formed, while 

in the latter case, the local thermodynamic equilibrium cannot be achieved since phase 
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separation can occur everywhere in the suspension and the drift of the condensed domains 

towards the microparticle is too slow to reach equilibrium. The second case is considered in 

more details in the Sec. IV-D. Now, we shall focus on the first case, for which the magnetic 

field intensity, H0, and the nanocluster initial concentration, Φ0, are not high enough to induce 

condensation at the infinity from the microsphere, so, the nanocluster ensemble is in gas state 

there. 

When approaching the magnetic poles of the microsphere, the magnetic field intensity, 

H, increases progressively until some critical value, Hc, at which the gas/liquid transition 

occurs. Of course, both the magnetic field and the osmotic pressure are not continuous on the 

interface between the gas and liquid phases (cloud surface) because of the difference in 

magnetic susceptibilities of these phases. So, the condition of the mechanical equilibrium of 

both phases [Eq. (5.2)] should contain a magnetic pressure jump, which depends on the 

magnetic field orientation relative to the interface. Thus, the osmotic pressure should vary 

from point to point along the interface. The problem becomes computationally complicated 

and requires a simultaneous solution of the Maxwell equations for the magnetic field 

distribution and the phase equilibrium equations for the unknown gas/liquid interface. 

Therefore, in the frame of this model, we neglect the magnetic field jump and the pressure 

jump on the cloud interface that nevertheless will allow us to obtain a reasonable semi-

quantitative agreement with experimental results (some improvement of the model taking into 

account the magnetic pressure jump will be presented in Sec. IV-D). The interface between 

the gas and liquid phases (the surface enclosing the nanoparticle cloud) is defined as the 

surface of the constant absolute value of the critical magnetic field Hc corresponding to the 

phase transition. The latter can be found from the condition of the equality of the chemical 

potential at the infinity and on the cloud surface: 

 

   0 0( ( ), ) ( , )L c cξ α α ξ αΦ = Φ       (8.1) 

   0 0( ( ), ) ( , )G c cξ α α ξ αΦ = Φ       (8.2) 

 

where αc is the magnetic field parameter corresponding to the critical magnetic field, Hc, 

( )L cαΦ  and ( )G cαΦ  are the nanocluster concentrations at the internal and external sides of 

the cloud interface, respectively (in the liquid phase and in the gas phase). Since the chemical 

potential is the same in both phases, the two last equations are completely equivalent and one 

of them must be solved with respect to αc. As a result, the critical magnetic field, αc, is found 

as function of the initial concentration, Φ0, and the external magnetic field, α0. 

 The critical field can also be determined graphically from the ξ-Φ phase diagram 

plotted in Fig.12a. First, from Φ0 and α0, we calculate ξ0, the chemical potential far from the 

microsphere. The values ΦL and ΦG are then found by the intersection of the ξ=ξ0 curve 

(dashed horizontal line in Fig.12a) with the binodal curves, and αc is the value of α=const 

curve, whose condensation plateau coincides with the ξ=ξ0 line. The difference L GΦ − Φ  

represents the concentration jump on the cloud surface. This surface is symmetric with respect 

to the microsphere axis parallel to the external magnetic field vector, H0, and is described by a 
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geometric locus (R(θ), θ) in polar coordinates. The function R(θ) can be found from the 

critical magnetic field with the help of the expression: 0 0( ( ), ) ( , )cRα θ θ α α= Φ . Substituting 

the Eq.(6) with β=1 for the magnetic field distribution into the last expression, we find the 

equation of the cloud surface in its final form: 

 

 

1/3

2

1/ 2
2 2 2 2

0

1 3cos
( )

(1 3cos ) (1 3cos ) (1 3cos )( / 1)c

R
θθ θ θ θ α α

⎡ ⎤+⎢ ⎥= ⎢ ⎥⎡ ⎤− + − + + −⎣ ⎦⎣ ⎦
  (9) 

 

The shape, R(θ), of the nanoparticle cloud around a microsphere, found numerically 

from the Eq. (9), is presented in Fig. 13 for the initial nanocluster concentration, Φ0=0.08% 

(corresponding to the nanoparticle volume fraction φ0=Φ0φint≈0.04%), and the external 

magnetic fields, H0=4 kA/m and H0=12 kA/m. At the lowest magnetic field, H0=4 kA/m, the 

nanoparticle cloud appears to be very small extending to a distance about 0.2a from the 

microsphere surface. At higher magnetic field, H0=12 kA/m, the cloud is much larger and 

extends to a distance of 1.7a from the collector. For the given parameters, the calculated cloud 

shape qualitatively reproduces the shape observed in experiments [cf. the 1
st
 and the 3

rd
 

columns of Fig. 6]. 

