
HAL Id: hal-00705861
https://hal.science/hal-00705861

Preprint submitted on 25 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spectral learning of graphical distributions
Raphael Bailly

To cite this version:

Raphael Bailly. Spectral learning of graphical distributions. 2012. �hal-00705861�

https://hal.science/hal-00705861
https://hal.archives-ouvertes.fr


Spectral learning of graph distributions
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Abstract

This work draws on previous works regarding spectral learning algo-
rithm for structured data (see [5], [9], [2], [1], [8]). We present an extension
of the Hidden Markov Models, called Graphical Weighted Models (GWM),
whose purpose is to model distributions over labeled graphs. We describe
the spectral algorithm for GWM, which generalizes the previous spectral
algorithms for sequences and trees. We show that this algorithm is con-
sistant, and we provide statistical convergence bounds for the parameters
estimate and for the learned distribution.

1 Introduction

Graphical Weighted Models (GWMs), and Directed Graphical Weighted Models
(DGWMs), are probabilistic models which generalizes HMMs and Observable
Operator Models (see [6]). They are related to graphical models with discrete
latent variables. The vertices labels xi are distributed conditionnaly to their
corresponding latent variable yi. One supposes that the hidden variables satisfy
the Markov property w.r.t the graphical structure.

For any fixed graphical structure, these GWMs can model a distribution over
vertices labels. Moreover, they can describe at the same time a distribution over
all possible graphical structures.

We present a spectral algorithm which is a generalization of the spectral
algorithm in [5]. This algorithm provides an estimate of the parameters which
is consistant, and not prone to local extrema.

The section 2 describes some preliminary notions, section 3 introduces the
Directed Graphical Weighted Model(DGWM), section 4 presents the spectral
algorithm, and section 5 adresses the convergence results. The section 6 in-
troduces the Graphical Weighted Model(GWM) and the spectral algorithm for
GWM. We conclude with the section 7.
∗Lampada
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2 Preliminaries

The objects we consider in this paper are labeled DAGs (Directed Acyclic
Graphs), and labeled graphs – i.e. each vertice is labeled with a symbol x
belonging to an alphabet F . Each symbol has an incoming and an outgoing
arity for the directed model, an overall arity for the undirected model. Each
port (incoming or outgoing) has a port number. For instance, let us consider the
alphabet F = {f2,3

1 , j1,2, h
1, i21}, meaning that the symbol f has an incoming

arity 2 (with port numbers 2 and 3) and an outgoing arity 1 (port number 1).
Fig. 1 represents a DAG example built with F .
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Figure 1: A Directed Acyclic Graph (DAG) g.

2.1 Sequences as DAGS

Sequences are particular cases of DAGs: the set of sequences built upon an al-
phabet Σ = {a, b, c . . . } will correspond to DAGs with F = {i1, t1, a2

1, b
2
1, c

2
1 . . . }.

The sequence aabca will correspond to the DAG represented Fig. 2.
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Figure 2: Sequence as a Directed Acyclic Graph (DAG).

It is clear that any sequence built with Σ can be represented by a DAG built
with F , and conversely, that any DAG built with F corresponds to a sequence
built with Σ.

2.2 Trees as DAGS

Trees are also particular cases of DAGs: the set of trees built with an al-
phabet Σ = {f2, b1, c0 . . . } corresponds to a DAG with set of symbols F =
{i1, f2,3

1 , b21, c1 . . . } where the parent port will have the port number 1. The tree
f(b(c), f(c, c)) corresponds to the DAG Fig.3:
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Figure 3: Tree as a Directed Acyclic Graph (DAG).
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Again, it is clear that there is a bijection between trees built with Σ =
{f2, b1, c0 . . . } and DAGs built with F = {i1, f2,3

1 , b21, c1 . . . }.
In the rest of the paper, one will use functional notation for trees and

sequences, including the symbols i and t. For instance, the sequence aabca
will be denoted i(a(a(b(c(a(t)))))), and the tree f(b(c), f(c, c)) will be denoted
i(f(b(c), f(c, c))).

3 Directed Graphical Weighted Model

In this section, we extend HMMs to DAGs. To do this, one needs a fuctionnal
notation for DAGs.

