
HAL Id: hal-00760044
https://inria.hal.science/hal-00760044

Submitted on 3 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Conjunction of Interval AMONG Constraints
Gilles Chabert, Sophie Demassey

To cite this version:
Gilles Chabert, Sophie Demassey. The Conjunction of Interval AMONG Constraints. CPAIOR, 2012,
Nantes, France. �hal-00760044�

https://inria.hal.science/hal-00760044
https://hal.archives-ouvertes.fr

The Conjunction of Interval AMONG Constraints

Gilles Chabert and Sophie Demassey

TASC, Mines-Nantes, INRIA, LINA CNRS
4, rue Alfred Kastler 44300 Nantes, France

(gilles.chabert|sophie.demassey)@mines-nantes.fr

Abstract. An Among constraint holds if the number of variables that
belong to a given value domain is between given bounds. This paper fo-
cuses on the case where the variable and value domains are intervals. We
investigate the conjunction of Among constraints of this type. We prove
that checking for satis�ability � and thus, enforcing bound consistency
� can be done in polynomial time. The proof is based on a speci�c de-
composition that can be used as such to �lter inconsistent bounds from
the variable domains. We show that this decomposition is incomparable
with the natural conjunction of Among constraints, and that both de-
compositions do not ensure bound consistency. Still, experiments on ran-
domly generated instances reveal the bene�ts of this new decomposition
in practice. This paper also introduces a generalization of this problem
to several dimensions and shows that satis�ability is NP-complete in the
multi-dimensional case.

1 Introduction

The problem addressed in this paper can be formally stated as a Constraint Sat-
isfaction Problem composed of a conjunction of Among constraints. An Among
constraint [1] restricts the number of variables that take their values in a given
set, called the value domain.

Enforcing bound consistency on a general conjunction of Among constraints
is NP-hard [12], but some tractable cases have been investigated: when the value
domains are all disjoint [12], or when the value domains are all equal, like in
the Sequence constraint [15, 4] and its generalizations [10]. In this paper, we
consider an open case where the value domains are arbitrary intervals. We also
examine this problem in higher dimensions, when variables come as vectors and
intervals as boxes. This problem has applications in various contexts, such as
logistics or sensor networks.

We start by illustrating the one-dimensional case on an event scheduling
problem. The computational complexity is analyzed in Section 2, where the
corresponding satis�ability problem is proven to be tractable. As in previous
works [12, 4] on conjunctions of Among constraints, the proof of tractability
stems from the reformulation into a dual model, based on value domain indicator
variables. However, in contrast with these works, the possible overlapping of the
value domains in our case results in a non-direct relation between the primal and

dual models. We then investigate in Section 3 an algorithm for enforcing bound

consistency and two relaxations by decomposition. Section 4 presents compu-
tational experiments of these algorithms on randomly generated instances. The
multi-dimensional variant of the problem is investigated in Section 5 where an il-
lustration is given as well as the proof of intractability. Finally, Section 6 explains
how our reformulation contrasts with previous works on other conjunctions of
Among constraints.

1.1 A scheduling example

Assume n events have to be scheduled inside a period of time represented by
consecutive slots. Each event lasts one slot and requires resources (rooms, trans-
port, commodities, press coverage, etc.). On one hand, resources have temporary
capacities so that the number of events occurring during a time window should
not exceed some value. On the other hand, resources also require a minimum
number of events to happen in a time interval in order to be pro�t-making.

1 2 3 4 5 6 7

Fig. 1. An instance with 3 variables and 4 constraints.

In Figure 1, we consider 3 events that have to be scheduled inside the time
intervals X1 = [1, 4], X2 = [2, 5] and X3 = [4, 7] respectively. We also consider 4
resource constraints. The �rst one requires the number of events occurring inside
V1 = [1, 3] to be more than k1 = 1 and less than k1 = 2. The second requires at
most k2 = 2 events inside V2 = [2, 4]. For the third resource, we have V3 = [3, 7],
k3 = 2, k3 = 3 and for the last one V4 = [6, 6], k4 = 0, k4 = 1.

A possible solution to the problem consists in scheduling the two �rst events
at time 3 and the third one at time 6.

1.2 Problem statement

In the previous example, we want the number of elements (the events) that
belong to a given set V to be bounded below and above by two integers k and

2

k, respectively. Such a condition is called an Among constraint [1, 2, 12]. Set V
is called value domain and interval [k, k] its capacity interval.

We give now a de�nition of the Among constraint with interval value do-
mains. The set of integer intervals is denoted by IZ (and by IZ+ for non-negative
integers). The lower and upper bounds of an interval X ∈ IZ are denoted by x

and x.

De�nition 1. Interval-Among. Given a value domain V ∈ IZ and a capacity

interval K = [k, k] ∈ IZ+, then the constraint Among(x, V,K) holds for a tuple

x = (xj)j∈J ∈ Z
J i�

k ≤ card{j ∈ J | xj ∈ V } ≤ k.

