Shape optimization methods for the Inverse Obstacle Problem with generalized impedance boundary conditions - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Inverse Problems Année : 2013

Shape optimization methods for the Inverse Obstacle Problem with generalized impedance boundary conditions

Résumé

We aim to reconstruct an inclusion ω immersed in a perfect fluid flowing in a larger bounded domain Ω via boundary measurements on ∂Ω. The obstacle ω is assumed to have a thin layer and is then modeled using generalized boundary conditions (precisely Ventcel boundary conditions). We first obtain an identifiability result (i.e. the uniqueness of the solution of the inverse problem) for annular configurations through explicit computations. Then, this inverse problem of reconstructing ω is studied thanks to the tools of shape optimization by minimizing a least squares type cost functional. We prove the existence of the shape derivatives with respect to the domain ω and characterize the gradient of this cost functional in order to make a numerical resolution. We also characterize the shape Hessian and prove that this inverse obstacle problem is unstable in the following sense: the functional is degenerated for highly oscillating perturbations. Finally, we present some numerical simulations in order to confirm and extend our theoretical results.
Fichier principal
Vignette du fichier
Shape_optimization_methods_for_the_Inverse_Obstacle_Problem_with_generalized_impedance_boundary_conditions.pdf (1.03 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00780735 , version 1 (24-01-2013)

Identifiants

Citer

Fabien Caubet, Marc Dambrine, Djalil Kateb. Shape optimization methods for the Inverse Obstacle Problem with generalized impedance boundary conditions. Inverse Problems, 2013, 29 (11), ⟨10.1088/0266-5611/29/11/115011⟩. ⟨hal-00780735⟩
149 Consultations
587 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More