
HAL Id: hal-00691832
https://hal.science/hal-00691832

Submitted on 27 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MOTEUR: a data-intensive service-based workflow
manager

Tristan Glatard, Johan Montagnat, Xavier Pennec, David Emsellem, Diane
Lingrand

To cite this version:
Tristan Glatard, Johan Montagnat, Xavier Pennec, David Emsellem, Diane Lingrand. MOTEUR: a
data-intensive service-based workflow manager. 2006, pp.37. �hal-00691832�

https://hal.science/hal-00691832
https://hal.archives-ouvertes.fr

LABORATOIRE

INFORMATIQUE, SIGNAUX ET SYSTÈMES
DE SOPHIA ANTIPOLIS

UMR 6070

MOTEUR: A DATA-INTENSIVE SERVICE-BASED
WORKFLOW MANAGER

Tristan Glatard, Johan Montagnat, Xavier Pennec, David Emsellem, Diane Lingrand

Projet RAINBOW

Rapport de recherche
ISRN I3S/RR�2006-07�FR

Mars 2006

LABORATOIRE I3S: Les Algorithmes / Euclide B – 2000 route des Lucioles – B.P. 121 –
06903 Sophia-Antipolis Cedex, France – Tél. (33) 492 942 701 – Télécopie : (33) 492 942 898

http://www.i3s.unice.fr/I3S/FR/

RÉSUMÉ :
MOTEUR est un gestionnaire de flots optimisé pour traiter efficacement des applications manipulant de grandes masses de

données sur des infrastructures de grille. MOTEUR exploite plusieurs niveaux de parallélisme et groupe les tâches à réaliser pour
réduire le temps d’exécution des applications. De plus, MOTEUR utilise unWeb Service générique d’encapsulation pour faciliter
la réutilisation de codes développés sans prise en compte des spécificités des grilles de calcul. Dans ce rapport, nous présentons
MOTEUR et les stratégies d’optimisation mises en oeuvre. Nous montrons comment nous avons défini une sémantique précise
décrivant des flots de données complexes dans un format très compact. L’Architecture Orientée Services de MOTEUR est
détaillées et la flexibilité de l’approche adoptée est démontrée. Des résultats sont donnés sur une application réelle de traitement
d’images médicales qui s’appuie sur plusieurs infrastructures de grilles.

MOTS CLÉS :
flots de contrôle et de données, parallélisme, composition de données, groupage de tâches, AOS

ABSTRACT:
MOTEUR is a service-based workflow manager designed to efficiently process data-intensive applications on grid infras-

tructures. It exploits several levels of parallelism and can group services to reduce the workflow execution time. In addition,
MOTEUR uses a generic web service wrapper to ease the use of legacy or non-service aware codes. In this report, we present
MOTEUR and the optimization strategies implemented. We show how it is defining a precise data flows semantics to express
complex data-intensive applications in a compact framework. MOTEUR’ Service-Oriented Architecture is detailed, demon-
strating the flexibility of the approach adopted. Results are given on a real application to medical images processing using two
different grid infrastructures.

KEY WORDS :
workflows, data flows, parallelism, data composition, jobs grouping, SOA

MOTEUR: a data-intensive service-based workflow manager

Tristan Glatard1, Johan Montagnat1, Xavier Pennec2, David Emsellem1, Diane Lingrand1

1RAINBOW, I3S, CNRS. {glatard,johan,emsellem,lingrand}@i3s.unice.fr
2INRIA, Epidaure, Xavier.Pennec@sophia.inria.fr

March 11, 2006

Abstract

MOTEUR is a service-based workflow manager designed
to e�ciently process data-intensive applications on grid
infrastructures. It exploits several levels of parallelism
and can group services to reduce the workflow execution
time. In addition, MOTEUR uses a generic web service
wrapper to ease the use of legacy or non-service aware
codes.

In this report, we present MOTEUR and the optimiza-

tion strategies implemented. We show how it is defin-

ing a precise data flows semantics to express complex

data-intensive applications in a compact framework. MO-

TEUR’ Service-Oriented Architecture is detailed, demon-

strating the flexibility of the approach adopted. Results

are given on a real application to medical images process-

ing using two di↵erent grid infrastructures.

Keywords: workflows, data flows, parallelism,
data composition, jobs grouping, SOA.

1 Introduction

As a consequence of the tremendous research e↵ort
carried out by the international community these last
years and the emergence of standards, grid middle-
wares have reached a maturity level such that large
grid infrastructures where deployed (EGEE [13],
OSG [37], NAREGI [34]) and sustained computing
production was demonstrated for the benefit of many
industrial and scientific applications [32]. Yet, cur-
rent middlewares expose rather low level interfaces
to the application developers and enacting an appli-

cation on a grid often requires a significant work in-
volving computer and grid system experts.

Considering the considerable amount of sequential,
non grid-specific algorithms that have been produced
for various data processing tasks, grid computing is
very promising for:

• Performing complex computations involving
many computation tasks (codes parallelism).

• Processing large amounts of data (data paral-
lelism).

Indeed, beyond specific parallel codes conceived for
exploiting an internal parallelism, grids are adapted
to the massive execution of di↵erent tasks or the re-
execution of a sequential code on di↵erent data sets
which are needed for many applications. In both
cases, temporal and data dependencies may limit the
parallelism that can be achieved.

Assembling basic processing components is a pow-
erful mean to develop new scientific applications. The
reusability of data processing software components
considerably reduces applications development time.
In the image processing community for instance, it
is common to chain basic processing operators and
image interpretation algorithms to set up a complete
image analysis procedure. Workflow description lan-
guages are generic tools providing a high-level rep-
resentation for describing complex application con-
trol flows and the dependencies between application
components. Workflow execution engines provide the
ability to chain the application components execution
while respecting causality and inter-components de-
pendencies expressed within this abstract representa-

tion. Interfacing workflow managers with a grid in-
frastructure enables the e�cient exploitation of code
parallelism embedded in application workflows. It is
a mean to transparently provide parallelism, without
requiring specific code instrumentation nor introduc-
ing much load on the application developers side.

In addition, in many scientific areas applications
exhibit a massive data-parallelism aspect that should
be exploited. Taking the medical image analysis area
as an example, many procedures require the process-
ing of full image database:

• atlases construction;
• statistical and epidemiological studies;
• assessing image processing algorithms;
• validating medical procedures;
• . . .

In such data-centric applications, the workflow man-
ager should not only e�ciently handle control flows
but also data flows which might well dominate the
execution time.

Another important aspect for easing scientific ap-
plications migration towards grid infrastructures is
to embed legacy codes into workflows. Indeed, many
scientific codes represent tremendous development ef-
forts. It is often undesirable (to take the risk of break-
ing the accepted validity of the code), or even impos-
sible (when sources are not available for instance), to
make any change to these codes.

In this report, we are summarizing our research
activity in the area of supporting scientific applica-
tion workflows. We introduce MOTEUR, a workflow
engine interfaced with grid infrastructures, specifi-
cally designed to handle data-intensive applications
by transparently exploiting both application code
and data parallelism. We show MOTEUR was built
in a modern Service Oriented Architecture framework
to o↵er a maximum of flexibility. We provide experi-
mental results for validating our approach on a med-
ical image registration application.

2 State of the art and defini-
tions

Workflow managers can be classified into two main
categories: control-centric and data-centric. The
control-centric managers, such as BPEL [1], are more
focused on the description of complex application
flows. They provide an exhaustive list of control
structures such as branching, conditions and loop op-
erators. They can describe very complex control com-
position patterns and some of them are comparable to
small programming languages, including a graphical
interface for designing the workflow and an interpre-
tor for its execution. Conversely, data-centric man-
agers usually provide a more limited panel of control
structures and rather focus on the execution of heavy-
weight algorithms designed to process large amounts
of data. The complex application logic is supposed
to be embedded inside the basic application compo-
nents. Although there is a priori no much contradic-
tion in implementing a workflow manager that is both
control and data-centric, the optimization of di↵erent
managers for di↵erent needs often leads to several im-
plementations.

Control-centric managers are commonly imple-
mented to fulfill the e-business community needs. In
this area, applications are often not so compute nor
data-intensive and can be described in a high level
language suitable for non-experts. Conversely, in the
scientific area complex application codes, both com-
pute and data intensive, are frequently available. The
workflow description languages are not so rich but
the execution engines are better taking into account
execution e�ciency and data transfer issues [46]. In
the remaining of this paper, we will consider scientific
workflow managers only.

2.1 Task-based and service-based ap-
proaches

To handle user processing requests, two main strate-
gies have been proposed and implemented in grid
middlewares:

1. In the task-based strategy, also referred to as
global computing, users define computing tasks

2

to be executed. Any executable code may be
requested by specifying the executable code file,
input data files, and command line parameters
to invoke the execution. The task-based strat-
egy, implemented in GLOBUS [14], LCG2 [28]
or gLite [20] middlewares for instance, has al-
ready been used for decades in batch computing.
It makes the use of non grid-specific code very
simple, provided that the user has a knowledge
of the exact syntax to invoke each computing
task.

2. The service-based strategy, also referred to as
meta computing, consists in wrapping applica-
tion codes into standard interfaces. Such services
are seen as black boxes from the middleware for
which only the invocation interface is known.
Various interfaces such as Web Services [45] or
gridRPC [33] have been standardized. The ser-
vices paradigm has been widely adopted by mid-
dleware developers for the high level of flexibility
that it o↵ers (OGSA [15]). However, this ap-
proach is less common for application code as it
requires all codes to be instrumented with the
common service interface.

The task-based approach has been used for grid
and batch computing for a very long time. To in-
voke a task-based job, a user needs to precisely know
the command-line format of the executable and the
meaning of parameters. It is not always the case
when the user is not one of the developers. Input
and output data are transmitted through files which
have to be explicitly specified in the task description.
Invoking a new execution of a same code on di↵erent
data segments requires the rewriting of a new task
description.

Conversely, in the service-based approach the ac-
tual code invocation is delegated to the service which
is responsible for the correct handling of the invo-
cation parameters. The service is a black box from
the user side and to some extent, it can deal with
the correct parameterization of the code to be exe-
cuted. Services better decouple the computation and
data handling parts. A service dynamically receives
inputs as parameters. The inputs are not limited to
files but may also be values of given types (number,

text, etc). This decoupling of processing and data
is particularly important when considering the pro-
cessing of complete data sets rather than single data
segments. Indeed, grid infrastructures are particu-
larly well suited for data-intensive applications that
require repeated processings of di↵erent data.

The service-based approach is more dynamic and
flexible but it is usually used for accessing remote
resources which do not necessarily benefit from grid
computing capabilities. This is acceptable for most
middleware services that are located and executed on
a single server but application services that may re-
quire compute-intensive code execution and that are
invoked concurrently in the context of the target ap-
plications, can easily overwhelm the computing capa-
bilities of a single host. To overcome these limitations
some approaches have been explored, such as sub-
mission services replacing the straight task submis-
sion [18] or generic services for wrapping any legacy
code with a standard interface [26].

2.2 task-based and service-based
workflows

An application workflow can intuitively be repre-
sented through a directed graph of processors (graph
nodes) representing computation jobs and data de-
pendencies (graph arrows) constraining the order of
invocation of processors (see left of figure 1).

2P

1P

3P

2P

1P

3P

Source

Sink

Figure 1: Simple workflow example. Task-based
(top) and service-based (bottom).

3

In the task-based approach, the description of a
task, or computation job, encompasses both the pro-
cessing (binary code and command line parameters)
and the data (static declaration). Workflow proces-
sors directly represent computing tasks. The user is
responsible for providing the binary code to be ex-
ecuted and for writing down the precise invocation
command line. All computations to be performed
are statically described in the graph.

Conversely in the service-based approach, the in-
put data are treated as input parameters (dynamic
declaration), and the service hides the code invoca-
tion. This di↵erence in the handling of data (static
or dynamic declaration) makes the application com-
position far easier from a user point of view, as de-
tailed in section 2.3. The service-based approach is
also naturally very well suited for chaining the exe-
cution of di↵erent algorithms assembled to build an
application. Indeed, the interface to each application
component is clearly defined and the middleware can
invoke each of them through a single protocol.

In a service-based workflow, each processor is rep-
resenting an application component, or service. In
addition to the processors and the data arrows,
a service-based workflow representation requires a
number of input and output ports attached to each
processor. The oriented arrows are connecting output
ports to input ports. Two special processor nodes are
defined: data sources are processors without input
ports (they are producing data to feed the workflow)
and data sinks are processors without output ports
(they are collecting data produced).

A significant di↵erence between the service and
task approaches of workflow composition is that there
may exist loops in a service-based workflow given that
an input port can collect data from di↵erent sources
as illustrated in bottom of figure 1. This kind of work-
flow pattern is common for optimization algorithms:
it corresponds to an optimization loop converging af-
ter a number of iterations determined at the execu-
tion time from a computed criterion. In this case,
the output of processor P

1

would correspond to the
initial value of this criterion. P

3

produces its result
on one of its two output ports, whether the com-
putation has to be iterated one more time or not.
Conversely, there cannot be a loop in a workflow of

tasks. If there were a loop, a data segment would de-
pend on itself for its production. Hence, task-based
workflows are always Directed and Acyclic Graphs
(DAGs). Only in the case where the number of itera-
tions is statically known, a loop may be expressed by
unfolding it in the DAG. An emblematic task-based
workflow manager is indeed called Directed Acyclic
Graph Manager (DAGMan) 1. Composing such op-
timization loop would not be possible, as the number
of iterations is determined during the execution and
thus cannot be statically described. Conversely, in
a workflow of services, there may exist loops in the
graph of services since it does not imply a circular
dependency on the data. This enables the implemen-
tation of more complex control structures.