We call a conjunction of such constraints, an Interval-Amongs constraint:

De�nition 2. Interval-Amongs. Given a family of intervals V = (Vi)i∈I ∈
IZ

I with respective capacity intervals K = (Ki)i∈I ∈ IZ
I
+, then the constraint

Interval-Amongs(x, V,K) holds for a tuple x = (xj)j∈J ∈ Z
J i�

Among(x, Vi,Ki), ∀i ∈ I. (1)

The satis�ability of Interval-Amongs is the problem of deciding, given a
family of intervals X = (Xj)j∈J ∈ IZ

J , called variable domains, whether the
constraint has a solution in X, that is whether there exists a tuple x ∈ X such
that Interval-Amongs(x, V,K) holds.

2 Complexity

Régin [12] proved that the satis�ability of a conjunction of Among constraints
on arbitrary variable Xj ⊆ Z and value Vi ⊆ Z domains is NP-complete, even
if the Xj 's are intervals. He also studied the case where the Among constraints
relate the same set X of variables, like in Interval-Amongs, and then proved
that the problem becomes tractable when the value domains Vi's are pairwise
disjoint. In this section, we relax this latter condition and prove that the problem
remains tractable when the value domains Vi's are intervals.

Theorem 1. The satis�ability of Interval-Amongs is in P.

The proof of this theorem is split in two parts. Lemma 1 shows that the
problem is equivalent to the satis�ability of a system of linear inequalities (PL).
Lemma 2 shows that this system can be solved in polynomial time. To introduce
(PL), we �rst build an intermediate system (P). The construction of both is
also considerably lightened by making some prior assumptions that do not lose
generality. We start by presenting them.

3

2.1 Preliminary assumptions

Let m = card(I) be the number of value domains, i.e. the number of Among
constraints, and let Σ =

⋃

i∈I Vi ⊆ Z+ denote the union of all the value domains.
First, one can assume w.l.o.g. that Σ has at most 2m elements. Indeed, for any
value s ∈ Σ, let V(s) denote the intersection of all intervals Vi that contains
s, with i ∈ I. For any variable xj such that s ∈ Xj , Interval-Amongs is
satis�able with xj ∈ V(s) i� it is with xj = s. As a consequence, we can merge
together all the contiguous values s and s + 1 such that V(s) = V(s + 1). This
leads to at most 2m groups of values. Further, we assume for simplicity and
w.l.o.g. that Σ is a discrete interval [1, p] ∈ IZ+ with p = O(m). Notice that the
size of variable domains, the size of value domains and the number of constraints
can then be considered to be all of the same order. This remark will play a role
in the experiments of Section 4.

2.2 The cardinality decomposition (P)

We introduce now the following Constraint Satisfaction Problem (P) as an in-
termediate step of our transformation. It is equivalent to Interval-Amongs in
the sense that x is a solution of Interval-Amongs if and only if (x, y) is a
solution of (P) for some vector y.

(P) : ki ≤
∑

s∈Vi
ys ≤ ki, ∀i ∈ I, (2)

Among((xj)j∈J , {s}, ys), ∀s ∈ Σ, (3)

xj ∈ Xj , ∀j ∈ J,

ys ∈ Z+, ∀s ∈ Σ.

For each value s ∈ Σ, ys represents the number of variables x assigned to
s. In the example of �1.1, Σ = [1, 7], and for the solution proposed, we have
y1 = y2 = y4 = y5 = y7 = 0, y6 = 1 and y3 = 2.

Constraints (3) make use of the variant of the Among predicate with variable
capacity. They can easily be linearized in the x and y variables, however the re-
formulation of (P) resulting from this linearization does not have the integrality
property. Our key idea is then to drop variables x and to reinject constraints (3)
in the system under the form of additional linear inequalities on y. This way, we
come up with a system with only p variables whose satis�ability is still equivalent
to Interval-Amongs but which has, this time, the integrality property.

Note that (P) and Interval-Amongs remain equivalent regardless of whether
domains are intervals or not. However, as it will be emphasized later, the fol-
lowing reformulation (PL) holds only if variable domains are intervals, and the
resulting system may not be tractable if value domains are not intervals.

4

2.3 Equivalence between (P) and (PL)

Lemma 1. Interval-Amongs(x, V,K) is satis�able if and only if the following

system of linear inequalities has at least one integer solution y = (ys)s∈Σ ∈ Z
Σ
+ :

(PL) : ki ≤
∑

s∈Vi

ys ≤ ki, ∀i ∈ I, (2)

L[a,b] ≤
∑

s∈[a,b]

ys, ∀a ≤ b ∈ Σ, (3')

∑

s∈Σ

ys ≤ n, (3�)

where, for each non-empty interval [a, b] of Σ, L[a,b] denotes the number of vari-

able domains included in [a, b]: L[a,b] = card{j ∈ J | Xj ⊆ [a, b]}.

