Nonlinear evolution of the modulational instability under weak forcing and damping - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Natural Hazards and Earth System Sciences Année : 2010

Nonlinear evolution of the modulational instability under weak forcing and damping

Résumé

The evolution of modulational instability, or Benjamin-Feir instability is investigated within the framework of the two-dimensional fully nonlinear potential equations, modified to include wind forcing and viscous dissipation. The wind model corresponds to the Miles' theory. The introduction of dissipation in the equations is briefly discussed. Evolution of this instability in the presence of damping was considered by Segur et al. (2005a) and Wu et al. (2006). Their results were extended theoretically by Kharif et al. (2010) who considered wind forcing and viscous dissipation within the framework of a forced and damped nonlinear Schrodinger equation. The marginal stability curve derived from the fully nonlinear numerical simulations coincides with the curve obtained by Kharif et al. (2010) from a linear stability analysis. Furthermore, it is found that the presence of wind forcing promotes the occurrence of a permanent frequency-downshifting without invoking damping due to breaking wave phenomenon.
Fichier principal
Vignette du fichier
TouboulKharif-NHESS-2010.pdf (428.86 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00703140 , version 1 (01-06-2012)

Identifiants

Citer

Julien Touboul, C. Kharif. Nonlinear evolution of the modulational instability under weak forcing and damping. Natural Hazards and Earth System Sciences, 2010, 10, pp.2589-2597. ⟨10.5194/nhess-10-2589-2010⟩. ⟨hal-00703140⟩
187 Consultations
150 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More