The service-based approach has been implemented
in di↵erent workflow managers. The Kepler sys-
tem [31] targets many application areas from gene
promoter identification to mineral classification. It
can orchestrate standard Web-Services linked with
both data and control dependencies and imple-
ments various execution strategies. The Taverna
project [36], from the myGrid e-Science UK project2
targets bioinformatics applications and is able to
enact Web-Services and other components such as
Soaplab services [40] and Biomoby ones. It im-
plements high level tools for the workflow descrip-
tion such as the Feta semantic discovery engine [30].
Other workflow systems such as Triana [43], from the
GridLab project3, are decentralized and distribute
several control units over di↵erent computing re-
sources. This system implements both a parallel and
a peer-to-peer distribution policies. It has been ap-
plied to various scientific fields, such as gravitational
waves searching [11] and galaxy visualization [42].

2.3 Dynamic data sets

Task-based and service-based workflows di↵er in
depth in their handling of data. The non-static na-
ture of data description in the service-based approach
enables dynamic extension of the data sets to be pro-

1Condor DAGMan, http://www.cs.wisc.edu/condor/

dagman/
2http://mygrid.org.uk
3http://www.gridlab.org

4

cessed: a workflow can be defined and executed al-
though the complete input data sets are not known
in advance. It will be dynamically fed in as new data
is being produced by sources. Indeed, it is common
in scientific applications that data acquisition is an
heavy-weight process and that data are being pro-
gressively produced. Some workflows may even act
on the data production source itself: stopping data
production once computations have shown that suf-
ficient inputs are available to produce meaningful re-
sults.

Most importantly, the dynamic extensibility of in-
put data sets for each service in a workflow can also
be used for defining di↵erent data composition strate-
gies as introduced in section 3. The data composition
patterns and their combinations o↵er a very power-
ful tool for describing complex data processing sce-
narios as needed in scientific applications. For the
users, this means the ability to describe and schedule
very complex processings in an elegant and compact
framework.

2.4 Data synchronization barriers

A particular kind of processors are algorithms that
need to take into account the whole input data set
in their processing rather than processing each in-
put one by one. This is the case for many statistical
operations computed on the data, such as the com-
putation of a mean or a standard deviation over the
produced results for instance. Such processors are re-
ferred to as synchronization processors has they rep-
resent real synchronization barriers, waiting for all
input data to be processed before being executed.

2.5 Services flexibility

The service-based approach enables discovery mech-
anisms and dynamic invocation even for a priori un-
known services. This provides a lot of flexibility both
for the user (discovery of available data processing
tools and their interface) and the middleware (auto-
matic selection of services, alternatives services dis-
covery, fault tolerance, etc).

In the service-based framework, the code reusabil-
ity is also improved by the availability of a stan-

dard invocation interface. In particular, services are
naturally well adapted to describe applications with
a complex workflow, chaining di↵erent processings
whose outputs are piped to the inputs of each other.

Another strength of the service-based approach
is to easily deal with multiple execution platforms.
Each service is called as a black box without knowl-
edge of the underlying execution infrastructure. Sev-
eral services may execute on di↵erent platforms
transparently, which is convenient when dealing with
legacy code, whereas in the task-based approach, a
specific submission interface is needed for each in-
frastructure.

The flexibility and dynamic nature of services de-
picted above is usually very appreciated from the user
point of view. Given that application services can be
deployed at a very low development cost, there are
number of advantages in favor of this approach.

2.6 Executing services

From middleware developers point of view, the ex-
ecution of workflow of services is more di�cult to
optimize than the execution of workflows of tasks
though. As mentioned above, the service is an in-
termediate layer between the user and the grid mid-
dleware. Thus, the user does not know nor see any-
thing of the underlying infrastructure. Tuning of the
jobs submission for a specific application is more dif-
ficult. In addition, data transfers can drastically im-
pact some data-intensive application performances.
Services are completely independent. Consequently,
for chaining two di↵erent services P

0

and P
1

, P
0

’s
output data first needs to be returned to the user
before being sent back as an input to P

1

. A priori,
this mechanism does not take advantage of grid data
management systems. Therefore, some precautions
need to be taken when considering service-based ap-
plications to ensure good application performances.

3 Data composition strategies

Each service in a data-intensive workflow of services
is receiving input data on its input ports. Depending
on the desired service semantic, the user might envis-

5

age various input composition patterns between the
di↵erent input ports.

3.1 Basic data composition patterns

Although not exhaustive, there are two main data
composition patterns very frequently encountered in
scientific applications that were first introduced in
the Taverna workbench [36]. They are illustrated in
figure 2.

Let A = {A
0

,A
1

, . . . ,An} and B =
{B

0

,B
1

, . . . ,Bm} be two input data sets. The
one-to-one composition pattern (left of figure 2)
is the most common. It consists in processing two
input data sets pairwise in their order of arrival.
This is the classical case where an algorithm needs to
process every pair of input data independently. An
example is a matrix addition operator: the sum of
each pair of input matrices is computed and returned
as a result. We will denote � the one-to-one com-
position operator. A�B = {A

1

� B
1

, A
2

� B
2

, . . .}
denotes the set of all outputs. For simplification, we
will denote A

1

�B
1

the result of processing the pair
of input data (A

1

, B
1

) by some service. Usually, the
two input data sets have the same size (m = n) when
using the one-to-one operator, and the cardinality
of the results set is m = n. If m 6= n, a semantics
has to be defined. We will consider that only the
min(m,n) first pieces of data are processed in this
case.

The all-to-all composition pattern (right of fig-
ure 2) corresponds to the case where all inputs in
one data set need to be processed with all inputs
in the other data set. A common example is the
case where all pieces of data in the first input set
are to be processed with all parameter configurations
defined in the second input set. We will denote ⌦
the all-to-all composition operator. The cardinality
of A ⌦ B = {A

1

⌦ B
1

, A
1

⌦ B
2

. . . A
1

⌦ Bm, A
2

⌦
B

1

. . . A
2

⌦Bm An⌦B
1

. . . An⌦Bm} is m⇥n.
Note that other composition patterns with di↵er-

ent semantics could be defined (e.g. all-to-all-but-one
composition). However, they are more specific and
consequently more rarely encountered. Combining
the two operators introduced above enable very com-
plex data composition patterns, as will be illustrated

...
.
.. ...

.

..

A
A

A

0
1

n

B 0
B 1

B n

A
A

A

0
1

n

B 0
B 1

B n

Application service Application service

A B A B

Figure 2: Action of the one-to-one (left) and all-to-all
(right) operators on the input data sets

below.

3.2 Combining data composition pat-
terns

As illustrated at the left of figure 3, the pairwise one-
to-one and all-to-all operators can be combined to
compose data patterns for services with an arbitrary
number of input ports. In this case, the priority of
these operators needs to be explicitly provided by
the user. We are using parenthesis in our figures to
display priorities explicitly. If the input data sets are
A = {A

0

, A
1

}, B = {B
0

, B
1

}, and C = {C
0

, C
1

, C
2

},
the following data would be produced in this case:

A� (B⌦C) =
⇢

A0 � (B0 ⌦ C0), A1 � (B1 ⌦ C0),
A0 � (B0 ⌦ C1), A1 � (B1 ⌦ C1),
A0 � (B0 ⌦ C2), A1 � (B1 ⌦ C2)

�

Successive services may also use various combina-
tions of data composition operators as illustrated at
the right of figure 3. The example given corresponds
to a classical situation where an input data set, say
two pieces of data A = {A

0

, A
1

}, is processed by a
first algorithm (using di↵erent parameter configura-
tions, say P = {P

0

, P
1

, P
2

}), before being delivered
to a second service for processing with a matching
number of data, say B = {B

0

, B
1

}. The output data

6

Service 1

Service 2

A B C

Ternary service

()

PAB

Figure 3: Combining composition operators: multi-
ple input service (left) and cascade of services (right)

set would be:

B� (A⌦P) =
⇢

B0 � (A0 ⌦ P0), B1 � (A1 ⌦ P0),
B0 � (A0 ⌦ P1), B1 � (A1 ⌦ P1),
B0 � (A0 ⌦ P2), B1 � (A1 ⌦ P2)

�

(1)
As can be seen, composition operators are a power-

ful tool for data-intensive application developers who
can represent complex data flows in a very compact
format. Although the one-to-one operator preserves
the input data sets cardinality, the all-to-all operator
may leads to drastic increases in the number of data
to be processed.

3.3 State of the art in data composi-
tion

Taverna [36]. The one-to-one and the all-to-all
data composition operators were first introduced and
implemented in the Taverna workflow manager. They
are part of the underlying Scufl workflow description
language. In this context, they are known as the dot
product and cross product iteration strategies respec-
tively. The strategy of Taverna for dealing with input
sets of di↵erent sizes in a one-to-one composition is
to produce the min(m,n) first results only. However,
the semantics adopted by Taverna when dealing with
a composition of operators as illustrated in figure 3
is not straight forward.

In the ternary service (left of figure 3), Taverna will
produce the:

A�
Taverna

(B⌦C) = { A0 � (B0 ⌦ C0), A1 � (B1 ⌦ C0) }

output set. Given that only two input data are avail-
able on the first service port, the min(m,n) trun-
cation rule of the one-to-one (dot product) operator
applies. Note that changing the priority of operators
will produce a di↵erent output. Indeed,

(A�
Taverna

B)⌦C =
n

8i, (A0 � B0)⌦ Ci,
8i, (A1 � B1)⌦ Ci

o

Taverna proposes a graphical interface for allowing
the user to define the desired priority on the data
composition operators.

In the case of the example given in the right of fig-
ure 3, the priority on the data composition is implicit
in the workflow. There is no user control on it. In
this case, Taverna will produce:

B�
Taverna

(A⌦P) = { B0 � (A0 ⌦ P0), B1 � (A1 ⌦ P0) }
(2)

More data will be produced at the output of the Ser-
vice1 (namely, A

0

⌦ P
1

, A
1

⌦ P
1

, A
0

⌦ P
2

, A
1

⌦ P
2

)
but the truncation semantics of the one-to-one op-
erator will apply in the second service and only two
output data segments will be produced. Note that
this semantics di↵ers from the one that we consider
and that is illustrated in equation 1.

Kepler [31] and Triana [43]. The Kepler and the
Triana workflow managers only implement the one-
to-one composition operator. This operator is im-
plicit for all data composition inside the workflow and
it cannot be explicitly specified by the user.

We could implement an all-to-all strategy in Ke-
pler by defining specific actors but this is far from
being straight forward. Kepler actors are blocking
when reading on empty input ports. The case where
two di↵erent input data sets have a di↵erent size
(common in the all-to-all composition operator) is
not really taken into account. Similar work can be
achieved in Triana using the various data stream tools
provided. However, in both cases, the all-to-all se-
mantics is not handled at the level of the workflow
engine. It needs to be implemented inside the appli-
cation workflow.

MOTEUR. We designed the MOTEUR workflow
engine so that it implements the semantics of the op-
erators defined in section 4. MOTEUR recognizes

7

both one-to-one and all-to-all operators (it does rec-
ognize Scufl workflows) but it uses the algorithm in-
troduced in section 4 to define the combination se-
mantics.

4 Data composition algorithm

As can be seen, even considering simple examples
such as the ones shown in figure 3, the seman-
tics of combining data composition operators is not
straight forward. Di↵erent workflow engines have dif-
ferent capabilities and implement di↵erent combina-
tion strategies. Our goal is to define a clear and intu-
itive semantics for such combinations. We propose an
algorithm to implement this data combination strat-
egy.

Taverna provides the most advanced data compo-
sition techniques. Yet, we argue that the semantics
described in equation 2 is not intuitive for the end
user. Given that two correlated input data sets A
and B, with the same size, are provided, the user can
expect that the data Ai will always be analyzed with
the correlated data Bi, regardless of the algorithm
parameters Pj considered. We therefore adopt the
semantics proposed in equation 1 where Ai is consis-
tently combined with Bi.

To formalize and generalize this approach, we need
to consider the complete data flows to be processed
in the application workflow. In the reminder of this
paper, we will consider the very general case, com-
mon in scientific applications, where the user needs to
independently process sets of input data A,B,C . . .
that are divided into data groups. A group is a set
of input data tuples that defines a relation between
data coming from di↵erent sets. For instance:

G = {(A
0

, B
0

, C
0

), (A
1

, B
1

, C
1

), (A
2

, B
2

, C
2

)}
H = {(A

4

, B
0

), (A
1

, B
2

), (A
2

, B
5

), (A
6

, B
6

)}

are two groups establishing a relation between 3 data
triplets and 4 data pairs respectively. The relations
between input data depend on the application and
can only be specified by the user. However, we
will see that this definition can be explicit (as illus-
trated above) or implicit, just considering the work-

flow topology and the order in which input data are
delivered by the workflow data sources.

4.1 Data composition operator se-
mantics

We consider that the one-to-one composition oper-
ator does only make sense when processing related
data segments. Therefore, only data connected by a
group should be considered for processing by any ser-
vice. When considering a service directly connected
to input data sets, determining relations between
data segments is straight forward. However, when
considering a complete application workflow such as
the one illustrated in figure 4, other services (e.g. S

4

)
need to determine which of their input data segments
are correlated. The one-to-one composition operator
does introduce the need for the algorithm described
below.

Conversely, the all-to-all operator does not rely on
any pre-determined relation between input data seg-
ments. Any number of inputs can be combined, with
very di↵erent meaning (such as data to process and
algorithm parameters). Each data received as input
yields to one or more invocations of the service for
processing.

4.2 Combination semantics

The left of figure 4 represents a sample workflow
made of 4 application services and combining the
one-to-one and the all-to-all composition operators.
In the center of the figure is represented the directed
graph of the data sets produced. Given 4 input data
sets, A,B,P and Q, the complete workflows pro-
duces

((A�B)⌦P)� ((A�B)⌦Q).

as output of the S
4

service. Given the one-to-one
operator semantics described above, the data set A�
B produced by the first service will be non empty if
and only if data in A and B are related through a
group G that is represented at the top of the figure
(Ai, the ith element of A, is correlated with Bi, the
ith element of B).

8

S1

S32S

4S

P Q

G0 G1

A1 B 1 Q0A1 B 1 P 0

A1 B 1 Q0

B 0A0 P 0
A1 B 1 P 0

B 0A0 Q0

A0 B 0 A1 B 1

B 0A0 A1 B 1

B 0A0 Q0B 0A0 P 0

P 0

Q0

((A B) P)

(A B) P (A B) Q

A B

((A B) Q)

Data group GA B

Figure 4: Workflow example (left), associated data sets directed graph (center), and part of the associated
directed acyclic data graph.