Proof. We shall prove that there is a mapping between the feasible solutions y

of (PL) and the feasible solutions x of Interval-Amongs. Assume there exists
x ∈ Πj∈JXj ⊆ Σn satisfying (1) and let ys denote, for each value s ∈ Σ, the
number of entries in x which are equal to s:

ys = card{j ∈ J | xj = s}, ∀s ∈ Σ.

Then, y is a feasible solution of (PL), as the satisfaction of constraints (2) directly
holds from (1), constraints (3') from Xj ⊆ [a, b] =⇒ xj ∈ [a, b] and (3�) from
∑

s∈Σ ys = n.
Conversely, let y be a feasible solution of (PL). Consider the capacitated

directed bipartite graph G = (J∪Σ,E, c) on the arc set E = {(j, s) ∈ J×Σ | s ∈
Xj} with capacity ce = 1 on each arc e ∈ E. We add to G a source u and an
arc (u, j) of capacity 1, for all j ∈ J , a sink v and an arc (s, v) of capacity ys for
all s ∈ Σ (see Figure 2). Every feasible (u, v)-�ow of value n de�nes a feasible
solution x of Interval-Amongs, by setting xj the �ow on arc (j, s), for all
j ∈ J . To prove there exists such a �ow, we use Ho�man's theorem (see e.g. [9])
and show that the capacity of any (u, v)-cutset (U, V) of G is greater than or
equal to n. Since (3�) imposes the �ow to be less than or equal to n, then the
maximal �ow will be exactly n.

Let (U, V) be a cutset of G, ΣU = Σ ∩ U , JU = J ∩ U , and J ′

U = {j ∈
JU | Xj ⊆ ΣU}. By de�nition of G, the arcs in the cutset (U, V) are of the form,
either (u, j) with j ∈ J \JU and capacity 1, or (j, s) ∈ E with j ∈ JU , s ∈ Σ\ΣU

and capacity 1, or (s, v) with s ∈ ΣU and capacity ys. The total capacity of the
�rst set of arcs is card(J \ JU). The capacity of the second set is card(JU \ J ′

U)
since, for all j ∈ JU \ J ′

U , Xj 6⊆ ΣU , then there exists at least one arc (j, s) ∈ E

in the cutset. Last, to bound the capacity
∑

s∈ΣU
ys of the third set, we �rst

write ΣU as the union of r disjoint intervals: ΣU = [a1, b1] ∪ . . . ∪ [ar, br]. Now,
by de�nition: card(J ′

U) = card{j ∈ J | Xj ⊆ ΣU}. Since the Xj are all intervals,
the condition Xj ⊆ ΣU implies Xj is included in exactly one interval [al, bl] with
1 ≤ l ≤ r. Therefore:

card(J ′

U) =

r
∑

l=1

card{j ∈ J | Xj ⊆ [al, bl]} =

r
∑

l=1

L[al,bl]

5

1 2 3 4 5 6 7

u

v

1 2 3

1
1

1

1 1 1
1 1

1 1
1 1

1 1
1

y
y y y y y y

1
2 3 4 5 6 7

U

JJ'
UU

Fig. 2. The network �ow model of constraints (3) corresponding to the example
of �1.1, and an example of a cutsest used in the proof of Lemma 1. The cutset U is
painted in light gray. The subset of nodes JU and ΣU are in medium gray and J

′

U in
dark gray.

which implies, according to (3'):

card(J ′

U) ≤
r

∑

l=1

∑

s∈[al,bl]

ys =
∑

s∈ΣU

ys.

So, the capacity of the third set is at least card(J ′

U). Hence, the total capacity
of the cutset is at least n and the result follows. �

2.4 Tractability of (PL)

Remark that the proof in the previous paragraph remains true when relaxing in
(PL) every constraint in (3') corresponding to some interval [a, b] that does not
include any variable domain Xj . We can still decrease the number of constraints
in (PL) by merging every constraint in (2) to the constraint in (3') corresponding
to the same interval. More precisely, (PL) can be rewritten as:

(PL) : L′

[a,b] ≤
∑

s∈[a,b]

ys ≤ U ′

[a,b], ∀[a, b] ⊆ Σ,

where, for any interval [a, b] ⊆ Σ:

L′

[a,b] :=

{

max(L[a,b], ki) if [a, b] coincides with Vi for some i ∈ I,

L[a,b] otherwise.

U ′

[a,b] :=



















min(n, ki) if [a, b] = Σ = Vi for some i ∈ I,

n else if [a, b] = Σ,

ki else if [a, b] = Vi for some i,

+∞ otherwise.

6

Remember now that Σ = [1, p]. To further simplify, we reformulate (PL) as the
following system of linear inequalities:

(PT) : zb − za ≤ dab, ∀a, b ∈ {0} ∪Σ = [0, p] (4)

using a new change of variables: z0 = 0, zb =
∑b

s=1 ys (∀b ∈ Σ), and de�ning

matrix d = (dab) ∈ Z(p+1)×(p+1) as: dab =











U ′

[a+1,b] if a < b

−L′

[b+1,a] if a > b

0 if a = b,

∀a, b ∈ [0, p].

