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A NEW APPROACH TO THE CREATION AND PROPAGATION

OF EXPONENTIAL MOMENTS IN THE BOLTZMANN

EQUATION

RICARDO ALONSO, JOSÉ A. CAÑIZO, IRENE M. GAMBA, AND CLÉMENT MOUHOT

Abstract. We study the creation and propagation of exponential moments
of solutions to the spatially homogeneous d-dimensional Boltzmann equation.
In particular, when the collision kernel is of the form |v − v∗|βb(cos(θ)) for
β ∈ (0, 2] with cos(θ) = |v − v∗|−1(v − v∗) · σ and σ ∈ Sd−1, and assuming
the classical cut-off condition b(cos(θ)) integrable in Sd−1, we prove that there
exists a > 0 such that moments with weight exp(amin{t, 1}|v|β) are finite
for t > 0, where a only depends on the collision kernel and the initial mass
and energy. We propose a novel method of proof based on a single differential
inequality for the exponential moment with time-dependent coefficients.
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1. Introduction

We consider the spatially homogeneous Boltzmann equation in dimension d ≥ 2
with initial condition f0 ≥ 0, given by

(1) ∂tf = Q(f, f), f(t, ·) = f0

where f = f(t, v) ≥ 0 is a non-negative function depending on time t ≥ 0 and
velocity v ∈ Rd, with d ≥ 2. We will assume throughout this paper that f0 has
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finite mass and energy, i.e.,

‖f0‖L1(1+|v|2) :=

∫

Rd

(1 + |v|2)f0(v) dv < +∞.

For p ∈ [1,+∞], we denote by Lp the Lebesgue spaces of p-integrable real functions
on Rd, and the notation Lp(w(v) dv) (or simply Lp(w(v))) denotes the Lp space
with weight w(v). The collision operator Q(f, f) is given by

Q(f, f)(v) :=

∫

Rd×Sd−1

B(|v − v∗| , cos θ)(f
′
∗f

′ − f∗f) dv∗ dσ,

representing the total rate of binary interactions due to particles taking the direction
of v due to collisions, minus those that were knocked out from the v direction. We
follow the usual notation f ≡ f(v), f∗ ≡ f(v∗), f

′ ≡ f(v′), f ′
∗ ≡ f(v′∗). The vectors

v′, v′∗, which denote the velocities after an elastic collision of particles with velocities
v, v∗, are given by

v′ :=
v + v∗

2
+

|v − v∗|

2
σ, v′∗ :=

v + v∗
2

−
|v − v∗|

2
σ.

The variable θ denotes the angle between v − v∗ and σ, where σ is the unit vector
in the direction of the postcollisional relative velocity. On the collision kernel B we
assume that for some β ∈ (0, 2]

(2) B(|v − v∗| , cos θ) = |v − v∗|
β
b(cos θ),

with the following cut-off assumption:

(3) b ∈ L1
(

[−1, 1], (1− z2)
d−3

2 dz
)

.

If we define b̃(σ) := b(e1 ·σ), with e1 ∈ Sd−1 any fixed vector, then (3) is equivalent

to b̃ ∈ L1(Sd−1), which can be easily seen by a spherical change of coordinates.
Throughout the paper f always represents a solution to equation (1) on [0,+∞)

(in the sense of, e.g., [10]) and we always write, for p ≥ 0 (not necessarily an
integer),

(4) mp = mp(t) :=

∫

Rd

f(t, v) |v|
p
dv.