 

 

Fig.13. Shape of nanoparticle clouds calculated by the thermodynamic model [Eq.9]. The initial volume fraction 

of nanoclusters is Φ0=0.08% corresponding to the nanoparticle volume fraction φ0=0.04%. 

The nanocluster concentration profiles along and across the direction of the applied 

magnetic field are presented in Fig.14a and b, respectively, at the same set of the parameters, 

H0=4 and 12 kA/m, Φ0=0.08%. We see that, at H0=12 kA/m, when moving away from the 

microsphere along the magnetic field direction, the concentration decreases quasi-linearly 

inside the cloud (liquid phase), then, it drops significantly on the cloud interface down to 
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Φ=0.7%, and decreases gradually outside the cloud (gas phase) tending asymptotically to the 

initial value, Φ0=0.08%, at the infinity [Fig. 14a]. At the magnetic field, H0=4 kA/m, the 

concentration profile is smoother and the concentration jump on the cloud interface appears to 

be much smaller than for H0=12kA/m. This is explained by the fact that the condensation 

plateau at smaller magnetic fields is closer to the critical point and therefore is shorter giving 

a smaller concentration jump, L GΦ − Φ  [cf. Fig. 12a]. Fig. 14b reveals that the nanocluster 

concentration near the microsphere equator is lower than the initial concentration, Φ0, at the 

infinity. This is easily explained by repulsive magnetic interaction in this region. When 

moving apart from the microsphere surface in the direction perpendicular to the applied 

magnetic field, the magnetic field intensity increases progressively from zero on the 

microsphere equator to H0 at infinity [cf. Eq. (6)] such that the nanocluster concentration also 

increases with the distance r in this direction [Fig. 14b]. The concentration exhibits a more 

rapid increase at lower magnetic field, H0=4 kA/m, because the repulsive magnetic interaction 

between nanoclusters and the microsphere is smaller for this field, compared to the one for 

H0=12 kA/m. 

 

 

Fig.14. Concentration profile of the nanocluster suspension near the magnetic collector: (a) along the direction of 

the applied magnetic field; (b) perpendicularly to the direction of the applied field. Initial volume fraction of 

nanoclusters is Φ=0.08% corresponding to the nanoparticle volume fraction φ0=0.04% 

The contour plot of the calculated 2D concentration profiles is shown in Fig.15 for the 

nanocluster concentration Φ0=0.08% and for the external magnetic field H0=12kA/m. To 

compare with experiments, we add the corresponding optical microscopy picture at the 

bottom of the figure. The intensity of the transmitted light of the experimental picture could 

serve as a qualitative measure of the nanoparticle concentration. As already mentioned, it was 

impossible to establish reliable relationships between the light intensity and the concentration 

because of the opacity of high concentration regions where the Beer-Lambert law do not 

apply. We can compare theoretical and experimental concentration profiles only qualitatively. 

According to our theory, at the magnetic field intensity high enough, the concentration inside 

the cloud appears to be one-to-two orders of magnitude higher than the concentration outside 

the cloud, so, a sharp and well defined cloud border is predicted. However, in the 

experiments, the particle concentration seems to vary smoothly without substantial jumps, 
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even though opaque regions near the microsphere surface are well distinguishable. Such 

inconsistency could probably come from a polydispersity of the nanocluster suspension: as 

already stated, larger nanoclusters are accumulated in the vicinity of the microsphere forming 

a dense liquid-like phase, while smaller nanoclusters form sparse clouds around the latter. So, 

taking into account of the nanocluster polydispersity in the model could improve the 

agreement between theory and experiments.  