3.1 Notations

One defines an incomplete DAG (I-DAG) as a DAG having unconnected vertices.
Examples of I-DAG are represented Fig. 4.

a
1

2

f

i

i

g
2

1 2

1

2

21

3

b

1

2

d

1

2

c
1

2

e
1

2 4

3

f
1

2 4

3

1

a
1

2

f

i

i

g
2

1 2

1

2

21

3

b

1

2

d

1

2

c
1

2

e
1

2 4

3

f
1

2 4

3

1

a
1

2

f

i

i

g
2

1 2

1

2

21

3

b

1

2

d

1

2

c
1

2

e
1

2 4

3

f
1

2 4

3

1

Figure 4: I-DAGs examples: a1,2, c1,2 and e3,41,2.

Definition 1. Let g1, . . . , gk be I-DAGs.The I-DAG g = (g1, . . . , gk) is obtained
by juxtaposing the I-DAGs gi, from the top to the bottom. The I-DAG gk is
(g, . . . , g) repeated k times.

Definition 2. Let g1, . . . , gk be I-DAGs. The I-DAG g = g1g2 . . . gk is obtained
by juxtaposing the I-DAGs gi, from left to right. The incoming edges of gi
corresponds to outgoing edges of gi+1.
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Figure 5: I-DAGs examples: (a1,2, b1,2), (f3,4
1,2 , e

3,4
1,2) and (a1,2, b1,2)(f3,4

1,2 , e
3,4
1,2)

Definition 3. The I-DAG 1 denotes the identity element for the operation (·, ·)
– i.e. (1k, gk

′

k ) = (gk
′

k ,1
k′) = gk

′

k .
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Definition 4. Let g be an I-DAG with n incoming ports and n∗ outgoing ports.
Let σ be a permutation of {1, . . . n} and σ∗ be a permutation of {1, . . . n∗}. One
will denote [g]σσ∗ the I-DAGs obtained by permutation of incoming ports (resp.
outgoing) with σ (resp. σ∗). (see Fig. 6)
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Figure 6: I-DAGs (a1,2, b1,2)(11, f3,4
1,2 ,1

1), [(f3,4
1,2 , e

3,4
1,2)]1324 and

(a1,2, b1,2)[(f3,4
1,2 , e

3,4
1,2)]1324

Proposition 1. Any DAG g can be written as

[(v1,1, . . . , v1,k1)]σ1
σ∗1
· · · · · [(vn,1, . . . , vn,kn

)]σn
σ∗n

where vi belongs to F ∪ {1}.

Proof. Let V be the set of vertices of g. One defines a partition of V = V0 ∪
· · · ∪ Vk as:

• V0= set of vertices having only incoming edges

• Vi+1= set of vertices having only incoming edges, or outgoing edges to-
wards vertices of V0 ∪ · · · ∪ Vi.

Each Vi is completed with ki symbols 1, in order to have the same number
of incoming edges for Vi and outgoing edges for Vi+1. One defines the I-DAG
gi = (v1

i , . . . , v
ni
i )vj

i∈Vi
, and the permutations σi such as the incoming ports of

gi corresponds to outgoing ports of gi+1. One define

g = [g0]σ0 . . . [gk]σk

There exists obviously several way to denote a particular DAG: the DAG
g Fig.1 can be written (h1)(f2,3

1 )(i21, i
2
1)(j1,2) or (h1)(f2,3

1 )(i21,1
1)(11, i21)(j1,2).

When g is a tree or a sequence, this notation corresponds to the usual functional
notation.

Definition 5. A Directed Graphical Weighted Model (DGWM) is given by:

• a rank d, an d-dimensionnal vector space E over R called state space, or
residual space.
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• for each symbol f belonging to the alphabet, with incoming arity n and
outgoing arity n∗, a real matrix f of dimensions (dn

∗
, dn).

Definition 6. Let d be an integer, and let M be a (dn
∗
, dn) matrix, let σ be a

permutation of {1, . . . n}, and let σ∗ be a permutation of {1, . . . n∗}. One will
denote by [M ]σσ∗ the matrix satisfying, for any column vectors v1, . . . , vn and
row vectors v∗1 , . . . , v

∗
n∗ :

(v∗1⊗· · ·⊗v∗n∗)·M ·(v1⊗· · ·⊗vn) = (v∗σ∗(1)⊗· · ·⊗v
∗
σ∗(n∗))·[M ]σσ∗ ·(vσ(1)⊗· · ·⊗vσ(n))

This matrix is unique, and it can be deduced from M by a permutation of
rows and columns. More precisely:

Lemma 1. Let σ be a permutation of {1, . . . n}, and σ∗ be a permutation of
{1, . . . n∗}. There exists a column permutation σ̄ and a row permutation σ̄∗ such
that, for any (dn

∗
, dn) matrix M , one has [M ]σσ∗ = σ̄(σ̄∗(M)).

