Force Transmission in Cohesive Granular Media - Archive ouverte HAL Accéder directement au contenu
Chapitre D'ouvrage Année : 2010

Force Transmission in Cohesive Granular Media

Résumé

We use numerical simulations to investigate force and stress transmission in cohesive granular media covering a wide class of materials encountered in nature and industrial processing. The cohesion results either from capillary bridges between particles or from the presence of a solid binding matrix filling fully or partially the interstitial space. The liquid bonding is treated by implementing a capillary force law within a debonding distance between particles and simulated by the discrete element method. The solid binding matrix is treated by means of the Lattice Element Method (LEM) based on a lattice-type discretization of the particles and matrix. Our data indicate that the exponential fall-off of strong compressive forces is a generic feature of both cohesive and noncohesive granular media both for liquid and solid bonding. The tensile forces exhibit a similar decreasing exponential distribution, suggesting that this form basically reflects granular disorder. This is consistent with the finding that not only the contact forces but also the stress components in the bulk of the particles and matrix, accessible from LEM simulations in the case of solid bonding, show an exponential fall-off. We also find that the distribution of weak compressive forces is sensitive to packing anisotropy, particle shape and particle size distribution. In the case of wet packings, we analyze the self-equilibrated forces induced by liquid bonds and show that the positive and negative particle pressures form a bi-percolating structure.
Fichier principal
Vignette du fichier
Radjai.pdf (1.96 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00690052 , version 1 (21-04-2012)

Identifiants

  • HAL Id : hal-00690052 , version 1

Citer

Farhang Radjai, Vincent Topin, Vincent Richefeu, Charles Voivret, Jean-Yves Delenne, et al.. Force Transmission in Cohesive Granular Media. J. D. Goddard, J. T. Jenkins et P. Giovine. Mathematical Modeling and Physical Instances of granular Flows, AIP, pp.240-260, 2010, 978-0-7354-0772-5. ⟨hal-00690052⟩
325 Consultations
588 Téléchargements

Partager

Gmail Facebook X LinkedIn More