Towards the 3D characterisation of deformation micro-mechanisms within a compressed bundle of fibres - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Composites Science and Technology Année : 2011

Towards the 3D characterisation of deformation micro-mechanisms within a compressed bundle of fibres

Résumé

The present study provides original experimental data concerning the evolution of the microstructure of a bundle of fibres during its deformation. For that purpose, a model saturated fibre bundle was processed and was subjected to a compression loading by using a specially designed micro-compression rheometer which was mounted on a synchrotron X-ray microtomograph. Thus, 3D images of the evolving fibrous microstructure could be obtained. Results first show that the compression induced both the bundle consolidation and liquid phase migration. Secondly, (i) the position, the orientation, the displacement and the deformation of each fibre together with (ii) the position and the evolution of each fibre-fibre contact were followed during the compression. The tracking of these microstructure descriptors allows the consolidation micro-mechanisms to be analysed and provides useful information for theoretical or numerical models used to predict fibre bundle deformation during processing of fibre bundle reinforced polymer composites.

Domaines

Matériaux
Fichier principal
Vignette du fichier
PEER_stage2_10.1016%2Fj.compscitech.2010.12.023.pdf (1.98 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00723642 , version 1 (12-08-2012)

Identifiants

Citer

Pierre Latil, Laurent Orgéas, Christian Geindreau, Pierre J.J. Dumont, Sabine Rolland Du Roscoat. Towards the 3D characterisation of deformation micro-mechanisms within a compressed bundle of fibres. Composites Science and Technology, 2011, 71 (4), pp.480-488. ⟨10.1016/j.compscitech.2010.12.023⟩. ⟨hal-00723642⟩
104 Consultations
254 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More