Definition 7. Let g be a DAG. Let A be a DGWM of rank d over the symbols
of g. Let I be the identity matrix of rank d. One defines the mapping rA applied
to g = [(v1,1, . . . , v1,k1)]σ1

σ∗1
· · · · · [(vn,1, . . . , vn,kn)]σn

σ∗n
by:

rA(g) = [(v1,1 ⊗ · · · ⊗ v1,k1)]σ1
σ∗1
· · · · · [(vn,1 ⊗ · · · ⊗ vn,kn)]σn

σ∗n

Proposition 2. The value rA(g) does not depend on the functional notation
for g.

Proof. (Sketch) By induction. One uses the property (A ·B)⊗ (C ·D) = (A⊗
C) · (B ⊗D), thus (I ⊗ x1

2) · (y1
2 ⊗ I) = (y1

2 ⊗ x1
2).

4 Spectral Algorithm

Definition 8. One will call n-order prefix (resp. suffix) an I-DAG, having n
incomplete incoming ports (resp. n incomplete outgoing ports). A prefix (resp.
suffix) is by default a 1-order prefix (resp. suffix). A missing vertice is denoted
?.

Example 1. The following objects are prefixes: i(f(b(c), f(c, ?))), i(f(b(c), f(?, c))),
i(f(?, f(c, c))). Tree prefixes are also called contexts.

Example 2. The following objects are suffixes: ?(f(b(c), f(c, c))), ?(f(c, c)).

Example 3. Prefixes and suffixes for sequences are 1-order. Tree suffixes are
1-order suffixes.

Definition 9. Let p be an n-order prefix, and s1, . . . , sn be 1-order suffixes.
One will denote by p[s1, . . . , sn] The DAG built by pluging ? symbols of p to ?
symbols of each si.
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Figure 7: A DAG prefix

Example 4. Let p = i(f(b(c), f(?, c))) and s = ?(f(c, c)), one has p[s] =
i(f(b(c), f(f(c, c), c)))

Definition 10. The rank of a mapping r computed by a DGWM is the minimal
rank of a DGWM computing r.

Definition 11. An n-order generalized prefix (resp. n-order generalized suf-
fix) is a set of n-order prefixes (resp. set of n-order suffixes) having undefined
vertices. A generalized prefix (resp. generalized suffix) is a 1-order generalized
prefix (resp. 1-order generalized suffix). An undefined vertice is denoted ·. The
set of n-order generalized prefix (resp. n-order generalized suffix) is the set of
any n-order prefix (resp. n-order suffix) obtained by replacing the · correspond-
ing to an incoming port by any 1-order suffix, and the · corresponding to an
outgoing port by any 1-order prefix.

Example 5. The generalized sequence prefix ·(a(a(?))) is the set {i(a(a(?))); i(b(a(a(?)))); i(a(a(b(a(a(?)))))); . . . }.
It is the set of prefixes ending with a(a(?)).

Definition 12. Let U be a set of generalized prefixes, let V be a set of generalized
suffixes. The Hankel matrix for the set U and V of a real-value mapping over
DAGs r is the matrix Xr

U,V defined by (Xr
U,V )u,v =

∑
p∈U,s∈V r(p[s]).

Example 6. Let t = i(b(a(a(c)), b(c, d))))) be a tree, let U = {i(?), ·(a(?)), ·(b(?, ·)), ·(b(·, ?))}
and let V = {?(a(·)), ?(b(·, ·)), ?(c) ? (d)}, and let r be the counting mapping of
the set S = {t} (i.e r(t) = Card(t′ ∈ S|t′ = t)). The Hankel matrix Xr

U,V is:

?(a(·)) ?(b(·, ·)) ?(c) ?(d)
i(?)

·(a(?))
·(b(?, ·))
·(b(·, ?))