Considering the service S
4

, it is not trivial to de-
termine the content of the output dataset, result-
ing from a one-to-one composition of the two inputs
(A�B)⌦P and (A�B)⌦Q. Intuitively, two input
data (Ai � Bi) ⌦ Pk and (Aj � Bj) ⌦ Ql should be
combined only if i = j. Indeed, combining Ai with
Bi, or a subsequent processing of these data, does
make sense given that the user established a relation
between this input pair through the group G. Con-
versely, there is no relation between Ai � Bi on the
one side and any Pk or Ql that are combined in an
all-to-all operation on the other side. Therefore, the
processing of ((Ai�Bi)⌦Pk)� ((Ai�Bi)⌦Ql) does
make sense for all k and all l.

To formalize this approach we need to consider the
data production Directed Acyclic Graph that is rep-
resented in right of figure 4. This graph shows how all
pieces of input are combined by the di↵erent process-
ings. At the roots of the graph, the input data are
parents of all produced data. The formal relation be-
tween each data pair (Ai, Bi) is represented through a
group instantiation Gi, parent of both Ai and Bi. We
will name orphan data, input data that have no group

parent such as P
0

and Q
0

. The directed data graph is
constructed from the roots (workflow inputs) to the
leafs (workflow outputs) by applying the two follow-
ing simple rules implementing the semantics of the
one-to-one and the all-to-all operators respectively:

1. Two data are always combined in an all-to-all
operation.

2. Two data (graph nodes) are combined in a one-
to-one operation if and only if there exists a
common ancestor to both data in the data graph.

The interpretation of the first rule is straight forward.
The second rule is illustrated by the full data graph
displayed at the right of figure 4. For instance, the
data A

0

� B
0

is produced from A
0

and B
0

because
there exists a common ancestor G

0

to both A
0

and
B

0

. Similarly, ((A
0

� B
0

) ⌦ P
0

) � ((A
0

� B
0

) ⌦Q
0

)
is computed because A

0

� B
0

is a common ancestor
to (A

0

�B
0

)⌦ P
0

and (A
0

�B
0

)⌦Q
0

. There exists
other common ancestors such as A

0

, B
0

, and G
0

but
it is not needed to go back further in the data graph
as soon as one of them has been found. Note that
in a more complex workflow topologies, the common

9

ancestor does not need to be an immediate parent. It
can be easily demonstrated by recurrence that follow-
ing this rule, two input data sets may be composed
one-to-one if and only if there exists a grouping rela-
tion between them at the root of the data graph.

4.3 Algorithm and implementation

To implement the data composition operators seman-
tic introduced above, MOTEUR dynamically resolves
the data combination problem by applying the follow-
ing algorithm:

1. Build the directed graph of the data sets to be
processed.

2. Add data groups to this graph.
3. Initialize the directed acyclic data graph:

(a) Create root nodes for each group instance
Gi and add a child node for each related
data.

(b) Create root nodes for each orphan data.

4. Start the execution of the workflow.
5. For each tuple of data to be processed:

(a) Update the data graph by applying the two
rules corresponding to the one-to-one and
the all-to-all operators.

(b) Loop until there are no more data available
for processing in the workflow graph.

To implement this strategy, MOTEUR needs to
keep representations of:

• the topology of the services workflow;
• the graph of data;
• the list of input data that have been processed

by each service.

Indeed, the data graph is dynamically updated dur-
ing the execution. When a new data is produced,
its combination with all previously produced data
is studied. In particular in an all-to-all composition
pattern, a new input data needs to be combined with
all previously computed data. It potentially triggers
several services invocation. The history of previous
computations is thus needed to determine the exhaus-
tive list of data to produce.

The graphs of data also ensures a full traceabil-
ity of the data processed by the workflow manager:
for each data node, the parents and children of the
data can be determined. Besides, it provides a mean
to unambiguously identify each data produced. This
becomes mandatory when considering parallel execu-
tion of the workflow introduced in section 5.

4.4 Implicit combinations

The algorithm proposed aims at providing a strict
semantics to the combination of data composition
operators, while providing intuitive data manipula-
tion for the users. Data groups have been introduced
to clarify the semantics of the one-to-one operator.
However, it is very common that users are writing
workflows without explicitly specifying pairwise rela-
tions between the data. The order in which data are
declared or send to the workflow inputs are rather
used as an implicit relation.

To ease the workflow generation from the user
point of view, groups can be implicitly generated
when they are not explicitly specified by the user.
Figure 5 illustrates two di↵erent cases. On the left
side, the reason for generating an implicit group is
straight forward: two input data sets are being pro-
cessed through a one-to-one service. But there may
be more indirect cases such as the one illustrated on
the right side of the figure. The systematic rule that
can be applied is to create an implicit group for each
one-to-one operator whose input data are orphans.
For example, in the case illustrated in left of figure 5,
the input datasets A and B are orphans and bound
one-to-one by the service S

1

. An implicit group is
therefore created between A and B. In the case illus-
trated in the right side of figure 5, the implicit group
will be created between the two inputs of service S

2

.
There will therefore be an implicit grouping relation
between each output of the first service S

1

(Ai) and
Bi.

The implicit groups are created statically by ana-
lyzing the workflow topology and the input data sets
before starting the execution of the workflow.

10

S1 S2

S1

Implicit groups

A B
B

A

Figure 5: Implicit groups definition.

4.5 Coping with data fragments

So far, we have only considered the case were the
number of outputs of a service matches the number
of inputs. In some cases though, an application ser-
vice will split input data in smaller fragments, either
for dealing with smaller data sets (e.g. a 3D medical
image is split in a stack of 2D slices) or because the
service code function implies that it produces sev-
eral outputs for each input. The workflow displayed
in figure 6 illustrates such a situation. The service
S

1

is splitting each input data (e.g. A
0

) in several
fragments (A0

0

, A1

0

and A2

0

).
In the example given in figure 6, it is expected that

service S
2

will receive the same number of data on
both input ports (one-to-one composition operator).
However, there is no way for the user to specify an
explicit grouping between two data sets. Grouping
the data sets A with B would only create a relation
between A

0

and B
0

. Therefore, the fragments A0

0

,
A1

0

and A2

0

, children of A
0

, would all be related to B
0

and the service S
2

would produce

A�B = {A0

0

�B
0

, A1

0

�B
0

, A2

0

�B
0

}.

Instead, the implicit grouping strategy will group
S

1

(A
0

) outputs with B. Consequently, the group-
ing will result in the data graph shown in right of
figure 6 and the output produced will be

A�B = {A0

0

�B
0

, A1

0

�B
1

, A2

0

�B
2

}

as expected. Note that the number of inputs to ser-
vice S

2

needs to be consistent in this case.

5 Scheduling and executing
workflows of services

The service-based approach is making services com-
position easier than the task-based approach as dis-
cussed in section 2. It is thus highly convenient from
the end user point of view. However, in this approach,
the control of jobs submissions is delegated to exter-
nal services, making the optimization of the workflow
execution much more di�cult. The services are black
boxes isolating the workflow manager from the exe-
cution infrastructure. In this context, most known
optimization solutions do not hold.

5.1 Related work

Many solutions have indeed been proposed in the
task-based paradigm to optimize the scheduling
of an application in distributed environments [10].
Concerning workflow-based applications, previous
works [4] propose specific heuristics to optimize the
resource allocation of a complete workflow. Even if it
provides remarkable results, this kind of solutions is
not directly applicable to the service-based approach.
Indeed, in this latest approach, the workflow man-
ager is not responsible for the task submission and
thus cannot optimize the resource allocation.

Focusing on the service-based approach, nice devel-
opments such as the DIET middleware [9] and com-
parable approaches [41, 2] introduce specific strate-
gies such as hierarchical scheduling. In [7] for in-
stance, the authors describe a way to handle file per-
sistence in distributed environments, which leads to
strong performance improvements. However, those
works focus on middleware design and do not include
any workflow management yet. Moreover, those so-
lutions require specific middleware components to be
deployed on the target infrastructure. As far as we
know, such a deployment has only been done on ex-
perimental platforms yet [6], and it is hardly possible
for an application running on a production infrastruc-
ture.

11

S1

={A }0

S2

B }2

B ,1

0
0A B ,0

0
2A
0A1

{

0
1A0

0A 0
2A

0A

0
0A B 0 B 10A1 B 20

2A

B 0 B 2B 1

G0 G1 G2

0
0A 0

1A 0
2A, , }{ B 0 B 1 B 2 },,={

Implicit grouping
A

B

Figure 6: Implicit groups relating data fragments (A0

0

, A1

0

, A2

0

) and input B.

Hence, there is a strong need for precisely iden-
tifying generic optimization solutions that apply to
service-based workflows. In the following sections,
we are exploring di↵erent strategies for optimizing
the workflow execution in a service-based approach,
thus o↵ering the flexibility of services and the e�-
ciency of tasks. First of all, several level of parallelism
can be exploited when considering the workflow ex-
ecution for taking advantage of the grid computing
capabilities. We describe them and then study their
impact on the performances with respect to the char-
acteristics of the considered application. Besides, we
propose a solution for grouping sequential jobs in the
workflow, thus allowing more elaborated optimiza-
tion strategies in the service-based workflow area.

5.2 Asynchronous services calls

To enable parallelism during the workflow execution,
multiple application services have to be called concur-
rently. The calls made from the workflow enactor to
these services need to be non-blocking for exploiting
the potential parallelism. GridRPC services may be
called asynchronously as defined in the standard [33].
Web Services also theoretically enable asynchronous
calls. However, the vast majority of existing web ser-
vice implementations do not cover the whole standard
and none of the major implementations [44, 23] do
provide any asynchronous service calls for now. As a
consequence, asynchronous calls to web services need

to be implemented at the workflow enactor level, by
spawning independent system threads for each pro-
cessor being executed.

5.3 Workflow parallelism

Given that asynchronous calls are possible, the first
level of parallelism that can be exploited is the in-
trinsic workflow parallelism depending on the graph
topology. For instance if we consider the simple ex-
ample presented in figure 1, processors P

2

and P
3

may be executed in parallel. This optimization is
trivial and implemented in all the workflow managers
cited above.

5.4 Data parallelism

When considering data-intensive applications, several
input data sets are to be processed using a given
workflow. Benefiting from the large number of re-
sources available in a grid, workflow services can be
instantiated as several computing tasks running on
di↵erent hardware resources and processing di↵erent
input data in parallel. Data parallelism is achiev-
able when a service is able to process several data
sets simultaneously with a minimal performance loss.
This capability involves the processing of indepen-
dent data on di↵erent computing resources.

Enabling data parallelism implies, on the one hand,
that the services are able to process many parallel

12

connections and, on the other hand, that the work-
flow engine is able to submit several simultaneous
queries to a service leading to the dynamic creation
of several threads. Moreover, a data parallel work-
flow engine should implement a dedicated data man-
agement system. Indeed, in case of a data parallel
execution, a data is able to overtake another one dur-
ing the processing and this could lead to a causality
problem, as we exemplified in [18]. To properly tackle
this problem, data provenance has to be monitored
during the data parallel execution. Detailed work on
data provenance can be found in [47].

Consider the simple workflow made of 3 services
and represented on top of figure 1. Suppose that we
want to execute this workflow on 3 independent input
data sets D

0

, D
1

and D
2

. The data parallel execution
diagram of this workflow is represented on figure 7.
On this kind of diagram, the abscissa axis represents
time. When a data set Di appears on a row corre-
sponding to a processor Pj , it means that Di is being
processed by Pj at the current time. To facilitate leg-
ibility, we represented with the Di notation the piece
of data resulting from the processing of the initial in-
put data set Di all along the workflow. For example,
in the diagram of figure 7, it is implicit that on the
P

2

service row, D
0

actually denotes the data result-
ing from the processing of the input data set D

0

by
P

1

. Moreover, on those diagrams we made the as-
sumption that the processing time of every data set
by every service is constant, thus leading to cells of
equal widths. Data parallelism occurs when di↵erent
data sets appear on a single square of the diagram
whereas intrinsic workflow parallelism occurs when
the same data set appears many times on di↵erent
cells of the same column. Crosses represent idle cy-
cles.

As demonstrated in the next sections, fully tak-
ing into account this level of parallelism is critical
in service-based workflows, whereas it does not make
any sense in task-based ones. Indeed, in this case it
is covered by the workflow parallelism because each
task is explicitly described in the workflow descrip-
tion.

D0

P3 X D1

D2

D0

P2 X D1

D2

D0

P1 D1 X
D2

Figure 7: Data parallel execution diagram of the
workflow of figure 1

5.5 Services parallelism

Input data sets are likely to be independent from
each other. This is for example the case when a
single workflow is iterated in parallel on many in-
put data sets. Services parallelism is achievable when
the processing of two di↵erent data sets by two dif-
ferent services are totally independent. This pipelin-
ing model, very successfully exploited inside CPUs,
can be adapted to sequential parts of service-based
workflows. Consider again the simple workflow rep-
resented in figure 1, to be executed on the 3 inde-
pendent input data sets D

0

, D
1

and D
2

. Figure 8
presents a service parallel execution diagram of this
workflow. Service parallelism occurs when di↵erent
data sets appear on di↵erent cells of the same column.
We here supposed that a given service can only pro-
cess a single data set at a given time (data parallelism
is disabled).

Data synchronization barriers, presented in sec-
tion 2.4, are of course a limitation to services par-
allelism. In this case, this level of parallelism cannot
be exploited because the input data sets are depen-
dent from each other.

Here again, we show in the next section that service
parallelism is of major importance to optimize the
execution of service-based workflows. In task-based
workflow, this level of parallelism does not make any
sense because it is included in the workflow paral-
lelism.

