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We study numerically the interaction of spatially localized modes in strongly scattering two-dimensional (2D) med-
ia. We move eigenvalues in the complex plane by changing gradually the index of a single scatterer. When spatial
and spectral overlap is sufficient, localized states couple, and avoided level crossing is observed. We show that local
manipulation of the disordered structure can couple several localized states to form an extended chain of hybridized
modes crossing the entire sample, thus changing the nature of certain modes from localized to extended in a nom-
inally localized disordered system. We suggest such a chain in 2D random systems is the analog of one-dimensional
necklace states, the occasional open channels predicted by Pendry [Physics 1, 20 (2008).] through which the light
can sneak through an opaque medium. © 2012 Optical Society of America

OCIS codes: 290.4210, 260.2710.

In finite open random media, the properties of wave
propagation depend on the nature of the modes. When
scattering is sufficiently strong, modes may be spatially
localized by disorder [1] if their spatial extension, given
by the localization length &, is smaller than the system
size L. Their linewidth decreases exponentially with
distance from the sample boundaries [2,3]. In this case,
wave propagation practically comes to a halt beyond a
length of a few &, except at the eigenfrequencies of lo-
calized states where resonant transmission is maximal
in a very narrow linewidth. In fact, extended states may
occur accidentally in the regime of localization, as pre-
dicted by Pendry [4,5]. These so-called necklace states
form multipeaked extended states, which span the total
system. They result from the coupling of several modes
that overlap both in space and in frequency. These
modes are rare, but they play a dominant role in trans-
port since they are spectrally broad. They have been
observed experimentally by several groups in one-
dimensional (1D) random systems [6-10]. This picture
was extended to larger dimensions [4], but the exis-
tence of such chains of modes in two-dimensions and
three-dimensions was never confirmed, probably be-
cause of their extreme scarcity. In this Letter, we raise
the following question: can a particular random struc-
ture be designed to form necklace states instead of
looking for such rare events in a collection of random
realizations? It was shown that introducing correlations
in disordered structures may force the modes to ex-
tend, destroying at the same time localization [11,12]
or, conversely, improve localization [13,14]. However,
introducing correlation is a strong perturbation that af-
fects fundamentally the transport properties of the
system.

In this Letter, we show that manipulation of the ran-
dom structure at the scale of a single scatterer is suffi-
cient to change drastically the nature of the modes of
a strongly disordered system. We numerically study
the spectral and spatial evolutions of localized modes
in finite two-dimensional (2D) random systems as the
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refractive index of a single scatterer is progressively
changed. We observe mode crossing and anticrossing
as modes overlap spectrally and spatially. These modes
hybridize to form double-peak modes. We demonstrate
that, by changing the scattering index of only two scat-
terers, it is possible to couple several localized modes
and tailor an extended mode, much like 1D necklace
states, without changing the nature of the random sys-
tem. Transmission measurements show that transport
is enhanced through such an open channel.

The system is an open 2D finite structure made of 896
circular dielectric scatterers with high refractive index
(n, = 2) embedded in a host material of index unity
(vacuum) [15]. We work in the range [434.1,441.6] nm
([6.8,6.9]10'% Hz) with scatterer radius » = 60 nm and
surface filling fraction ® = 40%. The system area is
LxL=5umx5um. Estimations of the localization
length gives £ = 1 yum < L. We solve Maxwell’s equa-
tions using a finite element method [16] to obtain the
eigenstates and their complex eigenfrequencies; v = v/ +
1" in the TM configuration (electric field F perpendicu-
lar to the 2D propagation plane). All modes in this
frequency range are found spatially localized in agree-
ment with the estimated value of &.

The refractive index n, of a single scatterer is varied
from n, = 1.05 to n, = 3.2 by steps én, = 0.05. For each
value of ny, all complex eigenfrequencies and eigenfunc-
tions in the frequency range considered are computed.
As they are localized away from the scatterer, most of
the modes are insensitive to this local perturbation.
A few modes, however, are shifted in frequency. The dis-
placement of the real and imaginary parts of the eigen-
frequencies can be followed “adiabatically” as the
refractive index n, increases. This is seen in Fig. 1 where
asubset of three eigenvalues, v; = v’ + iu}’ ,J €[L,2,3],is
plotted for each value of n; (named Mode;gy; » 5 for all
values of n).

When n, increases, the real frequency v/ of Mode; is
seen to decrease. As Mode; and Mode; get close spec-
trally, level repulsion is observed for the real part of

© 2012 Optical Society of America
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Fig. 1. (Color online) Monitoring of a. the real part v/ and
b. the imaginary part " of three localized states as the refractive
index, n,, of a particular scatterer (shown in Fig. 2) is varied
from 1.05 to 2.70. The Y axis has been split in b to span a broad
interval of .

the frequency, /. Simultaneously, the imaginary parts,
V', cross.