0BB@
0 1 0 0
1 0 1 0
1 0 1 0
0 1 0 1

1CCA
Let r be a fixed real-value mapping over DAGs built upon a set of symbols

F = {. . . xkk∗ . . . }. Let p be a prefix, let s be a suffix, let P be the set of all
generalized prefixes, and let S be the set of all generalized suffixes. One can
define the following objects:

• p̄ : S 7→ R such that p̄(s) = r(p[s])

• s̄ : P 7→ R such that s̄(p) = r(p[s])

One can define the two following vector spaces:

• E∗r = vector space spanned by {p̄}p∈P

6



• Er = vector space spanned by {s̄}s∈S

For each symbol xkk∗ ∈ F one can define a mapping ẋkk∗ : P k
∗ × Sk 7→

R defined by ẋkk∗((p1, . . . , pk∗), (s1, . . . , sk)) = r((p1, . . . , pk∗)(xkk∗)(s1, . . . , sk)),
which extends naturally to a (k+k∗)-linear mapping ẋkk∗ : (E∗r )⊗k

∗×(Er)⊗k 7→ R
defined by ẋkk∗(

∑
i(p̄

i
1, . . . , p̄

i
k∗),

∑
j(s̄

j
1, . . . , s̄

j
k)) =

∑
i,j r((p

i
1, . . . , p

i
k∗)(x

k
k∗)(s

j
1, . . . , s

j
k)),

where E⊗kr is the tensor product of Er repeated k times.

4.1 Model properties

Let A be a DGWM over F = {. . . xkk∗ . . . }, with a state space E = Rd. Each
xkk∗ is a matrix which can be seen as a k-linear mapping E⊗k 7→ E⊗k

∗
. The

dimension of E∗r is the dimension of Er, and it is also the rank of the Hankel
matrix Xr.

The residual spaces Er and E∗r can be seen as subspace of E, thus rank(Xr)
≤ d.

Definition 13. A DGWM A computing a mapping rA is called simple if the
state space dimension is equal to the rank of the Hankel matrix XrA .

For the rest of the paper, we will make the assumption that the mapping
we want to estimate is computed by a simple DGWM. This implies that E,
Er and E∗r have rank d, and that xkk∗ is entirely defined by its restriction to
E⊗kr × (E∗r )⊗k

∗
.

Let X be the Hankel matrix of r, and let Xxk
k∗

be the matrix defined by:

(Xxk
k∗

)(p1,...,pk∗ ),(s1,...,sk) = r((p1, . . . , pk∗)(xkk∗)(s1, . . . , sk))

Let vS be the coordinates of v ∈ Er in the basis S = {s̄1 . . . }, and v1P
be

the coordinates of v ∈ E∗r in the basis 1P = {1p1 . . . }. X is a transformation
matrix from S to 1P . Let X+ be a pseudo-inverse of X. The matrix Xxk

k∗

applied to (s̄1)S , . . . , (s̄k)S represents the vector xkk∗(s1, . . . , sk)
1P

in the basis
1P . From this, one can say that the matrix X+Xxk

k∗
is the matrix of ẋkk∗ in the

basis S.

Proposition 3. Let r be a real-value mapping over DAGs built from F =
{. . . xkk∗ . . . }. One defines the following operators:

ẋkk∗ = X+Xxk
k∗

One then has:

r(g) = r([(v1, . . . , vk1)]σ1
σ∗1
· · · · · [(v1, . . . , vkn

)]σn
σ∗n

)

= [(v̇1 ⊗ · · · ⊗ v̇k1 ]σ1
σ∗1
· · · · · [(v̇1 ⊗ · · · ⊗ v̇kn

)]σn
σ∗n

7



The principle of the spectral algorithm is the following: one supposes that
r is computed by a rank-d simple DGWM, and one performs the singular value
decomposition (SVD) of X = W ∗ΣWT , with Σ a diagonal matrix of size d. One
then has:

Proposition 4. Let r a mapping computed by a simple DGWM over F =
{. . . xkk∗ . . . }. Let Xr = W ∗ΣWT . Then the DGWM defined by:

xkk∗ = (Σ−1W ∗)⊗k
∗
Xxk

k∗
(WT )⊗k

computes r.

Proof. The proof is very similar to the proofs of corresponding results in other
works, e.g. [5].