System (PT) is a Temporal Constraint Network, so-called by Dechter et al [7],
as such inequalities are frequently encountered as precedence and temporal con-
straints in planning and scheduling problems. The satis�ability of such systems
can be checked in polynomial time.

Lemma 2. An integer solution of (PL) can be searched in polynomial time.

Proof. Let Gd be a complete directed graph with p+1 vertices numbered from 0
to p, and with weight dab on each arc (a, b) of Gd. Shostak's theorem [13] states
that (PT) is feasible if and only if graph Gd has no negative cycle. Building
the weighted graph Gd can be done in O(p2) time, and checking that it has no
negative cycle can be done in O(p3) time using Floyd-Warshall's algorithm (see
e.g. [9]). �

3 Bound consistency

We focus now on �ltering algorithms for the Interval-Amongs constraint.
Since variable domains are intervals, we are only interested in bound consistency
(BC). In particular, we do not consider generalized arc consistency.

Remember �rst that bound consistency can be achieved in polynomial time if
satis�ability in any given domain can be checked in polynomial time. It su�ces
to embed a satis�ability check inside a shaving loop, where each variable is
instantiated in turn to its bounds until a �xpoint is reached. Hence, as corollary
of Theorem 1, the bound consistency for Interval-Amongs can be achieved
in polynomial time (while in the general � non-interval � case, it is NP-hard).
However, the complexity of the shaving algorithm is in O(n2m4), as detailed
in �3.2. This complexity is too high for practical purposes. So, we �rst study
di�erent decompositions of Interval-Amongs, from which faster algorithms
will be derived afterwards.

3.1 Consistency strength

When a constraint is semantically equivalent to the conjunction of two constraint
systems c1 and c2, we note this decomposition (c1, c2) and call BC on (c1, c2) the
�xpoint of BC �ltering on the two constraint systems c1 and c2, taken separately.

7

Among-Based Decomposition. By de�nition, Interval-Amongs is a con-
junction of Among constraints. Let us call this decomposition theAmong-based
decomposition. We have the following lemma:

Lemma 3. BC on Interval-Amongs is strictly stronger than BC on the

Among-based decomposition.

Proof. Consider value domains V1 = [1, 1], V2 = [2, 2] with K1 = K2 = [1, 1] and
two variables x1, x2. The domain X1 = X2 = [0, 2] is BC with respect to (w.r.t.)
both Among while the bound x1 = 0 cannot satisfy Interval-Amongs. �

Cardinality-Based Decomposition. Another decomposition grows out
naturally from our complexity study and the reformulation (P), at the price of
introducing dual cardinality variables y (whose initial domains are Z+). (P) is the
conjunction of two sub-systems of constraints (2) and (3), each being considered
as one global constraint (algorithms achieving BC for these two constraints are
introduced in �3.2). We note ((2), (3)) this decomposition. It also hinders bound
consistency, as the following counter-example shows.

Lemma 4. BC on Interval-Amongs is strictly stronger than BC on ((2), (3)).

Proof. Consider two variables with domains X1 = [1, 3] and X2 = [1, 3], one
value domain V = [1, 3] with cardinality K1 = [1, 1] and Y1 = Y2 = Y3 = [0, 1].
It is BC w.r.t (2) and w.r.t (3). However, Interval-Amongs has no solution
since both variables take their values in [1, 3] while the number of variables in
this interval is bounded by k1 = 1. �

We can also propose a decomposition (PL, (3)) that we will call the Car-

dinality-based decomposition. Next lemmas shows that this decomposition is
stronger than ((2), (3)) but still weaker than Interval-Amongs.

Lemma 5. BC on the Cardinality-based decomposition is strictly stronger

than BC on ((2), (3)).

Proof. Constraint (2) is implied by (PL), so BC on (PL, (3)) is stronger than BC
on ((2), (3)). It is actually strictly stronger: the example in the proof of Lemma
4 is not BC w.r.t. (PL) since X1 ⊂ [1, 3] and X2 ⊂ [1, 3] imposes 2 ≤ y1+y2+y3
while y1 + y2 + y3 ≤ 1, an inconsistent system. �

Lemma 6. BC on Interval-Amongs is strictly stronger than BC on the

Cardinality-based decomposition.

Proof. Consider two variables x1, x2 with domains X1 = [1, 2] and X2 = [1, 4]
and value domains V1 = [1, 2], V2 = [2, 3] and V3 = [3, 4] with cardinalities
K1 = [1, 1], K2 = [1, 1] and K3 = [1, 1]. Note that (3') does not introduce
additional constraint to (2). The initial domains Y1=· · ·=Y4=Z+ are reduced to
Y1= · · ·=Y4=[0, 1] by (2). BC is then achieved w.r.t. (PL, (3))

8

� The domain Y1×· · ·×Y4 is BC w.r.t (2) since each value 1, . . . , 4 can be either
discarded or taken once.