13

P3 X D0 D1 D2

P2 X D0 D1 D2

P1 D0 D1 D2 X

Figure 8: Service parallel execution diagram of the
workflow of figure 1

5.6 Theoretical performance analysis

The data and service parallelism described above are
specific to the service-based workflow approach. To
precisely quantify how they influence the application
performances we model the workflow execution time
for di↵erent configurations. We first present general
results and then study particular cases, making as-
sumptions on the type of application run.

5.6.1 Definitions and notations

• In the workflow, a path denotes a set of proces-
sors linking an input to an output. The critical
path of the workflow denotes the longest path in
terms of execution time.

• nW denotes the number of services on the critical
path of the workflow and nD denotes the number
of data sets to be executed by the workflow.

• i denotes the index of the ith service of the crit-
ical path of the workflow (i 2 [0, nW � 1]). Sim-
ilarly j denotes the index of the jth data set to
be executed by the workflow (j 2 [0, nD � 1]).

• Ti,j denotes the duration in seconds of the treat-
ment of the data set j by the service i. If the
service submits jobs to a grid infrastructure, this
duration includes the overhead introduced by the
submission, scheduling and queuing times.

• �i,j denotes the absolute time in seconds of the
end of the treatment of the data set j by the ser-
vice i. The execution of the workflow is assumed
to begin at t = 0. Thus �

0,0 = T
0,0 > 0.

• ⌃ denotes the total execution time of the work-
flow

⌃ = max
j<nD

(�nW�1,j) (3)

5.6.2 Hypotheses

The critical path is assumed not to depend on the
data set. This hypothesis seems reasonable for most
applications but may not hold in some cases as for ex-
ample the one of workflows including algorithms con-
taining optimization loops whose convergence time is
likely to vary in a complex way with regards to the
nature of the input data set.

Data parallelism is assumed not to be limited by
infrastructure constraints. We justify this hypothesis
considering that our target infrastructure is a grid,
whose computing power is su�cient for our applica-
tion.

In this section, workflows are assumed not to con-
tain any synchronization processors. Workflows con-
taining such synchronization barriers may be ana-
lyzed as two sub workflows respectively correspond-
ing to the parts of the initial workflow preceding and
succeeding the synchronization barrier.

5.6.3 Execution times modeling

Under those hypotheses, we can determine the ex-
pression of the total execution time of the workflow
for di↵erent execution policies:

• Sequential case (without service nor data paral-
lelism):

⌃ =
X

i<nW

X

j<nD

Ti,j (4)

• Case DP: Data parallelism only

⌃DP =
X

i<nW

max
j<nD

{Ti,j} (5)

• Case SP: Service parallelism only

⌃SP = TnW�1,nD�1

+ mnW�1,nD�1

(6)
with: 8i 6= 0 and 8j 6= 0,

mi,j = max(Ti�1,j + mi�1,j , Ti,j�1

+ mi,j�1

)
and:

m
0,j =

X

k<j

T
0,k and mi,0 =

X

k<i

Tk,0

14

• Case DSP: both Data and Service parallelism

⌃DSP = max
j<nD

(

X

i<nW

Ti,j

)

(7)

All the above expressions of the execution times can
be demonstrated recursively [17].

5.6.4 Asymptotic speed-ups

To better understand the properties of each kind of
parallelism, it is interesting to study the asymptotic
speed-ups resulting from service and data parallelism
in particular application cases.

Massively data-parallel workflows. Let us con-
sider a massively (embarrassingly) data-parallel ap-
plication (single processor P

0

, very large number of
input data). In this case, nW = 1 and the execution
time is:

⌃DP = ⌃DSP = max
j<nD

(T0,j) ⌧ ⌃ = ⌃SP =
X

j<nD

T0,j

In this case, data parallelism leads to a significant
speed-up. Service parallelism is useless but it does
not lead to any overhead.

Non data intensive workflows. In such work-
flows, nD = 1 and the execution time is:

⌃DSP = ⌃DP = ⌃SP = ⌃ =
X

i<nW

Ti,0

In this case, neither data nor service parallelism lead
to any speed-up. Nevertheless, none of them does
introduce any overhead.

Data intensive complex workflows. In this
case, we will suppose that nW > 1 and nD > 1.
In order to analyze the speed-ups introduced by ser-
vice and data parallelism, we make the simplifying
assumption of constant execution times: Ti,j = T .
The workflow execution time then resumes to:

⌃ = nD ⇥ nW ⇥ T

⌃DP = ⌃DSP = nW ⇥ T

⌃SP = (nD + nW � 1)⇥ T

If service parallelism is disabled, the speed-up in-
troduced by data parallelism is:

SDP =
⌃

⌃DP
= nD

If service parallelism is enabled, the speed-up in-
troduced by data parallelism is:

SDSP =
⌃SP

⌃DSP
=

nD + nW � 1
nW

If data parallelism is disabled, the speed-up in-
duced by service parallelism is:

SSP =
⌃

⌃SP
=

nD ⇥ nW

nD + nW � 1

Theoretically, service parallelism does not lead to
any speed-up if it is coupled with data parallelism:
SSDP = ⌃DP

⌃DSP
= 1. Thus, under those assumptions,

service parallelism may not be of any use on fully
distributed systems. However, section 9 will show
that even in case of homogeneous input data sets, T
is hardly constant in production systems due to the
high variability of the overhead coming from submis-
sion, scheduling and queuing times on such large scale
and multi-user platforms. The constant execution
time hypothesis does not hold. This appears to be
a significant di↵erence between grid computing and
traditional cluster computing. Figure 9 illustrates
on a simple example why service parallelism do pro-
vide a speed-up even if data parallelism is enabled, if
the assumption of constant execution times does not
hold. The left diagram does not take into account
service parallelism whereas the right one does. The
processing time of the data set D

0

is twice as long
as the other ones on service P

0

and the execution
time of the data set D

1

is three times as long as the
other ones on service P

1

. It can for example occur
if D

0

was submitted twice because an error occurred
and if D

1

remained blocked on a waiting queue. In
this case, service parallelism improves performances
beyond data parallelism as it enables some computa-
tions overlap. It justifies the experimental observa-
tions done in section 9.

15

D
2

P
3

X X D
1

X X
D

0

D
0

P
2

X X D
2

D
1

D
1

D
1

D
2

P
1

D
1

X X X
D

0

D
0

P
3

X D
1

X
D

2

D
0

P
2

X D
2

D
0

D
1

D
1

D
1

D
2

P
1

D
1

X X
D

0

D
0

Figure 9: Workflow execution time without (left) and
with (right) service parallelism when the execution
time is not constant.

5.7 State of the art in service-based
workflow managers

Workflow parallelism is usually implemented in ex-
isting workflow managers.

Taverna implements data parallelism (known as
multiple threads in this context). However, data par-
allelism is limited to a fixed number of threads spec-
ified in the Scufl workflow description language. It
cannot dynamically adapt to the size of data sets to
be processed. Service parallelism is not supported
yet but this feature has been proposed for the next
major release of the engine (version 2).

Kepler implements services parallelism through the
Physical Network (PN) director. There is no data
parallelism in Kepler.

Triana does not implement service nor data paral-
lelism.

MOTEUR was designed to optimize the perfor-
mance of data-intensive applications on grids by im-
plementing the three level of parallelism. To our
knowledge, this is the first service-based workflow en-
gine doing so.

6 Legacy code wrapping

To ease the embedding of legacy-codes in the service-
based framework, an application-independent job
submission service is required. In this section, we
briefly review systems that are used to wrap legacy

code into services to be embedded in service-based
workflows.

The Java Native Interface (JNI) has been widely
adopted for the wrapping of legacy codes into ser-
vices. Wrappers have been developed to automate
this process. In [22], an automatic JNI-based wrap-
per of C code into Java and the corresponding type
mapper with Triana [43] is presented: JACAW gener-
ates all the necessary java and C files from a C header
file and compiles them. A coupled tool, MEDLI, then
maps the types of the obtained Java native method to
Triana types, thus enabling the use of the legacy code
into this workflow manager. Related to the ICENI
workflow manager [16], the wrapper presented in [29]
is based on code re-engineering. It identifies distinct
components from a code analysis, wrap them using
JNI and adds a specific CXML interface layer to be
plugged into an ICENI workflow.

The WSPeer framework [21], interfaced with Tri-
ana, aims at easing the deployment of Web-Services
by exposing many of them at a single endpoint. It
di↵ers from a container approach by giving to the
application the control over service invocation. The
Soaplab system [40] is especially dedicated to the
wrapping of command-line tools into Web-Services.
It has been widely used to integrate bioinformatics
executables in workflows with Taverna [36]. It is
able to deploy a Web-Service in a container, starting
from the description of a command-line tool. This
command-line description, referred to as the meta-
data of the analysis, is written for each application
using the ACD text format file and then converted
into a corresponding XML format. Among domain
specific descriptions, the authors underline that such
a command-line description format must include (i)
the description of the executable, (ii) the names and
types of the input data and parameters and (iii) the
names and types of the resulting output data. As de-
scribed latter, the format we used includes those fea-
tures and adds new ones to cope with requirements
of the execution of legacy code on grids.

The GEMLCA environment [12] addresses the
problem of exposing legacy code command-line pro-
grams as Grid services. It is interfaced with the
P-GRADE portal workflow manager [25]. The
command-line tool is described with the LCID

16

(Legacy Code Interface Description) format which
contains (i) a description of the executable, (ii) the
name and binary file of the legacy code to execute
and (iii) the name, nature (input or output), order,
mandatory, file or command line, fixed and regu-
lar expressions to be used as input validation. A
GEMLCA service depends on a set of target resources
where the code is going to be executed. Architectures
to provide resource brokering and service migration
at execution time are presented in [27].

Apart from this latest early work, all of the re-
viewed existing wrappers are static: the legacy code
wrapping is done o✏ine, before the execution. This
is hardly compatible with our approach, which aims
at optimizing the whole application execution at run-
time. We thus developed a specific grid submission
Web-Service, which can wrap any executable at run-
time, thus enabling the use of optimization strategies
by the workflow manager.

The following section 6.1 introduces a generic ap-
plication code wrapper compliant with the Web Ser-
vices specification. It enables the execution of any
legacy executable through a standard services inter-
face. The subsequent section 7 proposes a code execu-
tion optimization strategy that can be implemented
thanks to this generic wrapper. Finally, section 8
proposes a service oriented architecture of the sys-
tem, based on a service factory.

6.1 Generic web service wrapper

We developed a specific grid submission Web Service.
This service is generic in the sense that it is unique
and it does not depend on the executable code to sub-
mit. It exposes a standard interface that can be used
by any Web Service compliant client to invoke the ex-
ecution. It completely hides the grid infrastructure
from the end user as it takes care of the interaction
with the grid middleware. This interface plays the
same role as the ACD and LCID files quoted above,
except that it is interpreted at the execution time.

To accommodate to any executable, the generic
service is taking two di↵erent inputs: a descriptor of
the legacy executable command line format, and the
input parameters and data of this executable. The
production of the legacy code descriptor is the only

extra work required from the application developer.
It is a simple XML file which describes the legacy ex-
ecutable location, command line parameters, input
and output data.

6.2 Legacy code descriptor

The command line description has to be complete
enough to allow dynamic composition of the com-
mand line from the list of parameters at the service
invocation time and to access the executable and in-
put data files. As a consequence, the executable de-
scriptor contains:

1. The name and access method of the executable.
In our current implementation, access methods
can be a URL, a Grid File Name (GFN) or a
local file name. The wrapper is responsible for
fetching the data according to di↵erent access
modes.

2. The access method and command-line option
of the input data. As our approach is service-
based, the actual name of the input data files
is not mandatory in the description. Those val-
ues will be defined at the execution time. This
feature di↵ers from various job description lan-
guages used in the task-based middlewares. The
command-line option allows the service to dy-
namically build the actual command-line at the
execution time.

3. The command-line option of the input parame-
ters: parameters are values of the command-line
that are not files and therefore which do not have
any access method.

4. The access method and command-line option of
the output data. This information enables the
service to register the output data in a suit-
able place after the execution. Here again, in
a service-based approach, names of output data
files cannot be statically determined because
output file names are only generated at execu-
tion time.

5. The name and access method of the sandboxed
files. Sandboxed files are external files such as
dynamic libraries or scripts that may be needed
for the execution although they do not appear

17

on the command-line.

6.3 Example

An example of a legacy code description file is pre-
sented in figure 10. It corresponds to the description
of the service crestLines of the workflow depicted
in figure 15. It describes the script CrestLines.pl
which is available from the server legacy.code.fr
and takes 3 input arguments: 2 files (options -im1
and -im2 of the command-line) that are already reg-
istered on the grid as GFNs at execution time and 1
parameter (option -s of the command-line). It pro-
duces 2 files that will be registered on the grid. It also
requires 3 sandboxed files that are available from the
server.

6.4 Discussion

This generic service highly simplifies application de-
velopment because it is able to wrap any legacy code
with a minimal e↵ort. The application developer only
needs to write the executable descriptor for her code
to become service aware.

But its main advantage is in enabling the sequen-
tial services grouping optimization introduced in sec-
tion 7. Indeed, as the workflow enactor has access
to the executable descriptors, it is able to dynam-
ically create a virtual service, composing the com-
mand lines of the codes to be invoked, and submit-
ting a single job corresponding to this sequence of
command lines invocation.

It is important to notice that our solution remains
compatible with the services standards. The work-
flow can still be executed by other enactors, as we
did not introduce any new invocation method. Those
enactors will make standard service calls (e.g. SOAP
ones) to our generic wrapping service. However, the
optimization strategy described in the next section
is only applicable to services including the descrip-
tor presented in section 6.2. We call those services
MOTEUR services.