Data: A sample S = {si, 1 ≤ i ≤ |S|} i.i.d. according to a distribution p,
a rank d, an alphabet F , a set of prefixes U = {u1, . . . }, a set of
suffixes V = {v1, . . . }.

Result: A Graphical Weighted Model A computing an estimate of p
begin

Xi,j ← pS(uivj)
for each xkk∗ ∈ F do

Xx,i1...ik∗ ,j1...jk ← pS((u1, . . . , uk∗)xkk∗(v1, . . . , vk))
X = W ∗ΣWT

for each xkk∗ ∈ F do
xkk∗ ← (Σ−1W ∗T )⊗k

∗
Xxk

k∗
(W )⊗k

return A = {xkk∗}xk
k∗∈F

end
Algorithm 1: Spectral Algorithm for DGWMs

5 Concistency

Let p be a probability distribution over DAGs, computed by a simple DGWM
of rank d. Let X be the Hankel matrix of p for U = {u1, . . . } and V {v1, . . . }.
Let x be a prefix (resp . y be a suffix). Let mV (x) = Card({v ∈ V |x ⊂ v} (resp.
mU (x) = Card({u ∈ U |y ⊂ u} ). Let m = maxc∈V (|c|).maxg∈G(mV (g)mU (g).
Let S be a sample of size N i.i.d. with respect to p. Let XS be the Hankel
matrix of the empirical distribution pS . Let λ1 ≥ · · · ≥ λd . . . be the singular
values of X, the lower beeing λd.

5.1 Parameter estimate

Proposition 5. Let {xkk∗} be a DGWM computing p, provided by the spectral
algorithm on target values. Let {xS

k
k∗} be a DGWM estimating p, provided by

8



the spectral algorithm on empirical values. Let ‖‖F be the Frobenius norm on
matrices. Let δ be a confidence parameter. One then has, with probability 1− δ:

‖xkk∗ − xS
k
k∗‖F = O

 s
m3d2(k+k∗)+1k log( 1

δ
)

Nλ2k+2
d

!

Proof. (Sketch.) One first obtains a concentration inequality for the Hankel
matrix, as in [5]. One then uses matrix perturbation results for singular values
and singular vectors, as in [10].

5.2 Simple convergence

Proposition 6. Let {xkk∗} be a DGWM computing p, provided by the spectral
algorithm on target values. Let rS be the mapping computed by the DGWM
provided by the spectral algorithm on empirical values. Let g be a DAG, and k
the maximal arity of a symbol occuring in g. Let ‖‖F be the Frobenius norm on
matrices. Let M = maxx∈F ‖x‖F . Let δ be a confidence parameter. One then
has, with probability 1− δ:

|p(t)− rS(t)| = O

 
M |t|

s
m3d2k+1k log( 1

δ
)

Nλ2k+2
d

!

Proof. (Sketch.) One uses the linearity of matrix product and tensor product,
with the properties ‖M ·N‖F ≤ ‖M‖F ‖N‖F and ‖M⊗N‖F = ‖M‖F ‖N‖F .

Example 7. Sample: {(a, a)g; (a, b)g; (a, b)g; (b, a)g}. Prefixes:{a, b}. Suffixes:{(?, a)g, (?, b)g}.
X = W ∗ΣWT .

X =

„
1/4 1/2
1/4 0

«
, Xa =

`
1/4 1/2

´
, Xb =

`
1/4 0

´
, XT

g =
`

1/4 1/2 1/4 0
´

W ∗ =

„
−0.9732 −0.2298
−0.2298 0.9732

«
,Σ =

„
0.5721 0

0 0.2185

«
,WT =

„
−0.5257 −0.8506
0.8506 −0.5257

«
DGWA provided by the spectral algorithm:

a = Xa ·W =
(
−0.5568 −0.0502

)
, b = Xb ·W =

(
−0.1314 0.2127

)
gT =

(
((Σ−1W ∗T )⊗ (Σ−1W ∗T ))Xg

)T
=
(

1.2361 −3.2361 −1.2361 −3.2361
)
,

One can check that (a ⊗ b) · g = 1/2 , (a ⊗ a) · g = 1/4 , (b ⊗ a) · g =
1/4 , (b⊗ b) · g = 0.

6 Undirected Graphical Weighted Model

We define here a GWM for undirected graphs. The idea is to consider a model
which computes the same result, for any acyclic direction of a given graph.