� The domain X1×X2×Y1× · · · ×Y4 is BC w.r.t. (3). First, every value in
{1,. . . ,4} can be taken either by 0 or 1 variable among x1 and x2. Second,
all the values of X1 and X2 can be taken.

However, the domain is not BC w.r.t. Interval-Amongs. Indeed, the bound
x2 = 1 cannot satisfy the constraint. Either, x1 < 2 and the number of variables
inside V2 is 0 6∈ K2. Either x1 = 2 and the number of variables inside V1 is
2 6∈ K1. �

Using both decompositions. We have �rst the following result:

Lemma 7. BC on the Cardinality-based decomposition and on the Among-

based decomposition are not comparable.

Proof. The example in the proof of Lemma 3 is BC w.r.t. the Among-based
decomposition, but not w.r.t. the Cardinality-based decomposition where y0+
y1+y2 ≤ 2, 1 ≤ y1 and 1 ≤ y2 imply y0 = 0 which forces x1 > 0. Conversely, the
example in the proof of Lemma 6 is BC w.r.t the Cardinality-based but not
the Among-based decomposition. Indeed, X1 ⊆ V1 and K1 = [1, 1], so x2 = 1 is
�ltered out by Among(X,V1,K1). �

Merging the two decompositions does still not reach the BC of the constraint:

Lemma 8. BC on Interval-Amongs is strictly stronger than BC on the con-

junction of the Cardinality-based and the Among-based decomposition.

Proof. We just have to slightly modify the example in the proof of Lemma 6.
Set X1 to [0, 2] instead of [1, 2]. The bound x2 = 1 is still BC w.r.t. Cardi-
nality-based decomposition and it is now also BC w.r.t. the Among-based
decomposition (since X1 is not included in V1 anymore). �

3.2 Filtering algorithms

This section presents some algorithms and complexities. The complexities will
be given with respect to n and m only because m is also, within a constant
factor, the maximal width for both variable domains and value domains (see
�2.1). In particular, if we call an x-value a pair (xj , v) such that v ∈ Xj , the
total number of x-values is bounded by n×maxj |Xj | = nm. Similarly, n is also
an upper bound for the capacities so that the number of y-values is bounded by
m×maxi |Yi| = mn.

Interval-Amongs. First, as said in �2.4, system (PL) : L
′

[a,b] ≤
∑

s∈[a,b] ys ≤

U ′

[a,b], ∀[a, b] ⊆ Σ, can be cast into a temporal constraint network (PT), providing
a change of variables. The satis�ability can then be checked with Floyd-Warhsall
algorithm (Fw). This leads to the following complexity:

9

Lemma 9. BC on Interval-Amongs can be enforced in O(n2m4).

Proof. O(n2m4) is the product of the time required to check the satis�ability
of (PT) using Fw, which is O(p3) = O(m3), by the number of iterations in the
outer shaving loop, which is n2m in the worst case (where 2n bounds are checked
each time one of the nm x-value is removed). �

This complexity cannot be easily improved as all shortest paths algorithms
share the same complexity on dense graphs like here. Fw algorithm also works
incrementally in O(p2) if the distance of one edge is modi�ed between two runs.
However, instantiating one variable to its bound in the shaving loop can poten-
tially modify L[a,b] for up to p intervals [a, b], i.e., impact p distances at the same
time. Furthermore, the satis�ability check does not exhibit the support for the
current tested bound in terms of the x variables (the x variables disappear in
the check) so that the shaving loop has to naively sweep across all the values.

Among-based decomposition. Propagating the conjunction of Among gives
the following complexity:

Lemma 10. BC on the Among decomposition can be enforced in O(n2m2).

Proof. The cost of applying BC on a single Among constraint is O(n) (see e.g.,
[12, 15]). In the worst case, there is O(m) calls of no e�ect between two removals,
and all the x-values are eventually removed so that the total number of calls is
O(nm2). �

Cardinality-based decomposition. Let us move to the Cardinality-
based decomposition, i.e., (PL, (3)).

Let us �rst focus on (PL). It turns out that Fw run on (PT) does not only
check satis�ability of (PL) but also provides all the information necessary to
enforce BC on the y variables. Indeed, taking the notations of �2.4, any path
(a = a0, a1, . . . , ak+1 = b) in Gd induces by transitivity from (PT) the relation

zb − za ≤
∑k

i=0 daiai+1
. Hence, each value dab in (PT) can be replaced by the

distance (i.e. the length of a shortest path) between a and b in Gd. This is
precisely what Fw does. Now, d(s−1)s is nothing but the upper bound of the
feasible domain for zs − zs−1 = ys while −ds(s−1) is the lower bound of the
feasible domain for −zs−1 + zs = ys. So, after the execution of Fw, the BC of
(PL) is nothing but [−ds(s−1), d(s−1)s] for every ys, s ∈ Σ.