<description>
<executable name="CrestLines.pl">

<access type="URL">
<path value="http://legacy.code.fr"/>

</access>
<value value="CrestLines.pl"/>
<input name="floating_image" option="-im1">

<access type="GFN"/>
</input>
<input name="reference_image" option="-im2">

<access type="GFN"/>
</input>
<input name="scale" option="-s"/>
<output name="crest_reference" option="-c1">

<access type="GFN"/>
</output>
<output name="crest_floating" option="-c2">

<access type="GFN"/>
</output>
<sandbox name="convert8bits">

<access type="URL">
<path value="http://legacy.code.fr"/>

</access>
<value value="Convert8bits.pl"/>

</sandbox>
<sandbox name="copy">

<access type="URL">
<path value="http://legacy.code.fr"/>

</access>
<value value="copy"/>

</sandbox>
<sandbox name="cmatch">

<access type="URL">
<path value="http://legacy.code.fr"/>

</access>
<value value="cmatch"/>

</sandbox>
</executable>

</description>

Figure 10: Descriptor example

7 Services grouping optimiza-
tion strategy

We propose a services grouping strategy to further
optimize the execution time of a workflow. Services
grouping consists in merging multiple jobs into a sin-
gle one. It reduces the grid overhead induced by the
submission, scheduling, queuing and data transfers
times whereas it may also reduce the parallelism. In
particular sequential processors grouping is interest-
ing because those processors do not benefit from any
parallelism. For example, considering the workflow
of our application presented on figure 15 we can, for
each data set, group the execution of the crestLines
and the crestMatch jobs on the one hand and the

18

PFMatchICP and the PFRegister ones on the other
hand.

Grouping jobs in the task-based approach is
straightforward and it has already been proposed for
optimization [4]. Conversely, jobs grouping in the
service-based approach is usually not possible given
that (i) the services composing the workflow are to-
tally independent from each other (each service is
providing a di↵erent data transfer and job submission
procedure) and (ii) the grid infrastructure handling
the jobs does not have any information concerning
the workflow and the job dependencies. Consider the
simple workflow represented on the left side of fig-
ure 11. On top, the services for P

1

and P
2

are in-
voked independently. Data transfers are handled by
each service and the connection between the output
of P

1

and the input of P
2

is handled at the workflow
engine level. On the bottom, P

1

and P
2

are grouped
in a virtual single service. This service is capable of
invoking the code embedded in both services sequen-
tially, thus resolving the data transfer and indepen-
dent code invocation issues.

7.1 Grouping strategy

Services grouping can lead to significant speed-ups,
especially on production grids, as it is demonstrated
in the next section. However, it may also slow down
the execution by limiting parallelism. We thus have
to determine e�cient strategies to group services.

In order to determine a grouping strategy that does
not introduce any overhead, neither from the user
point of view, nor from the infrastructure one, we
impose the two following constraints: (i) the group-
ing strategy must not limit any kind of parallelism
(user point of view) and (ii) during their execution,
jobs cannot communicate with the workflow manager
(infrastructure point of view). The second constraint
prevents a job from holding a resource just waiting
for one of its ancestor to complete. An implication of
this constraint is that if services A and B are grouped
together, the results produced by A will only be avail-
able once B will have completed.

A workflow may include both MOTEUR Web-
Services (i.e. services that are able to be grouped)
and classical ones, that could not be grouped. As-

suming those two constraints, the following rule is
su�cient to process all the possible groupings of two
services of the workflow:

Let A be a MOTEUR service of the work-
flow and {B

0

,...Bn} its children in the ser-
vice graph. If there exists a MOTEUR child
Bi which is an ancestor of every Bj (i 6= j)
and whose each ancestor C is an ancestor of
A or A itself, then group A and Bi.

Indeed, every violation of this rule also violates one
of our constraints as it can easily be shown. The
grouping strategy tests this rule for each MOTEUR
service A of the workflow. Groups of more than two
services may be recursively composed from successive
matches of the grouping rule.

For example, the workflow displayed in figure 12,
extracted from our medical imaging application, is
made of 4 MOTEUR services that can be grouped
into a single one through 3 applications of the group-
ing rule. On this figure, notations nearby the services
corresponds to the ones introduced in the grouping
rule.

The first application case of the grouping rule is
represented on the left of the figure. The tested MO-
TEUR service A is crestLines. A is connected to
the workflow inputs and it has two children, B

0

and
B

1

. B
0

is a father of B
1

and it only has as single an-
cestor which is A. The rule thus matches: A and B

0

can be grouped. If there were a service C ancestor
of B

0

but not of A as represented on the figure, the
rules would be violated: A and C can be executed in
parallel before starting B

0

. Similarly, if there were a
service D the rule would be violated as the workflow
manager would need to communicate results during
the execution of the grouped jobs.

In the second application case, in the middle of the
figure, the tested service A is now crestMatch. A has
only a single child: B

0

. B
0

has two ancestors, A and
C. The rule matches because C is an ancestor of A.
A and B

0

can then be grouped.
For the last rule application case, on the right of

figure 12, A is the PFMatch service. It has only one
child, B

0

, who only has a single ancestor, A. The
rule matches and those services can thus be grouped.

19

Grouped
services

P1

2P

2P

P1

interface
standard

interface
standard Code 1 submission

to generic

Input data transfer
Output data transfer

Code 2 submission
Input data transfer
Output data transfer

Output data transfer
Code 1 + code 2 submission
Input data transferinterface

standard

wrapper
service

command lines generation

Workflow manager Application services

invocation
Services

Figure 11: Classical services invocation (top) and services grouping (bottom).

When A is the PFRegister service, the grouping
rule does not match because it does not have any
child. Note that in this example, the recursive group-
ing strategy will lead to a single job call.

8 Dynamic generic service fac-
tory

The generic web service drastically simplifies the
wrapping of legacy code into application services.
However, it is mixing two di↵erent roles: (i) the
legacy command line generation and (ii) the grid sub-
mission. Job submission is only dependent on the tar-
get grid and not on the application service itself. In a
Service Oriented Architecture (SOA) it is preferable
to split these two roles into two independent services
for several reasons. First, the submission code does
not need to be replicated in all application services.
Second, the submission role can be transparently and
dynamically changed (to submit to a di↵erent infras-
tructure) or updated (to adapt to middleware evo-
lutions). In addition, an application wrapper fac-
tory service further facilitates the wrapping of legacy
code services and their grouping. We thus introduce
a complete SOA design based on three main services
as illustrated in figure 14.

The (blue) MOTEUR web services represents
legacy code wrapping services. They are assembling

command lines and invoking the (red) submission ser-
vice for handling code execution on the grid infras-
tructure. The code wrapper factory service is respon-
sible for dynamically generating and deploying appli-
cation services. The aim of this factory is to achieve
two antagonist goals:

• To expose legacy codes as autonomous web ser-
vices respecting the main principles of Service
Oriented Architectures.

• To enable the grouping of two of these web ser-
vices in as a unique one for optimizing the exe-
cution.

On one hand, the specific web service implemen-
tation details (i.e. the execution of legacy code on
a grid infrastructure) are hidden to the consumer.
On the other hand, when the consumer is a workflow
manager which can group jobs, it needs to be aware of
the real nature the web service (the encapsulation of a
MOTEUR descriptor) so that it could merge them at
runtime. We choose to use the WSDL XML Format
extension mechanism which allows to insert user de-
fined XML elements in the WSDL content itself. On
figure 14, we represent the overall architecture and
some usage scenario. First, the legacy code provider
submits (1.a) a MOTEUR XML descriptor P1 to the
MOTEUR factory. The factory, then dynamically de-
ploy (1.b) a web service which wraps the submission
of the legacy code to the grid via the generic service

20

D

CcrestLines

crest
Match

PFMatch

PFRegister

A

B 0

B 1

crestLines

Match
crest

PFMatch

PFRegister

C

A

0B A

crest
Match

crestLines

PFMatch

PFRegister 0B

Figure 12: Services grouping examples

wrapper. Another provider do the same with the
descriptor of P2 (2.a). The resulting web services
expose their WSDL contracts to the external world
with a specific extension associated with the WSDL
operation. For instance, the WSDL contract result-
ing of the deployment of the crestLines legacy code
described on figure 10 is printed on figure 13.

This WSDL document defines two types
(CrestLines-request and CrestLines- response)
corresponding to the descriptor inputs and outputs
and a single Execute operation. Notice that in the
binding section, the WSDL document contains an
extra MOTEUR-descriptor tag pointing to the URL
of the legacy code descriptor file (location) and a
binding to the Execute operation (soap:operation).

Suppose now that the workflow manager identifies
a services grouping optimization (e.g. P

1

and P
2

)
(3.a on figure 14). Because of its ability to discover
the extended nature of these two services, the en-
gine can retrieve the two corresponding MOTEUR
descriptors. It can ask the factory to combine them
(3.b) resulting in a single composite web service (3.c)

which exposes an operation taking its inputs from
P

1

(and P
2

inputs coming from other external ser-
vices) and returning the outputs defined by P

2

(and
P

1

outputs going to other external services). This
composite web service is of the same type than any
regular legacy code wrapping service. It is accessible
through the same interface and it also delegates the
grid submission to the generic submission web service
by sending the composite MOTEUR descriptor and
the input link of P

1

and P
2

in the workflow.

9 Experimental results

The goal of this section is to present experimental re-
sults that quantify the relevance of the optimizations
described above on a real service-based data-intensive
application workflow. We evaluate MOTEUR’s per-
formances on two di↵erent grid infrastructures.

21

e
x
e
c
u
te

e
x
e

c
u
te

P
1

P
2

P
3

W
S

D
L

 C
o

n
tr

a
c
t

S
e
rv

ic
e

In
te

rf
a
c

e

P
3

?R
e
g

u
la

r
W

e
b

 s
e

rv
ic

e
 P

3

S
e

rv
ic

e

In
te

rf
a
c

e

W
S

D
L

C
o

n
tr

a
c
t

S
e
rv

ic
e

Im
p

le
m

e
n

ta
ti

o
n

G
e

n
e
ri

c
 s

u
b
m

is
s
io

n
 S

e
rv

ic
e
 –

 G
ri

d
 1

Grid 1

s
u

b
m

it

jo
b

W
o

rk
fl

o
w

M

a
n

a
g

e
r

M
O

T
E

U
R

F
A

C
T

O
R

Y

W
e
b

 S
e
r
v

ic
e

4
 (

P
1
-P

2
) I

n
v

o
k
e

S
e
rv

ic
e

In
te

rf
a

c
e

P
1
+

P
2

S
e

rv
ic

e

Im
p

le
m

e
n

ta
ti

o
n

P
1
+

P
2

W
S

D
L

 C
o

n
tr

a
c
t

M
O

T
E

U
R

 e
x
t

M
O

T
E

U
R

d
e

s
c
ri
p
to

r

M
O

T
E

U
R

C
o

m
p

o
s
it

e

W
e

b
 S

e
rv

ic
e

P
1

P
2

G
e

n
e

ra
te

 c
o

m
p

o
s

it
e
 w

e
b

 s
e

rv
ic

e

fr
o

m
 D

E
S

C
(P

1
)

a
n

d
 D

E
S

C
(P

2
)

S
e
rv

ic
e

In
te

rf
a
c
e

P
1

S
e
rv

ic
e

Im
p

le
m

e
n

ta
ti

o
n

P
1

W
S

D
L

 C
o

n
tr

a
c
t

M
O

T
E

U
R

 e
x
t

M
O

T
E

U
R

d
e

s
c
ri
p
to

r

M
O

T
E

U
R

W
e

b
 S

e
rv

ic
e
P
1

G
e

n
e

ra
te

 f
ro

m
 D

E
S

C
(P

1
)

S
e

rv
ic

e

In
te

rf
a
c

e

P
2

S
e
rv

ic
e

Im
p

le
m

e
n

ta
ti

o
n

P
2

W
S

D
L

 C
o

n
tr

a
c
t

M
O

T
E

U
R

 e
x
t

M
O

T
E

U
R

d
e

s
c
ri
p
to

r

P
2

M
O

T
E

U
R

W
e
b

 S
e

rv
ic

e

d
e
p

lo
y

c
o

m
b

in
e

4
P

1
 I

n
v
o

k
e

4
P

2
 I
n

v
o

k
e

 D
E

S
C

(P
1

)

&

D
E

S
C

(P
2

)

4
P

3
 I
n

v
o

k
e

 D
E

S
C

(P
2

)

D
E

S
C

(P
1
)

1
.a

3
.c

3
.b

3
.a

J
O

B

G
R

O
U

P
IN

G

2
.a

L
e

g
a
c

y
 c

o
d

e

D
e

p
lo

y
e

r

Figure 14: Services factory.

22

<?xml version="1.0" encoding="utf-8" ?>
<definitions ...>
<types>
<schema>
<element name="CrestLines-request">

<complexType>
<sequence>
<element name="floating_image"

type="string"... />
<element name="reference_image"

type="string"... />
<element name="scale" type="string"... />

</sequence>
</complexType>

</element>
<element name="CrestLines-response">

<complexType>
<sequence>

<element name="crest_reference"
type="string"... />

<element name="crest_floating"
type="string"... />

</sequence>
</complexType>

</element>
</schema>

</types>
<message name="ExecuteSoapIn">
<part name="parameters"

element="CrestLines.pl-request" />
</message>
<message name="ExecuteSoapOut">
<part name="parameters"

element="CrestLines.pl-response" />
</message>
<portType name="CrestLines.plSoap">
<operation name="Execute">
<input message="ExecuteSoapIn" />
<output message="ExecuteSoapOut" />

</operation>
</portType>
<binding ...>
<soap:binding transport="http://..." />
<operation name="Execute">
<soap:operation soapAction="http://.../Execute"

style="document" />
<MOTEUR-descriptor xmlns="urn:...">
<location>http://...</location>

</MOTEUR-descriptor>
....

</operation>
</binding>

</definitions>

Figure 13: WSDL generated by the factory

9.1 MOTEUR implementation

We implemented a prototype of a workflow enactor
taking into account the optimizations described in
section 5: workflow, data and service parallelism and
sequential processors grouping. Our hoMe-made Op-

TimisEd scUfl enactoR (MOTEUR) prototype was
implemented in Java, in order to be platform inde-
pendent. It is available under CeCILL Public License
(a GPL-compatible open source license) at http:
//www.i3s.unice.fr/⇠glatard. To our knowledge,
this is the only service-based workflow enactor pro-
viding all these levels of optimization.