Definition 14. A Graphical Weighted Model (GWM) is given by:

9



• a rank d, and a d-dimensional vector space E over C, called state space,
or residual space.

• for each n-arity symbol f1,...,n, a complex vector f = f1,...,n of dimension
dn.

• for each symbol f i1...ikik+1...in
, a (dk, dn−k)-complex matrix f i1...ikik+1...in

which can
be deduced from f , and satisfying, for any v1 . . . vn ∈ E:

(vTi1 ⊗ · · · ⊗ v
T
ik

)f i1...ikik+1...in
(vik+1 ⊗ · · · ⊗ vn) = (vT1 ⊗ · · · ⊗ vTn )f

Example 8.

fT = fT1,2 =
(
f11 f12 f21 f22

)
,f2,1 =

(
f11 f21 f12 f22

)
,f1

2 =
(
f11 f21
f12 f22

)
One can check that

(vT1 ⊗ vT2 )f = vT2 f1
2v1 = f2,1(v2 ⊗ v1)

Proposition 7. Let g be a graph, and A be a GWM. Let g1 and g2 be two
different DAGs corresponding to g. Then rA(g1) = rA(g2).

Proof. The proof is simple, though quite technical, and can be found in the
longer version of this paper. It is mainly based on the property (xT⊗I)·(I⊗y) =
(yT ⊗ I) · (I ⊗ x).

6.1 Spectral algorithm for GWM

Data: A sample S = {si, 1 ≤ i ≤ |S|} i.i.d. according to a distribution p,
a rank d, an alphabet F , a set of prefixes U = {u1, . . . }.

Result: A Weighted Model A computing an estimate of p
begin

Xi,j ← pS(uiuj)
for each xkk∗ ∈ F do

Xx,i1...ik∗ ,j1...jk ← pS((u1, . . . , uk∗)xkk∗(u1, . . . , uk))
X = UΣUT

for each xkk∗ ∈ F do
xkk∗ ← (Σ−1/2UT )⊗k

∗
Xxk

k∗
(UΣ−1/2)⊗k

return A = {xkk∗}xk
k∗∈F

end
Algorithm 2: Spectral Algorithm for GWMs

Using the same prefix and suffix sets U implies that X is symetric, and thus
X can be written X = UΣUT , with U−1 = UT . If one of the eigenvalues of X is
negative, the provided GWM has complex parameters – though the computed
value is real. Thus, the model provided is always a GWM.
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Example 9. Prefixes:{a; b; (?, a)g1,2; ?, b)g1,2}. Suffixes:{a; b; (?, a)g1,2; ?, b)g1,2}.
Sample: {(a, a)g1,2; (a, b)g1,2; (a, b)g1,2; (b, a)g1,2}. X = V ΣV T .

GWA provided by the spectral algorithm:

a = Xa · (V Σ−1/2) =
(

0.5205i −0.0759i −0.0759 −0.5205
)

b = Xb · (V Σ−1/2) =
(

0.1229i 0.3217i 0.3217 −0.1229
)

gT1,2 = g1,2 = Xg1,2 ·
(

(V Σ−1/2)⊗ (V Σ−1/2)
)

=(
−0.3536 −0.5721 −0.5721i 0.3536i −0.2186 0.3536 0.3536i 0.2185i

−0.2185i 0.3536i −0.3536 −0.2185 0.3536i 0.5720i −0.5720 0.3536
)

One can check that

(a⊗a)·g1,2 = 1/4 , (a⊗b)·g1,2 = 1/2 , (b⊗a)·g1,2 = 1/4 , (b⊗b)·g1,2 = 0

One can also check that

a · g1
2 · aT = 1/4 , a · g1

2 · b
T = 1/4 , b · g1

2 · aT = 1/2 , b · g1
2 · b

T = 0

7 Conclusion

In several previous works, it has been shown that the spectral methods can
be efficient in practical applications, like in reinforcement learning ([4]), or in
natural language processing ([7]) – both in accuracy and computational time.

The spectral algorithm presented in this paper, as it is fast – the cost of a
single thin SVD – and not prone to local extrema issues, should perform well in
problems where graphical models are generally used in combination with EM-
like learning methods for parameter estimate. It can also be used in a density
estimation task for distributions on graphs.