The corresponding spatial distributions of their eigen-
functions are shown in Media 1 and Fig. 2 as n, increases
from 1.05 to 2.40. As Mode; and Mode; get closer to the
point of avoided crossing at ng, = 2.25, mode hybridiza-
tion occurs. Two double-peaked modes are formed at
439 and 441 nm with a spectral width of 0.85 nm. These
two modes have identical amplitude maps but different

Mode 1

n 1.70

Mode 2

Fig. 2. (Color online) Spatial distribution of the field ampli-
tude for Mode; and Mode; of Fig. 1 for three different values
of the refractive index of the scatterer located at the white spot.
Media 1 displays the evolution of the mode profiles as 7
increases from 1.05 to 2.40.
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phase maps (not shown). Beyond the avoided crossing
point, the spatial patterns are exchanged. We note that
the spatial distribution of Mode; remains unaffected as
long as it is spectrally away from other modes. This in-
dicates that the modal deformation is mainly due to mode
interaction rather than to the small local perturbation.

Mode; and Mode, are modes well localized inside the
system, which have small leakage through the open
boundaries. Hence, like in purely Hamiltonian systems
[17], mode interaction leads to level repulsion (anticross-
ing). If the system is not conservative, the energies
become complex. In this case, depending on the interac-
tion, crossing as well as anticrossing of energies can
occur [18]. This is true for quantum systems as well as
for classical waves [19]. In open random media, leakage
of modes localized close to the open boundaries can be-
come significant. Hence, crossing can also be expected.
This is illustrated by the interaction between Mode; and
Modes, which is a mode close to a boundary (not shown).
Their real parts, v/, cross while repulsion is seen for the
imaginary part, 1" (see Fig. 1).

The double-peak hybridized modes seen in Fig. 2 for
ny = 2.25 present an unexpected spatial profile and ex-
tension in the regime of Anderson localization, where
nominal modes are exponentially localized single peak.
It was therefore tempting to manipulate further the loca-
lized modes to increase the number of hybridized loca-
lized states and try forming a chain that connects one
end of the system to the other. Such an extended hybri-
dized mode would provide an open channel through
which light can traverse this nominally localized random
system, changing radically its transport properties. We
identified modes localized on both sides of the hybridized
mode of Fig. 2 (n; = 2.25), which could open completely
the channel from left to right. We found two scatterers
that couple all four modes. It is remarkable that such
an extended mode may coexist with localized modes.
It is important to realize that the perturbation is small
and that most of the modes are virtually unchanged, in
contrast to, e.g., correlated disorder.

We probe the predominance of this beaded mode in
transport by comparing in Fig. 3 transmission spectra
through the perturbed and unperturbed systems. A plane
wave is incident on the left side of the system, and the
total outgoing intensity at the right side is recorded as
a function of the wavelength of the incident wave.

The two narrow peaks of the unperturbed system at
438 and 441 nm correspond to the resonant excitation
of Mode; and Mode,, respectively. In contrast, the per-
turbed system shows a higher and broader transmission
near 439 nm corresponding to the excitation of the hybri-
dized mode as shown in Fig. 3. Hence, a channel has been
open with enhanced broad band transmission. Further
investigation is necessary to confirm the prediction that
such necklace states dominate the conductance even in
2D random systems [20].

In conclusion, level repulsion was observed between
two localized modes of a disordered system as the index
of refraction of a single scatterer was increased. For
these two modes, hybridization is observed at the
anticrossing point with the formation of symmetric
and antisymmetric double-peaked modes. Level crossing
can also occur when one mode is strongly leaking out of
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Fig. 3. (Color online) a. Hybridization of four localized states
by setting the index of refraction to 2.9 and 2.8 for left and right
scatterers, respectively, shown as white spots; all other scatters
set at n, = 2.0. b. Transmittance spectra for plane wave imping-
ing from left on perturbed (solid line) and unperturbed (dotted
line) systems. c. Field amplitude spatial distribution for wave
impinging on perturbed system at 1 = 439.60 nm. d. Field am-
plitude spatial distribution for wave impinging on unperturbed
system at A = 440.63 nm.

the sample. We show that the random structure can be
manipulated further to create a chain of hybridized loca-
lized modes, extended from one end of the sample to the
other. The possibility of forming such open channels is of
extreme interest. First, it confirms that there is an analog
in 2D random systems of the necklace states discussed in
1D random media. In 1D systems, Pendry [4,4] predicted
that these extended modes dominate the statistics of con-
ductance. This prediction is not obvious for larger dimen-
sions and needs more investigation. It is tempting,
however, to make a connection between open transmis-
sion channels [21] and necklace structures, as this was
suggested by Pendry in the 1D case [20], a question to
be addressed in future work.
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