 

 

Fig.15. (Color online) Calculated nanocluster concentration profile around a microsphere for the initial 

nanocluster concentration Φ0=0.08% (nanoparticle concentration φ0=0.04%) and the external magnetic field 

H0=12kA/m. The color legend corresponds to the local nanocluster concentrations Φ(r,θ) shown in absolute 

values (not in percents). The nanoparticle cloud observed experimentally at the same parameters, Φ0 and H0, is 

shown on the bottom of the figure. 
To quantify the cloud size and provide a quantitative comparison between the 

experiments and the theory, we define the longitudinal cloud size as the length of a line 

segment between the microsphere surface and the point along the z axis [Fig.11] where the 

transmitted light intensity was 10% smaller than the mean intensity far from the cloud. The 

concentration dependence of the cloud longitudinal size is reported in Fig.16a for the 

magnetic field, H0=14-16 kA/m, and the magnetic field dependence of the cloud size is shown 

in Fig.16b for the initial nanoparticle volume fraction, φ0=0.04% corresponding to the 

nanocluster concentration, Φ0=φ0/φint≈0.08%. Both experiment and theory show an increase 

of the cloud size with the initial particle concentration and the magnetic field intensity. This is 

easily explained by concentration and field-enhancement of dipolar interactions between 

nanoclusters leading to their condensation around a microsphere. As is seen in Figs. 16a,b, the 

theory reveals a divergence of the cloud size at high enough magnetic fields and nanoparticle 

concentrations. This corresponds to an infinite growth of clouds starting from some threshold 

values of H0 and φ0. Such divergence is also confirmed in experiments. For example, the 

experimental cloud size exhibits a drastic jump from L/a≈5 at φ0≈0.08% to L/a≈25 at 

φ0≈0.16% (the last point is not shown in Fig.16a). Beyond the threshold values of H0 and φ0, 

the cloud size and shape cannot be more found by the present model, and another approach 

will be developed in the next subsection for their determination.  
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Fig.16. Theoretical (solid curve) and experimental (points) dependencies of the cloud longitudinal size on the 

initial particle volume fraction at H0=16 kA/m (a) and on the magnetic field intensity at φ0=0.04% (b). The 

experimental points correspond to the elapsed time of 20 min. 

 

D. Nanoparticle clouds: the pressure balance model 

At high enough external magnetic fields and nanocluster volume fractions, the condensation 

phase transition in the nanocluster suspension may occur at an infinite distance from the 

magnetic microsphere. As already mentioned, this phase transition is manifested by 

appearance of rod-like aggregates composed of ferrofluid nanoclusters, these aggregates being 

often considered as elongated concentrated ferrofluid droplets. If the applied magnetic field is 

spatially uniform, the coexistence between the concentrated phase (droplets) and the dilute 

phase (isolated nanoclusters) is possible in the whole volume of the nanocluster suspension, 

provided that the droplet size distribution is governed by the free energy minimum [44]. 

However, in the case of inhomogeneous magnetic field around a microsphere, all the droplets 

will precipitate to the regions of higher magnetic fields and coalesce into a single large 

concentrated drop around the microsphere. Thus, infinitely large nanoparticle clouds are 

expected to form in an infinite volume of the nanocluster suspension.  

If the nanocluster suspension volume is not infinitely large, the amount of nanoclusters 

condensed around a magnetic microsphere will depend on the total amount of nanoclusters in 

the initial suspension, i.e. on its volume and initial volume fraction. We shall now estimate the 

volume and shape of the nanoparticle clouds around a single microsphere placed in a large but 

finite volume, V, of the nanocluster suspension exhibiting a gas/liquid phase transition far 

from the microsphere. This situation is realized in visualization experiments when a drop of a 

bimodal mixture of magnetic microspheres with nanoclusters is sandwiched between two 

glass plates. If the volume fraction, φms, of microspheres is known, the nanocluster suspension 

volume per one microsphere is V1=Vms/φms, where 34 / 3msV aπ=  is the microsphere volume. 

In this model, we shall take into account the magnetic pressure jump on the cloud 

surface. As already mentioned, the exact solution of this problem requires simultaneous 

determination of the magnetic field distribution, of the phase equilibrium conditions on the 

cloud interface and of the cloud volume that necessitates substantial numerical efforts. At this 

stage, we restrict our analysis to estimations made under the following 

approximations/considerations: 
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1. Once the external magnetic field is applied, the nanocluster droplets appear in the 

whole suspension volume and begin to migrate towards the microsphere. During time, the 

volume of the liquid phase around a microsphere increases and the concentration of the dilute 

gas phase outside the cloud decreases keeping the total amount of nanoclusters constant. The 

migration of droplets will stop when the nanocluster concentration in the dilute phase 

becomes small enough to prevent condensation (and, consequently, formation of droplets) 

outside the cloud. The concentrations, ΦG and ΦL, in the dilute and the dense phases are 

estimated as the binodal concentrations at the two extremities of the condensation plateau at 

the external field H0 (or α0, cf. Fig.12b). The values 0( )L αΦ  and 0( )G αΦ  are found by 

numerical solution of the system of equations (5.1),(5.2). 