One should also be able to extend this spectral algorithm to graphs with
continuous observations, as in [9], or consider online versions of the algorithm,
like in [3].
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8 Appendix- Undirected Graphical Weighted Model

8.1 Proof of Proposition 6

Let g be a DAG. We use notations of Proposition 1. Let us remark that one
can split any set of the partition V = V0 ∪ · · · ∪ Vk, for instance Vk = V ′k ∪ V ′′k .
By sorting correctly the incoming and outgoing ports, one has:

(
⊗
vh∈Vk

vh) = ((
⊗
v′i∈V ′k

v′
i)⊗ I⊗n

′
)(I⊗n

′′
⊗ (

⊗
v′′j ∈V ′′k

v′′
j))

This comes directly from the property (A⊗B)(C ⊗D) = (AC)⊗ (BD):

((
⊗
v′i∈V ′k

v′
i)⊗I⊗n

′
)(I⊗n

′′
⊗(

⊗
v′′j ∈V ′′k

v′′
j)) = ((

⊗
v′i∈V ′k

v′
i)I⊗n

′′
)⊗(I⊗n

′
(
⊗

v′′j ∈V ′′k

v′′
j)) = (

⊗
vh∈Vk

vh)

Consequently, by splitting all classes into singles, one can choose any total
order of the vertices v0 < v1 < · · · < vk consistant with the partial order induced
by the orientation, and computing the value with that order (meaning by that
Vi = {vi}) does not depend on the chosen order.

We will first expose some simple results about graphs:

Lemma 2. Let G be a graph, and D an acyclic direction of the edges. From D,
one can deduce a partial order of the vertices V which can be completed into a
total order. Conversly, any total order on the set of vertices leads to a direction
D.

Proof. Let us take the convention that an edge from v1 to v2 means v1 > v2.
Acyclicity implies that it is an order relation.

Lemma 3. Let O and O′ be two total orders on a finite set. One can go from
O to O′ with a combination of transposition of contiguous elements.

Lemma 4. A transposition of contiguous elements in the total order of the set
of contiguous vertices corresponds to flipping the direction of the edge between
those two vertices (thus preserving acyclicity).

From the former lemmas, one can check that it is sufficient to prove the
claim in the case of flipping the direction of an edge while preserving acyclicity.

Combinig this with the former remark that one can choose a total order
to perform the computing, the assertion boils down to showing the following
lemma:

Lemma 5. Let x be a symbol, k and l are two sets of indices, i is supposed
to be the last indice of x’s ports. Let y be a symbol, m and n are two sets of
indices, j is supposed to be the last indice of y’s ports. The rank of the model is
d. |n| is the size of the set of indices n. One has the following equality:

(xlik ⊗ I⊗|m|)(I⊗|l| ⊗ ynjm) = (I⊗|k| ⊗ yjnm )(xlki ⊗ I⊗|n|)

corresponding to the equality of the valuations of the two I-DAGs:
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Figure 8: I-DAG 1 and I-DAG 2.

Proof. The matrices xlki and xlik can be written as:

xlki =
(
Xkl

)
,xlik =

(
XT
kl

)
whith

Xkl =

 xkl1
...

xkld


The same idea holds for ynjm and yjnm , whith Yj = (ymnj):

ynjm =

 Y1

...
Yd

 ,yjnm =
(
Y1 . . . Yd

)
One then has the following equalities:

xlki ⊗ I⊗|n| =
(
Xkl ⊗ I⊗|n|

)
,xlik ⊗ I⊗|m| =

(
XT
kl ⊗ I⊗|m|

)
and

I⊗|l|⊗ynjm =



Y1 0 0
... 0 0
Yd 0 0
0 Y1 0

0
... 0

0 Yd 0
0 0 Y1

0 0
...

0 0 Yd


, I⊗|m|⊗yjnm =

 Y1 . . . Yd 0 . . . 0 0 . . . 0
0 . . . 0 Y1 . . . Yd 0 . . . 0
0 . . . 0 0 . . . 0 Y1 . . . Yd



This boils down to show the following equality for any i, j:

(XT
kl ⊗ I⊗|m|) ·

 Y1

...
Yd

 =
(
Y1 . . . Yd

)
·Xkl ⊗ I⊗|n|

which are both equal to ∑
i

xkliYi
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