The workflow description language adopted is the
Simple Concept Unified Flow Language (Scufl) used
by the Taverna workbench [36]. This language is
well disseminated in the e-Science community. Apart
from describing the data links between the services,
the Scufl language allows to define so-called coordina-
tion constraints. A coordination constraint is a con-
trol link which enforces an order of execution between
two services even if there is no data dependency be-
tween them. We used those coordination constraints
to identify services that require data synchronization.

We developed an XML-based language to describe
input data sets. This language aims at providing a
file format to save and store the input data set in
order to be able to re-execute workflows on the same
data set. It simply describes each item of the di↵erent
inputs of the workflow.

Handling the data composition patterns presented
in section 3 in a service and data parallel workflow is
not straightforward because produced data sets have
to be uniquely identified. Indeed they are likely to
be computed in a di↵erent order in every service,
which could lead to wrong dot product computations.
Moreover, due to service parallelism, several data sets
are processed concurrently and one cannot number
all the produced data once computations completed.
We have implemented a data provenance strategy to
sort out the causality problems that may occur. At-
tached to each processed data segment is a history
tree refering to all the intermediate results computed
to process it. This tree unambiguously identifies the
data.

Finally, MOTEUR is implementing an interface to
both Web Services and GridRPC instrumented ap-
plication code.

23

9.2 Bronze Standard application

We made experiments considering the Bronze Stan-
dard, an application that aims at assessing medical
image registration algorithms. Medical image regis-
tration consists in searching a transformation (that
is to say 6 parameters in the rigid case – 3 rotation
angles and 3 translation parameters) between two im-
ages, so that the first one (the floating image) can su-
perimpose on the second one (the reference image) in
a common 3D frame. Medical image registration al-
gorithms are a key component of medical image anal-
ysis procedures.

A di�cult problem, as for many other medical im-
age analysis procedures, is the assessment of these
algorithms robustness, accuracy and precision [24].
Indeed, there is no well established gold standard
to compare to the algorithm results. Di↵erent ap-
proaches have been proposed to solve this issue. It is
possible to simulate artificial images from a controlled
model and to experiment the algorithm on these syn-
thetic images [3]. However, realistic images are dif-
ficult to produce and hardly perfect enough for fine
assessment of the algorithms. Phantoms (manufac-
tured objects with properties close to human tissues
for the imaging modality studied) can also be used to
acquire test images. However, it is also very di�cult
to manufacture realistic enough phantoms.

An alternative for assessing registration algorithms
is a statistical approach called the Bronze Stan-
dard [35]. The goal is basically to compute the regis-
tration of a maximum of image pairs with a maximum
number of registration algorithms so that we obtain
a largely overestimated system to relate the geome-
try of all the images. It makes this application very
compute and data-intensive.

Suppose that we have n images of the same organ of
one patient and m registration algorithms. We have
in fact only n�1 free transformations to estimate that
relate all these images, say T̄i,i+1

. The transforma-
tion between images i and j is obtained using a com-
positions such as T̄i,j = T̄i,i+1

� T̄i+1,i+2

� . . .� T̄j�1,j if
i < j (or the inverse of both terms if j > i). The free
transformation parameters are computed by minimiz-

ing the prediction error on the observed registrations:

min
¯T1,2, ¯T2,3,..., ¯Tn�1,n

X

i,j2[1,n],k2[1,m]

d
�

T k
i,j , T̄i,j

�

2

(8)

where T k
i,j is the transformation computed between

image i and j by the kth registration algorithm, and
d is a distance function between transformations cho-
sen as a robust variant of the left invariant distance on
rigid transformation developed in [38]. The estima-
tion T̄i,i+1

of the perfect registration Ti,i+1

is called
bronze standard because the result converges toward
Ti,i+1

as the number of methods m and the number of
images n increase. Indeed, considering a given regis-
tration method, the variability due to the noise in the
data decreases as the number of images n increases,
and the registration computed converges toward the
perfect registration up to the intrinsic bias (if there
is any) introduced by the method. Now, using di↵er-
ent registration procedures based on di↵erent meth-
ods, the intrinsic bias of each method also becomes a
random variable, which is hopefully centered around
zero and averaged out in the minimization procedure.
The di↵erent bias of the methods are now integrated
into the transformation variability. To fully reach
this goal, it is important to use as many independent
registration methods as possible.

In this process, we do not only estimate the op-
timal transformations, but also the rotational and
translational variance of the “transformation mea-
surements”, which are propagated through the cri-
terion to give an estimated of the variance of the
optimal transformations. These variance should be
considered as a fixed e↵ect (i.e. these parameters are
common to all patients for a given image registration
problem, contrarily to the transformations) so that
they can be computed more faithfully by multiplying
the number of patients.

The workflow of the bronze standard application
is represented on figure 15. In the following experi-
ments, we are considering m = 4 di↵erent registra-
tion algorithms in our implementation of the bronze
standard method: (1) Baladin and (2) Yasmina are
intensity-based. The former uses a block matching
strategy while the later optimizes a similarity mea-
sure on the complete images using the Powel algo-

24

rithm. (3) CrestMatch is a prediction-verification
method and (4) PFRegister is based on the ICP al-
gorithm. Both CrestMatch and PFRegister register
features (crest lines) extracted from the input images.
These algorithms are further described in [35]. The
two inputs referenceImage and floatingImage corre-
spond to the image sets on which the evaluation is
to be processed. The first registration algorithm is
crestMatch. Its result is used to initialize the other
registration algorithms which are Baladin, Yasmina
and PFMatchICP/PFRegister. crestLines is a pre-
processing step. Finally, the MultiTransfoTest ser-
vice is responsible for the evaluation of the accuracy
of the registration algorithms, leading to the outputs
values of the workflow. This service evaluates the ac-
curacy of a specified registration algorithm by com-
paring its results with means computed on all the
others. Thus, the MultiTransfoTest service has to be
synchronized: it must be enacted once every of its
ancestor is inactive. This is why we figured it with a
double square on figure 15.

We chose this particular application because it is a
real example of data-intensive workflow in the medi-
cal imaging field. Moreover, it embeds a synchroniza-
tion barrier and thus provides an interesting case of
complex service-based workflow.

Input image pairs are taken from a database of
injected T1 brain MRIs from the cancer treatment
center ”Centre Antoine Lacassagne” in Nice, France,
courtesy of Dr Pierre-Yves Bondiau. All images are
256⇥256⇥60 and coded on 16 bits, thus leading to a
7.8 MB size per image (approximately 2.3 MB when
compressed without loss).

9.3 Grid5000 and EGEE infrastruc-
tures

In order to evaluate the relevance of our prototype
and to compare real executions to theoretically ex-
pected results, we made experiments on two di↵er-
ent grid infrastructures: the EGEE production grid4

and the Grid5000 experimental platform5. Grids are
novel and complex systems that are di�cult to opti-

4Enabling Grids for E-sciencE, http://www.eu-egee.org/
5Grid5000, http://www.grid5000.org/

mally exploit from the end users point of view as their
behavior is not very well known. The Grid5000 and
the EGEE infrastructures for instance have di↵erent
characteristics leading to di↵erent performances and
behaviors under load. We first propose a modeling
of these two infrastructure to better interpret the ex-
perimental results.

Grids overview. Table 1 summarizes the main
features of both infrastructures, especially consider-
ing the Workload Management System (WMS) and
the Data Management System (DMS), both strongly
a↵ecting applications.

Grid5000 is made of 9 clusters located in France,
representing more than 2000 CPUs. These resources
are shared by dozens of registered users. Inside each
cluster, the OAR batch scheduler [5] is used as WMS.
The inter-sites GridOAR scheduler is not yet avail-
able for users. Hundreds of GB of disk space are
shared through NFS [39]. We mostly experimented
the Grenoble cluster (12 bi-processor nodes) and the
Sophia cluster (105 bi-processor nodes).

EGEE is made of more than 180 computing cen-
ters distributed all over Europe and beyond. Hun-
dreds of users are using these resources in production
mode (24/7 load of the infrastructure). A total of
18000 CPUs are available out of which 3000 CPUs
are e↵ectively accessible to our user community. The
EGEE WMS is a two levels batch system: each com-
puting center batch system is fed by higher level Re-
source Brokers (RBs) which receive and queue user
computing requests before dispatching them to the
available centers. A total amount of 5 PB of storage
space is available through Storage Elements (SEs) on
each site. Data transfer between SEs are handled by
gridFTP.

Experimental setting. Figure 16 displays our ex-
perimental setting. The OAR batch scheduler can re-
ceive parallel requests. Our experiments have shown
that above 80 parallel connections, OAR is over-
loaded. To perform load experiments we thus imple-
mented a requests sequencer. The Grid5000 clusters
front-end is shared among users. To avoid overload-
ing it, we reported our heavy-weight application on

25

MethodToTest

getFromEGEE

formatConversion

formatConversion

writeResults formatConversion

writeResults writeResults

formatConversion

crestLines

accuracy_translation accuracy_rotation

MultiTransfoTest

Params

crestMatch
ParamsParams

PFMatchICP

PFRegister

Params getFromEGEE Yasmina Baladin

Params Params

getFromEGEE getFromEGEE

writeResults

Params

A B

Figure 15: Workflow of the application

26

Infrastructure EGEE - LCG2 Grid’5000
Workload RB GridOAR

Management PBS, BQS, OAR
System . . .
CPUs 18,000 1,400

Data access gridFTP NFS
Storage resources couple of PB Hundreds of GB

Table 1: Overview of the systems

N
ode Y

U
se

r i
nt

er
fa

ce
N

od
e Z

A
pp

lic
at

io
n

ho
st

+
W

or
kl

oa
d

m
an

ag
em

en
t s

ys
te

m

file
shared

OAR

sequencer

Application
threads

read
status

submission

running
jobs

write
submission

oarsub/
oarstat

write
status

read

N
od

e Z

N
ode Y

Co
m

pu
tin

g
El

em
en

t A

Data Storage
Elem

ent i

Book
keeping

W
or

kl
oa

d
M

an
ag

em
en

t
Sy

ste
m

In
te

rfa
ce

U
se

r

Batch
Scheduler

Resource
Broker

Com
puting

Elem
ent B

submit poll

A
pp

lic
at

io
n

ho
st

ssh
gridFTP

interface
Command−line

Application
threads

running
jobs

Figure 16: Grid5000 (left) and EGEE (right) system
components

a dedicated node. On the EGEE grid, the applica-
tion code is similarly executed on a dedicated User
Interface host. Requests are sent and processed se-
quentially by the RB.

Given its scale and its usage in production mode,
the EGEE infrastructure is more likely to be a↵ected
by variable load conditions, network interruptions,
and temporary resources volatility. As a side e↵ect,
there are outliers: jobs that are lost or blocked for a
considerable time before being processed. This prob-
lem is characteristic of grid infrastructures and can-
not be ignored or a single job could stop a very com-
plex computation. Timeouts have to be set up to deal

with such outliers. Due to these outliers, we did not
compute any means nor standard deviations in the
analysis of the experimental results shown below. We
used medians and inter-quartile ranges (IQR) which
are less sensitive to outliers instead. The IQR is de-
fined as the interval between the 25% and the 75%
lowest values. It corresponds to the range of values
measured, centered on the median, after excluding
one quarter of low value outliers and one quarter of
high value outliers.

9.4 Workload management modeling

While grid infrastructures provide a considerable
amount of computing power, the overhead introduced
by the WMS when managing large amounts of jobs
may cause performances loss. We are studying this
overhead by comparing the di↵erence between jobs
execution time (t

exec

: the waiting time for the user)
and their running time (t

run

: the CPU time con-
sumed). This overhead may be significant on large
scale infrastructures, thus penalizing the execution of
applications with a high turn-over of jobs to process.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800

O
ve

rh
ea

d
(s

)

Number of jobs n

Measures EGEE
Model EGEE

Measures Grenoble
Model Grenoble

Measures Sophia
Model Sophia

Figure 17: WMS overhead vs number of jobs

Experimental method. We progressively loaded
the Grid5000 and the EGEE WMS by submitting an

27

increasing number, n, of short jobs to the system. We
resubmitted a new job each time a job completed, so
that the total load introduced by the experiment was
constant. We considered short (t

run

=1 minute long)
jobs for favoring a short turn-over of jobs and stress-
ing conditions of the WMS. Experiments were run
over 3 hours periods (a long enough period compared
to the jobs duration to capture the system behav-
ior over a statistically significant number of measure-
ments).

Results. Figure 17 displays the median and the
IQR of t

over

= t
exec

� t
run

for a growing number n
of submitted jobs. This information measures the
spread of the samples and gives an information about
the variability of the system. For this experiment,
20, 000 jobs were submitted to the EGEE infrastruc-
ture, 32, 000 to the Sophia cluster and 28, 000 to the
Grenoble one.

System A (s/job) B (s)
Grid5000 – Grenoble 3.44 0.48
Grid5000 – Sophia 0.74 8.25

EGEE 0.24 351.4

Table 2: WMS parameters

Modeling. As the measurements suggest an a�ne
behavior of the median overheads, we fitted a lin-
ear model (A.n + B) to the experimental data by
linear regression. The lines obtained are plotted on
figure 17. The parameters of this model are shown in
table 2, where the systems are sorted from the small-
est one to the largest. These parameters can be used
as metrics characterizing the variation of the median
of the overhead with respect to the number of jobs for
each system. The B parameter measures the nominal
overhead of the system. It corresponds to the over-
head introduced by the system without any load. A
measures the scalability of the system with respect
to the number of jobs. It represents the additional
time generated by the submission of 1 extra job to
the system.

Discussion. The nominal overheads, B, are grow-
ing with the size of the infrastructure. The EGEE
system almost has a 6 minutes overhead due to the in-
frastructure load and the communication costs while
the nominal overhead of the Grid5000 clusters is in
the order of seconds. Conversely, the scalability of the
systems (A metric) is growing with their size. The
EGEE overhead due to the submission of a single
extra job is 0.24 second while the Grenoble cluster
requires an extra 3.44 seconds per job. On all the
systems evaluated, submission is done from a single
entry point (the user interface) to a central workload
manager (OAR or RB host). There is here a bottle-
neck and serious performance drops can be forecast in
the scheduling when the load reaches a critical point.
Distributed WMS such as presented in [8] should thus
be studied.