2. The cloud volume is calculated by an iterative procedure. At the first iteration, we 

neglect the concentration variations and assume that the nanocluster concentration is equal to 

0( )L αΦ  and 0( )G αΦ  at any point inside the cloud (dense phase) or outside the cloud (dilute 

phase), respectively. Since the total volume of nanoclusters is kept constant, the cloud volume 

is defined by the following relation: 

 

0
1

G
L

L G

V V
Φ − Φ= Φ − Φ      (10) 

 

3. Now we shall take into account concentration variation inside the cloud. The shape 

of the cloud surface is found from the condition of its mechanical equilibrium, assuming 

continuity of the normal stress across the surface [45]. The stress tensor in the dense phase of 

the nanocluster suspension is given by the following equation [46]: 

 

2 2

0 0 0

,0

1 1

2 2

H

ik ik ik i k tot ik ik i k

T H

M
P µ M dH µ H H B p µ H H Bσ δ δ δ δ⎡ ⎤⎛ ⎞∂⎛ ⎞= − + − Φ − + = − − +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟∂Φ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦∫

            (11) 

 

where M=χH is the magnetization of the nanocluster suspension, δik is the delta Kronecker, 

0
( / )

T
P F V= − ∂ ∂  is the pressure in the nanocluster suspension defined through the non-magnetic 

term F0 of the free energy and including both contributions from the solvent molecules and 

the nanoclusters, ptot is a so-called total pressure of the suspension equal to the sum of the 

pressure P and the magnetic osmotic pressure (integral term in square brackets). 

From now, we shall neglect a small nanocluster concentration outside the cloud. So, 

neglecting magnetic properties of the dilute phase as well as the capillary pressure, the 

pressure jump across the cloud surface follows directly from the Eq. (11) [46]: 

 

    2 2 2

0 0

1 1

2 2
tot G tot L n np p M Hµ µ χ− = =     (12) 
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with ptot G and ptot L being the total pressure in the gas and liquid phases (outside and inside the 

cloud, respectively), Mn and Hn are the normal components of the magnetization and of the 

magnetic field on the internal side of the cloud interface, χ=χ(Φ) is the magnetic 

susceptibility on the internal side of the cloud surface, whose concentration dependency will 

be defined below.  

Since we neglect the nanocluster concentration ΦG outside the cloud, the total 

pressure, ptot G, in the dilute phase is considered to be constant at any point outside the cloud. 

The total pressure, ptot L, in the dense phase varies from point to point according to the 

following equation [46]: 

 

    00 tot Lp M Hµ∇ ⋅ = ⇒ ∇ = ∇ı ,    (13) 

 

which gives after the integration along the cloud surface: 

 

  

( , ) ( , )

0 0

* *

*

H r H r

tot L tot L

H H

p p MdH HdH

θ θµ µ χ− = =∫ ∫     (14) 

 

where ptot L* and H* are the total pressure and the magnetic field intensity in the liquid phase 

at some reference point of the cloud surface, chosen to be on the microsphere surface, i.e. at 

r=1 and θ=θ* (the angle θ* will be found later); ( , )H r θ  is the magnetic field intensity at any 

other point (r,θ) on the internal side of the cloud surface. 

We suppose that the cloud surface intersects the microsphere surface at the right angle. 

On the other hand, on the surface of a strongly magnetized microsphere, the magnetic field 

lines also make a right angle with its surface. These both conditions indicate that the pressure 

jump across the cloud surface at the reference point (1,θ*) is zero: * * 0tot G tot Lp p− = , as 

follows from Eq.(12). Thus, combining this last result with Eqs. (12),(14), we arrive, after 

some rearrangement, to the following expression: 

 

   

( , )

2 2

*

1

2

H r

n

H

HdH H

θ χ χ− =∫      (15) 

 

In this last equation, the magnetic susceptibility χ=χ(Φ) on the internal side of the 

cloud interface depends on the nanocluster volume fraction Φ on the interface and, 

consequently on the magnetic field intensity on the cloud surface. As explained previously, 

the concentration is found from the equilibrium of the chemical potential at any point of the 

cloud surface with the chemical potential at the infinity: 

 

    0 0( , ) ( , )constξ α ξ αΦ = = Φ      (16) 
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Note that the chemical potential at the infinity is defined in this case by the 

condensation plateau in the ξ-Φ phase diagram [Fig. 12b]. The Eq. (16) should be solved with 

respect to Φ, which gives the concentration Φ(α,α0,Φ0) as function of a certain magnetic field 

α on the cloud surface, the magnetic field α0 at the infinity and the initial concentration Φ0. 