Let us focus now on (3). The system is nothing but a Global-Cardinality
(Gcc) constraint. In its original form [11], the Y are considered as constant
intervals. Fortunately, a BC �ltering algorithm has also been devised in [8] with
the cardinalities being variables, with asymptotic running time in O(n+m).

There is now a tricky detail. We do not get the BC on the Cardinality-
based decomposition simply by plugging both algorithms together in a �xpoint
loop. Indeed, one also has to increment d[a,b] in (PT) each time a domain Xj =
[a, b + 1] or Xj = [a − 1, b] is �ltered to [a, b] by (3). In other words, Fw can

10

be awoken either by the removal of a value from the y or the x variables. That
precaution said, putting both algorithms together in a �xpoint loop gives the
BC on (PL, (3)) with the following worst-case complexity.

Lemma 11. BC on the Cardinality-based decomposition can be enforced in

O(nm3 + n2m).

Proof. There is only two constraints, linked by the x and y variables. Fw can now
be called incrementally and takes O(m2) time. Gcc takes O(n+m). In the worst
case, each time a constraint is called, one value must be removed (otherwise the
�xpoint is reached, the other constraint being already consistent). Hence, each
algorithm is called for half of the total number of x-values and y-values, i.e.,
O(nm) times. This gives O(nm× (m2 + (n+m))) = O(nm3 + n2m). �

4 Computational evaluation

We have proposed in the previous section a �ltering algorithm for Interval-
Amongs derived from the Cardinality-based decomposition, as an alternative
to the (natural) Among-based decomposition.

The consistencies they enforce are not formally comparable, and neither their
time complexities are. However, we can say that our decomposition better cap-
tures the globality of the constraint in the sense that it is only made of 2 con-
straints, (PL) and (3), instead of m. We present in this section some experiments
we have made to support this claim.

First of all, both decompositions have been implemented in the Choco 2.1.2
platform [14]. The Interval-Amongs package, including the following bench-
mark, is freely available on the authors' web sites.

We have decided to base the comparison on a sequence of randomly gen-
erated instances of Interval-Amongs. Let us brie�y explain how an instance
is generated. First, we �x p = n, that is, the instance has a set of n variables
and n value domains, variable and value domains being random subintervals of
[0, n]. This limits the number of parameters to consider and allows to compare
the theoretical worst running times required for enforcing BC on the two de-
compositions: O(n4) in both cases. To set capacity bounds, we start from an
a priori solution and �x capacities accordingly. More precisely, we create a tu-
ple (τ1, . . . , τn) by randomly picking a value τj inside each variable domain Xj .
Then, for each value interval Vi, we count the number ni of τj 's that belongs to
Vi and set Ki = [ni − 1, ni + 1]. A single Interval-Amongs constraint, espe-
cially with relaxed capacities, usually induces a huge number of symmetries. For
this reason, we only look for one solution.

Now, for each value of n from 10 to 32, we have generated 100 instances as
explained above and run two solvers, one for each decomposition. Solvers are
stopped as soon as a �rst solution is found. The default variable/value choice
heuristic DomOverWDeg of Choco has been used.

11

We have compared running times using the following logarithmic scale. For
each instance, if we denote by t1 the time required for the Cardinality decom-
position and t2 the time required for the Among decomposition, the outcome is
one of the 5 following answers:

(1) t2≥102t1 (2) 102t1>t2≥10t1 (3) 10t1>t2 and t1<10t2
(4) 10t2≤ t1<102t2 (5) 102t2≤ t1

We have then counted the number of instances that yields answer (1) and so on.
Instances for which t1<0.1s and t2<0.1s, i.e., the "easiest" ones are discarded
to avoid spurious results with instances where the running time is dominated by
the initialization of Java structures.

Figure 3 reports the results we have gotten. It clearly shows that the Car-
dinality decomposition is the most e�cient one: The solid curve shows the

Fig. 3. Solving time comparison between the Cardinality-based and the Among-
based decompositions for instance size varying from 10 to 32. The solid and dashed
curves depict the number of instances on which the Cardinality decomposition im-
proves upon the Among decomposition. The dash-dot curve depicts the opposite case.

number of instances where the running time is at least 100 times faster with the
Cardinality decomposition. We see that this number grows quickly with n.
For n = 32, we get almost half of the instances. For the other instances, either
the cardinality decomposition is 10 times faster (dashed curve) or the �rst so-
lution was very easy to �nd for both algorithms (not depicted here). There was
no instance where the Among decomposition was 100 times faster and only a
single one (for n = 31) where it was 10 times faster (dash-dot curve).