It also appears from the IQR bars displayed in fig-
ure 16 that the variability of the system response time
for the Grid5000 clusters is increasing with the load.
On the EGEE production infrastructure, the situa-
tion is quite di↵erent as the variability is higher, even
when considering a low number of jobs due to the con-
current activity of other users. We proposed in [19]
a probabilistic framework addressing the problem of
large scale systems load.

9.5 Data management performances

Experimental setting. To compare the perfor-
mances of the data management systems of EGEE
and Grid5000 infrastructures, we submitted to the
infrastructures a number of jobs doing nothing but
transferring 7.8MB files on their execution resource.
This corresponds to the size of medical images ma-
nipulated in the application of section 9.2. To limit
the overhead due to concurrent job submissions, only
a few of them (5) were submitted in parallel. Mea-
sures were done during 3 hours periods again. The
median running time and the IQR are displayed in
figure 18.

Results. Median performances of both data man-
agement systems are quite similar: the mean speed-
up of the Grenoble cluster data management system

28

 0

 1000

 2000

 3000

 4000

 5000

 0 200 400 600 800 1000 1200 1400

R
un

ni
ng

 ti
m

e
(s

)

Data size (MB)

Measures EGEE
Measures Grenoble

Figure 18: Median running times of data jobs

with respect to the EGEE one is 1.19. This re-
sult indicates a good level of performances for the
EGEE data management system as this experiment
implied inter-clusters transfers, whereas only intra-
clusters transfers were performed on Grid5000. How-
ever, the variability of the data transfers time on the
EGEE infrastructure is far more important than on
the Grenoble one, which is not surprising given the
scale of the infrastructure.

9.6 Experiments on the bronze stan-
dard application

We executed the bronze standard workflow on 3 dif-
ferent inputs data sets, with various sizes, corre-
sponding to the registration of nD = 12, 66 and 126
image pairs corresponding to images from 1, 7 and
25 patients respectively. Each of the input image
pair was registered with the 4 algorithms (nW = 5 in
this workflow) and leads to 6 job submissions, thus
producing a total number of 72, 396 and 756 job sub-
missions respectively. We submitted each dataset 6
times with 6 di↵erent optimization configurations in
order to identify the specific gain provided by each
optimization.

Figure 19 compares the results obtained both on
the EGEE infrastructure and the Sophia cluster of
Grid5000. MOTEUR is run on the application host

Configurations Computation time (s)

12 images 26 images 126 images
NOP 32855 76354 133493
JG 22990 68427 125503
SP 18302 63360 120407
DP 17690 26437 34027

SP+DP 7825 12143 17823
SP+DP+JG 5524 9053 14547

Table 3: Execution time for each configuration

of figure 16. Table 3 displays the quantitative values
measured on the EGEE infrastructure.

For a given configuration, the execution on the
Sophia cluster of Grid5000 is always quicker than
on the EGEE system, even for 126 input image
pairs. However, we can notice on figure 19 that
the graphical representations of the execution times
with respect to the size of the input data set size for
the EGEE infrastructure are almost straight lines.
This could be expected as the infrastructure is large
enough to support the increasing load.

The influence of data parallelism can be studied
from configurations C

SP

and C
SP+DP

. On the Sophia
cluster, data parallelism respectively leads to a 6.04,
7.74 and 9.46 speed-ups for 12, 66 and 126 image
pairs. On the EGEE infrastructure, corresponding
speed-ups are 2.34, 5.22 and 6.76. On both systems,
the speed-up introduced by data parallelism is grow-
ing with the number of input data sets, which is co-
herent with the results presented in section 9.4. The
influence of service parallelism can be studied from
configurations C

DP

and C
SP+DP

. On the Sophia clus-
ter, service parallelism respectively leads to a 0.86,
2.9 and 2.86 speed-up for 12, 66 and 126 input image
pairs. On the EGEE infrastructure, corresponding
speed-ups are 2.26, 2.17 and 1.90.

9.6.1 Discussion

To analyze performances, the first relevant metric
from the user point of view is the speed-up, mea-
sured as the ratio of the execution time over the ref-
erence execution time. We also used the scalability
and the nominal overhead metrics, as introduced in
section 9.4, which allow a more precise interpretation

29

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140

Ex
ec

ut
io

n
tim

e
(h

ou
rs

)

Number of input image pairs

CSP EGEE
CDP EGEE

CSP+DP EGEE
CSP Sophia
CDP Sophia

CSP+DP Sophia

Figure 19: Comparison of EGEE and Grid5000 infrastructures on the bronze standard application

30

nominal overhead scalability
(seconds) (s/data sets)

NOP 20784 884
JG 11093 900
SP 6382 897
DP 16328 143

SP+DP 6625 88
SP+DP+JG 4310 79

Table 4: Nominal overhead and scalability for each
configuration

of experiments on grid infrastructures.
For each configuration, we reported the nominal

overhead and the scalability parameters measured on
the EGEE infrastructure in table 4. Those values
were obtained by linear regressions on measurements
displayed in table 3. We relate our experimental re-
sults to the theoretical ones that we presented in sec-
tion 5.6. As our data set is quite homogeneous (all
the images have the same size), we make the hypoth-
esis of constant execution times and thus refer to the
results presented in the last paragraph of section 5.6.4
and in particular to SDP , SSP and SSDP .

9.6.2 Impact of the data and service paral-
lelism

DP versus NOP. Given the data-intensive nature
of the application, the first level of parallelism to
enable to improve performances is data parallelism.
In this case, the last paragraph of section 5.6.4 pre-
dicted a speed-up SD = nD. We obtain speed-ups of
1.86, 2.89 and 3.92 for nD = 12, 66 and 126 image
pairs respectively. This speed-up is e↵ectively grow-
ing with the number of input images as predicted
by the theory, although it is lower than expected.
Indeed, this experiment shows that the system vari-
ability (on transfer and queuing time in particular)
and the increasing load of the middleware services on
a production infrastructure cannot be neglected.

To go further in the analysis, we can compute from
table 4 that in this case, data parallelism leads to a
scalability ratio of 6.18 and to a nominal overhead ra-

tio of 1.27. Data parallelism thus mainly influences
the scalability ratio. It is coherent as this metric is
designed to evaluate the data scalability of the sys-
tem. Although a higher scalability ratio could be
expected on a dedicated system to some extent (un-
til the number of dedicated resources is reached), we
can see that in our experiment the grid infrastructure
smoothly accepts the increasing load (no saturation
e↵ect). This is interesting for applications such as
the Bronze Standard that needs the highest number
of data to be processed as possible.

9.6.3 (DP + SP) versus DP.

One can notice is that service parallelism does intro-
duce a significant speed-up even if data parallelism
is enabled. Indeed, it leads to a speed-up of 2.26,
2.17 and 1.90 for nD = 12, 66 and 126 image pairs
respectively whereas the theory predicted a speed-
up of SSDP = 1. This result can be justified by
noticing that the constant times hypothesis may not
hold on such a production infrastructure, as already
suggested in section 5.6.4. On a traditional cluster
infrastructure, service parallelism would be of minor
importance whereas it is a very important optimiza-
tion on the production infrastructure we used.

Moreover, we can then notice that in case of data
parallelism, service parallelism leads to a scalability
ratio of 1.62 and to a nominal overhead ratio of 2.46.
This is another argument which demonstrates that
service parallelism is particularly important on pro-
duction infrastructures. On traditional clusters in-
deed, nominal overhead values may be close to 0 and
such systems would therefore be less impacted by a
reduction of this metric.

9.7 Impact of the job grouping

JG vs NOP. The speed-up introduced by job
grouping is 1.43, 1.12 and 1.06 for nD = 12, 66 and
126 image pairs respectively. It leads to a scalability
ratio of 0.98 and to a nominal overhead ratio of 1.87.
Job grouping only influences the nominal overhead
ratio. It is coherent because it has been designed to
lower the system’s overhead which is evaluated by the
nominal overhead value.

31

(JG + SP + DP) vs (SP + DP). In addition to
data and service parallelism, job grouping introduces
a speed-up of 1.42, 1.34 and 1.23 for nD = 12, 66 and
126 image pairs respectively. It leads to a scalabil-
ity ratio of 1.11 and to a nominal overhead ratio of
1.54. Here again, job grouping mainly improves the
nominal overhead ratio, which is coherent with the
expected behavior.

We can thus conclude that job grouping e↵ectively
addresses the problem for which it as been designed
as it leads to a significant reduction of the system’s
overhead.

9.8 Optimization perspectives

The nominal overhead and scalability parameters are
able to quantify how an application could be im-
proved, without any reference to the scale of the in-
frastructure. Indeed, an ideal system would have a
null scalability ratio and a close to zero overhead.

The nominal overhead value of DP+SP+JG quan-
tifies the potential overhead reduction that could be
targeted. In the future, we plan to address this prob-
lem by grouping jobs of a single service, thus finding
an trade-o↵ between data parallelism and the sys-
tem’s overhead.

Besides, the scalability value of DP+SP+JG quan-
tifies the potential data scaling improvement that
could be targeted. On an ever-loaded production
infrastructure, middleware services such as the user
interface or the resource broker may be critical bot-
tlenecks. The theoretical modeling does not take into
account these limitations. A probabilistic modeling
considering the variable nature of the grid infrastruc-
ture is probably an interesting future path to explore
for further optimizing this value [19].

9.9 Experiments on service grouping

To quantify the speed-up introduced by services
grouping on a real application workflow, we first
made experiments on the bronze standard applica-
tion. To show how services grouping is able to speed-
up the execution on highly sequential applications,
we also extracted a sub-workflow from our applica-
tion, as shown in figure 15. It is made of 4 services

that correspond to the crestLines, crestMatch,
PFMatchICP and PFRegister ones in the application
workflow. Our grouping rule groups those 4 services
into a single one, as it has been detailed in the exam-
ple of figure 12. It is important to notice that even
if this sub-workflow is sequential, and thus does not
benefit from workflow parallelism, its execution on
a grid does make sense because of data and service
parallelisms.

Results. Table 5 presents the speed-ups induced by
our grouping strategy for a growing number of input
image pairs. Experiments were lead on the grid5000
infrastructure for the two workflows described above.
We can notice on those tables that services grouping
does e↵ectively provide a significant speed-up on the
workflow execution. This speed-up is ranging from
1.23 to 2.91.

The speed-up values are greater on the sub-
workflow than on the whole application one. Indeed,
on the sub-workflow, 4 services are grouped into a sin-
gle one, thus providing a 3 jobs submission saving for
each input data set. On the whole application work-
flow, the grouping rule is applied only twice, leading
to a 2 jobs saving for each input data set, as depicted
on figure 20.

9.10 Multi-grids model

Grid5000 and EGEE exhibit di↵erent behaviors un-
der load. It is therefore interesting to determine,
given a number of jobs n to process, the optimal frac-
tions � 2 [0, 1] and 1� � of these jobs that should be
submitted to each infrastructure to minimize the to-
tal execution time. Let t

(i)
over

(n) be the median over-
head time introduced by system i when it deals with
the submission of n concurrent jobs. The goal is to
minimize the mean overhead time of the submitted
jobs:

H(�) = �.t(1)
over

.(�.n) + (1� �).t(2)
over

. ((1� �).n)

If we consider the linear model introduced in sec-
tion 9.4, we get:

H(�) = �(A
1

.�.n + B
1

) + (1� �)(A
2

.(1� �).n + B
2

)

32

Number of input Speed-up on the Speed-up on the
image pairs sub-workflow whole application

12 2.91 1.42
66 1.72 1.34
126 2.30 1.23

Table 5: Grouping strategy speed-ups

referenceImage floatingImage

MethodToTest

MultiTransfoTest

PFRegister

Yasmina BaladinPFMatchICP getFromEGEE

getFromEGEE

getFromEGEE getFromEGEE

crestMatch

crestLines

accuracy_rotationaccuracy_translation

Sub−workflow

Figure 20: Workflow of the application. Services to be grouped are squared in blue.

33

Largest Smallest n0 n0.5 �(1)
system system
EGEE Sophia 232 jobs 686 jobs 76%
EGEE Grenoble 51 jobs 110 jobs 93%
Sophia Grenoble 1 job 3 jobs 82%

Table 6: Multi-grids model parameters

where, Ai and Bi are the model parameters of the
ith system. H has a unique minimum reached for the
optimal proportion of jobs �̂ to submit on the first
system:

�̂(n) =
B

2

�B
1

+ 2.A
2

.n

2.n.(A
2

+ A
1

)
(9)

We have to determine when �̂(n) is in [0,1]. Sup-
pose that system 1 is larger than system 2. Accord-
ing to section 9.4, it implies that B

1

> B
2

(nominal
overhead of the largest system is the highest one)
and A

1

< A
2

(the scalability of the largest system
is better). In this setting, it is straightforward to
prove that �̂(n) < 1, showing that the proportion
of jobs to submit on the smallest infrastructure is
never null (as long as it is not overwhelmed it is
faster to exploit it). Moreover, �̂(n) > 0 if and only if
n � n

0

= B1�B2
2.A2

. Below this threshold, the number
of jobs is low enough for all of them to be submit-
ted to the smallest, but fastest, infrastructure. Be-
yond n

0

, the number of jobs to be submitted to the
largest infrastructure increases. For n

0.5 = B1�B2
A2�A1

,
both infrastructures are loaded with the same number
of jobs. Beyond, the model enters a saturation phase,
where �̂ tends to its asymptotic value �̂(1) = A2

A1+A2
.

This value is inferior to 1 and denotes the remaining
proportion of jobs that would always be submitted
to the largest platform, even if the number of con-
currently submitted jobs becomes very high.