The magnetic susceptibility χ(α) [or, equivalently χ(H)] is then found as function of the 

magnetic field α (or H) upon replacing Φ in the Eq. (2) by Φ(α,α0,Φ0). 

Let R(θ) be the equation describing the geometrical shape of the nanoparticle cloud. 

We suppose that the magnetic field distribution inside the cloud is still given by the Eq. (6). 

Using this equation for the magnetic field intensities H* and H(r,θ) and expressing the normal 

component of the magnetic field ( , )n r rH r H n H nθ θθ = +  through the components of the unit 

vector n  normal to the cloud surface, we arrive to the following differential equation for the 

cloud surface: 

 

    
2

2 2

*

( / )2
( )

1 ( / )

h

r

h

h h R r
h hdh

R r

θχχ
′−− = ′+∫     (17) 

 

where the following notations are introduced: /R dR dθ′ ≡ , 0* * / 3cos *h H H θ= = , 

3

0/ (1 2 / ) cosr rh H H r θ= = + , 3

0/ (1 1/ )sinh H H rθ θ θ= = − − , 2 2

0/ rh H H h hθ= = + . 

Eq.(17) should be solved with respect to the function R(θ) under the initial condition 

( *) 1R θ =  and with χ(h) defined above with the help of Eq. (16). The last unknown 

parameter, the angle θ*, is found from the previously defined cloud volume [cf. Eq.(10)] 

using the following relation: 

 

    *

3

0

2
2 sin ( ) 1

3
LV R d

θπ θ θ θ⎡ ⎤= −⎣ ⎦∫     (18) 

 

where the factor 2 before 2π/3 stands for the two clouds attached to the north and the south 

magnetic poles of the microsphere. 

The nanocluster concentration profile inside the cloud is calculated using the condition 

of homogeneity of the chemical potential, i.e. solving Eq. (7) with respect to Φ at a given 

position (r,θ) inside the cloud. At the second iteration, we recalculate the volume of the cloud 

VL by replacing the concentration ΦL in Eq. (10) by the mean value (1/ )L LV dVΦ = Φ∫  of 

the concentration inside the cloud, issued from the first iteration. The iterations on VL are 

pursued until convergence. 

The concentration profile and the cloud surface calculated numerically from Eqs.(16)- 

(18) are shown in Fig. 17 for the external magnetic field H0=16kA/m (α0=4.9) and the initial 

nanoparticle volume fraction φ0=0.16% (Φ0≈0.32%). The nanoparticle cloud observed 

experimentally at the same parameters, φ0 and H0, is shown on the bottom of Fig.17. 
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Fig.17. (Color online) Concentration profile Φ(r,θ) and shape of the nanoparticle cloud calculated by the 

pressure balance model [Eqs.16-18]. The initial volume fraction of nanoclusters is Φ0=0.32% (nanoparticle 

volume fraction φ0=0.16%) and the external magnetic field intensity is H0=16kA/m. The color legend 

corresponds to the local nanocluster concentrations Φ(r,θ) shown in absolute values. The nanoparticle cloud 

observed experimentally for the same parameters, φ0 and H0, is shown on the bottom of the figure 

 

Using Eq. (10), we estimate the volume of the clouds around a microsphere to be 

about 11 times the microsphere volume. Both the calculated and the experimentally observed 

shapes of the nanoparticle clouds appear to be strongly extended along the magnetic field 

lines trying to minimize their magnetostatic energy. The quantitative agreement between the 

theory and experiments may be likely improved by exact computations of the magnetic field 

distribution inside and outside the clouds by a solution of the Maxwell equations with a free 

surface boundary condition [Eq. (17)] for the cloud interface. 

Note that the iterative computations [Eqs. 10, 16-18] of the cloud surface and volume 

may be substantially simplified for relatively long clouds (extended along the z-axis at a 

distance higher than 6-7 microsphere radii). In this case, we can neglect concentration 

variations along the cloud surface and consider that the concentration is approximately equal 

to the value ΦL(α0) at the infinity. So, the magnetic susceptibility, χ, is also supposed to be 

constant and is found using Eq. (2): ( )Lconstχ χ= ≈ Φ . The problem reduces to a single 

differential equation with respect to the cloud shape R(θ): 

 

     
2

2 2

2

( / )
*

1 ( / )

rh h R r
h h

R r

θχ ′−− = ′+     (19) 

 

Analysis shows that Eq.(19) gives only a few percent deviation for the cloud shape as 

compared to the full system of equations (16)-(18).  