5 The multi-dimensional Interval-Amongs

An other application of Interval-Amongs arises in the context of sensor net-
works: the problem is to localize geographically, in 2D or 3D, a number of targets

12

with a number of radars. In the d-dimensional case, variable and value domains
become d-vectors of discrete intervals, ~X and ~V . For convenience, a vector of
intervals is identi�ed to a box, that is an element of IZd, the cross product of its
components. Unfortunately the multi-dimensional variant becomes untractable
as stated in this section.

5.1 A target localization example

Assume the coordinates of m targets in the plane have to be determined from
the intensity of the signal measured by n antennas. An antenna only detects
objects in a given area and the intensity of the measured signal gives bounds on
the number of detected targets. Basically, the higher the signal, the more targets
in the area covered by the antenna.

1 2 3 4 5
1

2

3

4

Fig. 4. An instance in two dimensions with 3 (vector) variables and 3 constraints.

In Figure 4, we look for the positions of 3 aircrafts, each vector having an
a priori domain, like ~X1 for the �rst aircraft (the other domains are omitted

for clarity). We also have 3 detection areas, ~V1, ~V2 and ~V3, each centered on a
di�erent antenna. We know from the signal of the �rst antenna that between
2 and 3 targets are in ~V1 (high signal). Similarly, the number of targets in ~V2

is between 1 and 2 (medium signal) and in ~V3 between 0 and 1 (low signal). A
possible solution is depicted.

5.2 Complexity

Proposition 1. The satis�ability of Interval-Amongs in 2-dimension is NP-

complete.

Proof. A tuple is a certi�cate so the problem is in NP. We transform now the
rectangle clique partition problem, which was proven to be NP-complete (see
Section 4 in [5]). More precisely, let us consider problem P de�ned as follows:

Input: m boxes ~Y1, . . . , ~Ym in IZ
2 and an integer k ∈ Z+.

13

Question: Is there m vectors ~y1, . . . , ~ym in Z
2 such that ~yi ∈ ~Yi for all i, 1 ≤ i ≤

m, and card{~y1, . . . , ~ym} ≤ k ?

We apply now the following transformation. We build, in linear time, an
instance P ′ of Interval-Amongs with n = k variable domains ~Xj =

⋃m

i=1
~Yi,

∀1 ≤ j ≤ k, and with m value domains ~Vi = ~Yi and Ki = [1, k], ∀1 ≤ i ≤ m.

Assume P is satis�able and consider a solution tuple ~y = (~y1, . . . , ~ym). Since
card{~y1, . . . , ~ym} = k, there exists a tuple of k distinct vectors ~x = (~x1, . . . , ~xk)

of Z2 such that {~y1, . . . , ~ym} = {~x1, . . . , ~xk}. For all j, ~xj ∈ ~Xj . Next, for all i,
there exists at least one vector in ~x and at most k that coincide with ~yi. Hence,
the number of ~xj 's that belong to ~Yi is in [1, k]. So P ′ is satis�able.

Conversely, consider a solution tuple (~x1, . . . , ~xk) to P ′. For all i, there exists

at least one ~xj such that ~xj ∈ ~Yi. Put ~yi = ~xj . We have ~yi ∈ ~Yi and, by
construction, the tuple (~y1, . . . , ~ym) has at most k distinct vectors. So the answer
to P is �yes�. �

6 Related Works

Our approach shares some similarities with preceding works on other conjunc-
tions of Among constraints. Note �rst that reformulation (P) is an extension
of the one proposed in [3] for one Among constraint. (P) is composed of a
sub-system of capacity constraints (2) on the dual variables (ys)s∈Σ , and a sub-
system of channelling constraints (3) between the x and y variables.

For the conjunction of Among constraints on disjoint value domains, Ré-
gin [12] encodes the capacity constraints as one Gcc on value domain indicator
variables y which are channelled to the x variables by the relation yj = i ⇐⇒
xj ∈ Vi. For Sequence, the channelling is even simpler since all value do-
mains are equal and thus can be assimilated to {0, 1}: yj = 1 ⇐⇒ xj ∈ V .
Brand et al. [4] encode the capacity constraints as a temporal constraint net-

work k ≤
∑j+l

s=j ys ≤ k (∀j ∈ J). Maher et al. [10] transform it thereafter into
a linear program, and then into a �ow network model on which they apply an
incremental �ltering algorithm similar to Gcc [11].

In both cases, as the capacity+channelling constraint system is Berge-acyclic,
then the �ow-based �ltering on the dual model achieves AC on the original
model. This is not our case, as our channelling (3) is itself a conjunction of
Among constraints where the y variables play the role of the variable capacities.
As a consequence, this sub-system can also be reformulated as a �ow network
(see Figure 2) but where the y represent the arc capacities instead of the �ow
values. We employ this �ow model to prove the polynomial reduction from (PL)
and, in part, to �lter our channelling sub-system as we encode it as a Gcc, but
we cannot use it to �lter the dual system, in contrast to [12, 10].