Table 6 displays the di↵erent thresholds for the
EGEE and grid5000 infrastructures, considering the
parameters from table 2. Note that n

0

is high com-
pared to the number of CPUs available on the smaller
infrastructures. The n

0.5 values lead to similar inter-
pretations. It corresponds to the abscissa where the
lines cross on figure 17. We thus can see that the
EGEE infrastructure and the Sophia cluster lead to

the same overhead if 686 jobs are submitted on each
infrastructure. This number of jobs is 110 when com-
paring EGEE to the Grenoble cluster and 3 for the
Sophia versus Grenoble comparison. When consid-
ering asymptotic behavior, the Sophia cluster should
handle �(1) = 82% of jobs when used concurrently
with the Grenoble cluster due to their di↵erence in
size (this result is close to the proportion of nodes on
the Sophia cluster in the total number of nodes on
the two systems: 105

105+12

= 89.7%). When compar-
ing EGEE to the Sophia cluster, �(1) = 76%: it is
never e�cient to submit more than three quarter of
the jobs on EGEE.

10 Conclusions

Grids have a very interesting potential for processing
data intensive applications and composing new appli-
cations from services wrapping application code. The
MOTEUR workflow manager was designed to e�-
ciently exploiting such infrastructures while adopting
a modern service-based architecture o↵ering a max-
imum of flexibility to the users. In particular MO-
TEUR exploits workflow parallelism, service paral-
lelism and data parallelism. To reduce the grid over-
head, MOTEUR is also able to group service calls.
A coherent Service-Oriented Architecture eases the
implementation of this functionality. Legacy codes
and non-service aware codes can easily be scheduled
in MOTEUR workflows through the generic web ser-
vice wrapper. Performances are shown on two di↵er-
ent real grid infrastructures using a real application
to medical images as a benchmark.

Acknowledgment

This work is partially funded by the French
research program “ACI-Masse de données”
(http://acimd.labri.fr/), AGIR project
(http://www.aci-agir.org/). We are grateful to
the EGEE European project and the Grid5000
French national project for providing the grid
infrastructures and user assistance.

34

References

[1] T. Andrews, F. Curbera, H. Dholakia,
Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trick-
ovic, and S. Weerawarana. Business
Process Execution Language for Web
Services. Technical Report version 1.1,
http://www-128.ibm.com/developerworks/
library/ws-bpel/, May 2003.

[2] D Arnold, S Agrawal, S Blackford, J Dongarra,
M Miller, K Seymour, K Sagi, Z Shi, and S Vad-
hiyar. Users’ Guide to NetSolve V1.4.1. Tech-
nical Report ICL-UT-02-05, University of Ten-
nessee, Knoxville, jun 2002.

[3] Hugues Benoit-Cattin, Fabrice Bellet, Johan
Montagnat, and Christophe Odet. Magnetic
Resonance Imaging (MRI) Simulation on a Grid
Computing Architecture. In Biogrid’03, proceed-
ings of the IEEE CCGrid03 (Biogrid’03), may
2003.

[4] J Blythe, S Jain, E Deelman, Y Gil, K Vahi,
A Mandal, and K Kennedy. Task Scheduling
Strategies for Workflow-based Applications in
Grids. In CCGrid, Cardi↵, UK, 2005.

[5] Nicolas Capit, Georges Da Costa, Yiannis Geor-
giou, Guillaume Huard, and Cyrille Marti. A
batch scheduler with high level components. In
Cluster computing and Grid 2005 (CCGrid’05),
2005.

[6] Franck Cappello, Frdric Desprez, Michel Dayde,
Emmanuel Jeannot, Yvon Jegou, Stphane
Lanteri, Nouredine Melab, Raymond Namyst,
Pascale Vicat-Blanc Primet, Olivier Richard,
Eddy Caron, Julien Leduc, and Guillaume Mor-
net. Grid’5000: A Large Scale, Reconfigurable,
Controlable and Monitorable Grid Platform.
In 6th IEEE/ACM International Workshop on
Grid Computing (Grid’2005), Seattle, Washing-
ton, USA, nov 2005.

[7] Eddy Caron, Bruno Del-Fabbro, Frdric Desprez,
Emmanuel Jeannot, and Jean-Marc Nicod.

Managing Data Persistence in Network Enabled
Servers. Scientific Programming Journal, 2005.

[8] Eddy Caron and Frdric Desprez. DIET: A Scal-
able Toolbox to Build Network Enabled Servers
on the Grid. International Journal of High Per-
formance Computing Applications, 2005.

[9] Eddy Caron, Frdric Desprez, Frdric Lombard,
Jean-Marc Nicod, Martin Quinson, and Frdric
Suter. A Scalable Approach to Network En-
abled Servers. In 8th International EuroPar
Conference, volume 2400 of LNCS, pages 907–
910, Paderborn, Germany, aug 2002. Springer-
Verlag.

[10] Henri Casanova, Arnaud Legrand, Dmitrii
Zagorodnov, and Francine Berman. Heuristics
for Scheduling Parameter Sweep Applications in
Grid Environments. In 9th Heterogeneous Com-
puting Workshop (HCW), pages 349–363, Can-
cun, may 2000.

[11] David Churches, B. S. Sathyaprakash, Matthew
Shields, Ian Taylor, and Ian Wand. A Parallel
Implementation of the Inspiral Search Algorithm
using Triana. In Proceedings of the UK e-Science
All Hands Meeting, Nottingham, UK, sep 2003.

[12] Thierry Delaitre, Tams Kiss, Ariel Goyeneche,
G Terstyanszky, S Winter, and Pter Kacsuk.
GEMLCA: Running Legacy Code Applications
as Grid Services. Journal of Grid Computing
(JGC), 3(1-2), 2005.

[13] European IST project of the FP6, Enabling
Grids for E-sciencE, apr. 2004-mar. 2006. http:
//www.eu-egee.org/.

[14] Ian Foster. Globus Toolkit Version 4: Software
for Service-Oriented Systems. In International
Conference on Network and Parallel Comput-
ing (IFIP), volume 3779, pages 2–13. Springer-
Verlag LNCS, 2005.

[15] Ian Foster, Carl Kesselman, J Nick, and
S Tuecke. The Physiology of the Grid: An Open

35

Grid Services Architecture for Distributed Sys-
tems Integration. Technical report, Open Grid
Service Infrastructure WG, GGF, jun 2002.

[16] N Furmento, A Mayer, S McGough, S New-
house, T Field, and J Darlington. ICENI : Op-
timisation of component applications within a
Grid environment. Journal of Parallel Comput-
ing, 28(12):1753–1772, 2002.

[17] Tristan Glatard, Johan Montagnat, and Xavier
Pennec. An optimized workflow enactor for
data-intensive grid applications. Technical Re-
port I3S/RR-2005-32-, I3S, Sophia-Antipolis,
oct 2005.

[18] Tristan Glatard, Johan Montagnat, and Xavier
Pennec. Grid-enabled workflows for data inten-
sive medical applications. In 18th IEEE Interna-
tional Symposium on Computer-Based Medical
Systems (ISCBMS), jun 2005.

[19] Tristan Glatard, Johan Montagnat, and Xavier
Pennec. Probabilistic and dynamic optimiza-
tion of job partitioning on a grid infrastructure.
In 14th euromicro conference on Parallel, Dis-
tributed and network-based Processing (PDP06),
Montbliard-Sochaux, feb 2006.

[20] gLite middleware. http://www.gLite.org.

[21] Andrew Harrison and Ian Taylor. Dynamic Web
Service Deployment Using WSPeer. In Proceed-
ings of 13th Annual Mardi Gras Conference -
Frontiers of Grid Applications and Technologies,
pages 11–16, feb 2005.

[22] Yan Huang, Ian Taylor, David M. Walker, and
Robert Davies. Wrapping Legacy Codes for
Grid-Based Applications. In 17th International
Parallel and Distributed Processing Symposium
(IPDPS), page 139. IEEE Computer Society,
2003.

[23] Romin Irani and S Jeelani Bashna. AXIS: Next
Generation Java SOAP. Wrox Press, may 2002.

[24] P. Jannin, J.M. Fitzpatrick, D.J. Hawkes,
X. Pennec, R. Shahidi, and M.W. Vannier. Val-
idation of medical image processing in image-
guided therapy. IEEE Trans. on Medical Imag-
ing, 21(12):1445–1449, December 2002.

[25] Pter Kacsuk, Gbor Dzsa, Jzsef Kovcs, Rbert Lo-
vas, Norbert Podhorszki, Zoltn Balaton, and Ga-
bor Gombs. P-GRADE: A Grid Programing En-
vironment. Journal of Grid Computing (JGC),
1(2):171–197, 2003.

[26] Pter Kacsuk, Ariel Goyeneche, Thierry Delaitre,
Tams Kiss, Zoltn Farkas, and Tams Boczko.
High-Level Grid Application Environment to
Use Legacy Codes as OGSA Grid Services. In
Proceedings of the Fifth IEEE/ACM Interna-
tional Workshop on Grid Computing (GRID
’04), pages 428–435, Washington, DC, USA,
2004. IEEE Computer Society.

[27] G Kecskemeti, Y Zetuny, Tams Kiss, G Sipos,
Pter Kacsuk, G Terstyanszky, and S Winter.
Automatic deployment of Interoperable Legacy
Code Services. In UK e-Science All Hands Meet-
ing, Nottingham, UK, sep 2005.

[28] LCG2 middleware.
http://lcg.web.cern.ch/LCG/activities/-
middleware.html.

[29] Jianzhi Li, Zhuopeng Zhang, and Hongji Yang.
A Grid Oriented Approach to Reusing Legacy
Code in ICENI Framework. In IEEE Interna-
tional Conference on Information Reuse and In-
tegration (IRI’05), Las Vegas, USA, aug 2005.

[30] Phillip Lord, Pinar Alper, Chris Wroe, and Ca-
role Goble. Feta: A light-weight architecture for
user oriented semantic service discovery. In Eu-
ropean Semantic Web Conference, 2005.

[31] Bertram Ludscher, Ikay Altintas, Chad Berkley,
Dan Higgins, Efrat Jaeger, Matthew Jones, Ed-
ward A. Lee, Jing Tao, and Yang Zhao. Scientific
Workflow Management and the Kepler System.
Concurrency and Computation: Practice &
Experience, 2005.

36

[32] Johan Montagnat, Fabrice Bellet, Hugues
Benoit-Cattin, Vincent Breton, Lionel Brunie,
Hector Duque, Yannick Legr, Isabelle Magnin,
Lydia Maigne, Serge Miguet, Jean-Marc Pier-
son, Ludwig Seitz, and T Tweed. Medical images
simulation, storage, and processing on the euro-
pean datagrid testbed. Journal of Grid Comput-
ing (JGC), 2(4):387–400, dec 2004.

[33] Hidemoto Nakada, Satoshi Matsuoka, K Sey-
mour, J Dongarra, C Lee, and Henri Casanova.
A GridRPC Model and API for End-User Ap-
plications. Technical report, Global Grid Forum
(GGF), jul 2005.

[34] National Research Grid Initiative (NAREGI).
http://www.naregi.org.

[35] Stphane Nicolau, Xavier Pennec, Luc Soler,
and Nicholas Ayache. Evaluation of a New
3D/2D Registration Criterion for Liver Radio-
Frequencies Guided by Augmented Reality. In
International Symposium on Surgery Simulation
and Soft Tissue Modeling (IS4TM’03), volume
2673 of LNCS, pages 270–283, Juan-les-Pins,
2003. INRIA Sophia Antipolis, Springer-Verlag.

[36] Tom Oinn, Matthew Addis, Justin Ferris, Dar-
ren Marvin, Martin Senger, Mark Greenwood,
Tim Carver, Kevin Glover, Matthew R. Pocock,
Anil Wipat, and Peter Li. Taverna: A tool
for the composition and enactment of bioin-
formatics workflows. Bioinformatics journal,
17(20):3045–3054, 2004.

[37] Open Science Grid (OSG). http://www.
opensciencegrid.org.

[38] Xavier Pennec, R. G. Guttman, and J.-P.
Thirion. Feature-Based Registration of Medi-
cal Images: Estimation and Validation of the
Pose Accuracy. In Medical Image Comput-
ing and Computer-Assisted Intervention (MIC-
CAI98), volume 1496 of LNCS, pages 1107–
1114, Cambridge, USA, oct 1998. Springer.

[39] R Sandberg, D Goldberg, S Kleiman, D Walsh,
and B Lyon. Design and Implementation of the

Sun Network File System. In USENIX Confer-
ence, Berkeley, CA, 1985.

[40] Martin Senger, Peter Rice, and Tom Oinn.
Soaplab - a unified Sesame door to analysis tool.
In UK e-Science All Hands Meeting, pages 509–
513, Nottingham, sep 2003.

[41] Yoshio Tanaka, Hidemoto Nakada, Satoshi
Sekiguchi, Toyotaro Suzumura, and Satoshi
Matsuoka. Ninf-G: A Reference Implementa-
tion of RPC-based Programming Middleware for
Grid Computing. Journal of Grid Computing
(JGC), 1(1):41–51, 2003.

[42] Ian Taylor, Matthew Shields, Ian Wand, and
Roger Philp. Grid Enabling Applications Us-
ing Triana. In Workshop on Grid Applications
and Programming Tools (). Held in Conjunction
with GGF8, 2003.

[43] Ian Taylor, Ian Wand, Matthew Shields, and
Shalil Majithia. Distributed computing with Tri-
ana on the Grid. Concurrency and Computation:
Practice & Experience, 17(1–18), 2005.

[44] Robert A. Van Engelen and Kyle A. Gallivan.
The gSOAP Toolkit for Web Services and Peer-
to-Peer Computing Networks. In Proceedings of
the 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGRID
’02), page 128, Washington, DC, USA, 2002.
IEEE Computer Society.

[45] (W3C) World Wide Web Consortium. Web Ser-
vices Description Language (WSDL) 1.1, mar
2001. http://www.w3.org/TR/wsdl.

[46] J. Yu and R. Buyya. A taxonomy of scientific
workflow systems for grid computing. ACM SIG-
MOD records (SIGMOD), 34(3):44–49, sep 2005.

[47] Jun Zhao, Carole Goble, Robert Stevens, Den-
nis Quan, and Mark Greenwood. Using Seman-
tic Web Technologies for Representing e-Science
Provenance. In Third International Semantic
Web Conference (ISWC2004), pages 92–106, Hi-
roshima, nov 2004.

37