 

Concluding remarks 

 

Both visualization experiments and the local thermodynamic equilibrium model have allowed 

us to reveal an extreme importance of the condensation phase transition on the size and shape 

of nanoparticle clouds formed around a magnetized microsphere. Depending on the initial 
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concentration of nanoparticles, φ0 (or nanoclusters, Φ0), on their size and on the intensity of 

an external uniform magnetic field, H0, there can be three different regimes of the 

nanoparticle accumulation around the microsphere, governed by the two dimensionless 

parameters, 2

0 0 0( ) /(2 )cH V kTα µ=  and Φ0. These regimes occupy certain areas in the phase 

diagram α0-Φ0, shown in Fig.18. In the first regime, at relatively low parameters α0, the 

nanoclusters do not condensate to a liquid state and their ensemble is in the gas state in all 

points around the microsphere. In this case, the nanocluster concentration around a 

microsphere varies smoothly with the distance and is, generally, not very different from the 

initial concentration Φ0, so, the concentration field can be easily found with the help of the 

Boltzmann distribution. This regime with negligible interactions between particles was 

extensively studied previously [see for instance Ref. 14] and is not considered in the present 

work. In the second regime, magnetic interactions between the nanoclusters become strong 

enough to induce a condensation phase transition near the microsphere, the nanocluster 

ensemble being still in the gas state far from the microsphere. In this regime, the nanoclusters 

are condensed into finite size “clouds” in an infinite volume suspension, and the cloud size 

increases progressively with both the initial concentration Φ0 and the parameter α0 (or, 

alternatively, with the external field intensity, H0, and the nanoparticle/nanocluster size). In 

the third regime, magnetic interactions become quite strong so that the condensation phase 

transition occurs not only in the vicinity of the microsphere but also at the infinity from it, 

where highly concentrated and elongated droplets of nanoclusters appear. In an infinite 

volume suspension, migration of these droplets towards the microsphere is an infinite process 

resulting in an infinite growth of the nanocluster clouds around the microsphere without 

reaching local thermodynamic equilibrium. In a real situation of a large but finite volume 

suspension, migration of nanoclusters stops when the surrounding medium becomes 

sufficiently dilute and the thermodynamic equilibrium is established between the dilute 

(outside the cloud) and the concentrated (inside the cloud) phases. 
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Fig.18. (Color online) α0-Φ0 phase diagram showing the three regimes of nanoparticle/nanocluster accumulation 

around a spherical magnetic collector. In the regime I, the nanocluster suspension is in the gas state in each its 

point; in the regime II, the suspension is in the gas state at the infinity but is condensed into a liquid state in the 

vicinity of the microsphere; in the regime III, a gas/liquid phase separation takes place in the whole volume of 

the nanocluster suspension 

 

We have proposed two different theoretical models to describe the concentration 

distribution and the nanoparticle cloud size and shape for the last two regimes. Both models 

consider phase transition in the nanocluster ensemble in slightly different ways. The local 

thermodynamic equilibrium approach was employed for the second regime, for which the 

gas/liquid phase equilibrium was calculated along the whole cloud interface. In this approach, 

we neglected the magnetic pressure jump on the gas/liquid interface such that the cloud 

surface corresponded to the surface of a constant magnetic field, at which the phase transition 

occurs. The pressure balance model was proposed for the case of the finite volume 

nanocluster suspension in the third regime. We included the magnetic pressure jump into this 

model but neglected the presence of nanoclusters outside the cloud when calculating its shape. 

This second model captures reasonably well highly elongated shapes of nanoparticle clouds. 

However, the quantitative agreement between theory and experiments remains rather poor. 

Nevertheless, the models allow us, for the first time, to predict the essential feature of the 

magnetic haloing phenomenon – the existence of the regimes of finite and infinite growth of 

nanoparticle clouds as well as the set of parameters (α0,Φ0), at which the transition between 

these regimes occur. Further improvements of the theory will be done by combination of the 

thermodynamic and the pressure balance model as well as by establishment of a more precise 

equation of state which would correctly account for chains or droplets formation in a bulk 

nanocluster suspension. 

The results of the present paper could be useful for the further development of the 

bimodal magnetorheological fluids used in smart hydraulic devices and of the magnetic 

separation technologies used in bio-analysis and water purification systems. 
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