Our dual system is actually encoded as a temporal constraint network (PT),
like in [4, 10]. However, because our network is a complete graph, we use the
standard Floyd-Warshall algorithm to �lter values. Reducing it to a �ow problem
as in [10] would require a speci�c structure and using Johnson's algorithm or

14

the incremental variant of [6] as in [4] would be a better option only if the graph
was sparse.

7 Conclusion

Providing that domains are intervals, we have shown that a conjunction of
Among constraints, named Interval-Amongs, becomes a tractable constraint.
We have also introduced di�erent decompositions of the constraint and compared
them on the basis of �ltering power. The �rst is basically an �horizontal� decom-
position (where we consider all the values of a single interval) and comes from
the very de�nition of the constraint. The second is a �vertical� one (where we
consider a single value shared by all the intervals) and turns to be the right
formulation to prove our main theorem. Decomposition is a remarkable aspect
of constraint programming as it automatically yields, through the process of
constraint propagation, a composition of existing algorithms, each initially de-
signed for a di�erent purpose. We have illustrated this well by plugging together
the Floyd-Warshall algorithm (for the temporal constraint network) and a �ow-
based �ltering (for the Global-Cardinality constraint). Both decomposition
have been implemented and compared on random instances. Results reinforce
the superiority of the second decomposition for tackling our problem.

In this paper, we also investigated the multi-dimensional variant of Interval-
Amongs, motivated by a target localization problem. We have shown that
achieving BC in this case remainsNP-hard. Note that this constraint is naturally
decomposable into its d projections, which brings us back to the one-dimensional
case. However this additional decomposition hinders �ltering a lot, as the upper
capacities are canceled by the decomposition. On the contrary, the Among con-
straint has a straightforward extension to the multi-dimensional case. Hence, the
situation is now more favorable to an approach based on the (vector-)Among
decomposition. In future works, we aim at �nding a tighter decomposition that
exploits Interval-Amongs to solve this NP-hard problem.

Also, the algorithm presented in this paper to enforce bound consistency of
Interval-Amongs simply embeds a satis�ability check inside a heavy shaving
loop. The existence of a more elegant algorithm is still an open question. We
conjecture that it is a challenging question as such result would subsequently
prove Theorem 1, which was precisely the delicate part of the present work.

References

1. N. Beldiceanu and E. Contejean. Introducing Global Constraints in CHIP. Journal
of Mathematical and Computer Moddeling, 20(12):97�123, 1994.

2. C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. Among, Common
and Disjoint Constraints. In CSCLP: Recent Advances in Constraints, volume 3978
of Lecture Notes in Computer Science, pages 29�43, 2005.

3. C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. The Range and Roots
Constraints: Specifying Counting and Occurrence Problems. In IJCAI, pages 60�
65, 2005.

15

4. S. Brand, N. Narodytska, C.G. Quimper, P. Stuckey, and T. Walsh. Encodings
of the sequence constraint. In Principles and Practice of Constraint Programming
(CP'08), volume 4741 of Lecture Notes in Computer Science, pages 210�224, 2007.

5. G. Chabert, L. Jaulin, and X. Lorca. A Constraint on the Number of Distinct
Vectors with Application to Localization. In 15th International Conference on
Principles and Practice of Constraint Programming (CP'09), volume 5732 of Lec-
ture Notes in Computer Science, pages 196�210, 2009.

6. S. Cotton and O. Maler. Fast and �exible di�erence constraint propagation for
DPLL(T). In SAT'06, pages 170�183, 2006.

7. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Arti�cial Intel-
ligence, 49(1-3):61�95, 1991.

8. I. Katriel and S. Thiel. Complete Bound Consistency for the Global Cardinality
Constraint. Constraints, 10(3):191�217, 2005.

9. E. Lawler. Combinatorial Optimization: Networks and Matroids. Saunders College
Publishing, 1976.

10. M.J. Maher, N. Narodytska, C-G. Quimper, and T. Walsh. Flow-Based Propa-
gators for the SEQUENCE and Related Global Constraints. In Principles and
Practice of Constraint Programming (CP'08), volume 5202 of Lecture Notes in
Computer Science, pages 159�174, 2008.

11. J-C. Régin. Generalized Arc Consistency for Global Cardinality Constraint. In
13th conference on Arti�cial intelligence, AAAI'96, pages 209�215, 1996.

12. J-C. Régin. Combination of Among and Cardinality Constraints. In Integration of
AI and OR Techniques in Constraint Programming (CPAIOR'05), volume 3524 of
Lecture Notes in Computer Science, pages 288�303, 2005.

13. R. Shostak. Deciding linear inequalities by computing loop residues. Journal of
the ACM, 28(4):769�779, 1981.

14. CHOCO Team. choco: an open source java constraint programming library. Re-
search report 10-02-INFO, Ecole des Mines de Nantes, 2010.

15. W-J. van Hoeve, G. Pesant, L-M. Rousseau, and A. Sabharwal. New �ltering
algorithms for combinations of among constraints. Constraints, 14:273�292, 2009.

16