Main results. It is known that moments of order p > 2 and exponential moments
(L1-exponentially weighted estimates) with weight up to exp(a|v|2) for some a > 0
are propagated by equation (1) [5, 12, 2, 3, 6]; that is, they are finite for all times
t > 0 if they are initially finite, however with a deterioration of the constant a. In
[12] it was proved that in fact equation (1) with β > 0 instantaneously creates all
moments of orders p > 2, which then remain finite for all times t > 0. Here the
assumption that β > 0 is necessary, since the result is not true for Maxwell molecules
for instance [7]. Moreover, moments with exponential weight up to exp(a|v|β/2) for
some constant a > 0 were also shown to be instantaneously created in [9, 11]. In all
these proofs it was crucial to assume that the angular function b is in Lq

(

[−1, 1], (1−

z2)
d−3

2 dz
)

for q > 1 as done in [4, 6, 1]. We also refer to the recent work [8] for
moment production estimates in the so-called non-cutoff case, in which proofs are
based on the optimization of the traditional inductive argument [2, 3, 6, 9, 11].

We have several noticeable contributions in this paper. Indeed, we can extend the
existing propagation and creation of L1-exponentially weighted estimates to include
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the classical cut-off assumption b ∈ L1
(

[−1, 1], (1 − z2)
d−3

2 dz
)

without using the
iterative methods developed in [4, 6, 1]), and also we slightly relax the assumptions
on the initial data by requiring only finite mass and energy, and not necessarily finite
entropy as in previous works on creation of moments [12]. In addition, we improve
the weights for the creation of L1-exponentially weighted moments, with a weight
up to exp(a|v|β) (hence removing the 1/2 factor which was present in [9, 11]) for
solutions with finite mass and energy, assuming only an integrability condition on
b. More specifically, Theorem 1 gives an explicit rate of appearance of exponential
moments by showing that the coefficient multiplying |v|β in the exponential weight
can be taken linearly growing in time.

The most important point is that we introduce a new method of proof that not
only does not need iterative arguments but also allows for all these improvements.
This approach is also used in Theorem 2 for the propagation of exponential mo-
ments, and extends these results to classical cut-off assumptions on the angular
cross section b.

Theorem 1 (Creation of exponential moments). Let f be an energy-conserving
solution to the homogeneous Boltzmann equation (1) on [0,+∞) with initial data

f0 ∈ L1(1 + |v|
2
), and assume (2) and (3) with β ∈ (0, 2]. Then there are some

constants C, a > 0 (which depend only on b, β and the initial mass and energy)
such that

∫

Rd

f(t, v) exp
(

amin{t, 1} |v|β
)

dv ≤ C for t ≥ 0.

We remark that the existence and uniqueness of energy-conserving solutions with

initial data f0 ∈ L1(1 + |v|
2
) was proved in [10].

As mentioned above, our approach also provides a new proof of the property of
propagation of exponential moments [6, 4]. This is stated in the following theorem:

Theorem 2 (Propagation of exponential moments). Let f be an energy-conserving
solution to the homogeneous Boltzmann equation (1) on [0,+∞) with initial data

f0 ∈ L1(1 + |v|2), and assume (2) and (3) with β ∈ (0, 2]. Assume moreover that
the initial data satisfies for some s ∈ [β, 2]

(5)

∫

Rd

f0(v) exp
(

a0 |v|
s )

dv ≤ C0.

Then there are some constants C, a > 0 (which depend only on b, β and the initial
mass, energy and a0, C0 in (5)) such that

∫

Rd

f(t, v) exp
(

a |v|
s )

dv ≤ C for t ≥ 0.

We give in Section 3 a novel argument for proving these results which is based
on a differential inequality for the exponential moment itself, and the exploitation
of a discrete convolution-type estimate for the exponential moment of the gain
part of the collision operator. This avoids the intricate combination of induction
and maximum principle arguments in the previous proofs of propagation [6, 4] and
appearance [9, 11] of exponential moments. It also clarifies the structure underlying
these induction arguments. The starting point of both these previous works and
our approach is the creation and propagation of polynomial moments in [5, 12]
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and the Povzner inequalities proved in [4, 1]. We include a short appendix which
gathers some of the classical technical results used along the proofs.

2. Refresher on the sharp Povzner Lemma

The following lemma reflects the angular averaging property of the spherical
integral acting on positive convex test functions evaluated at the postcollisional
velocities. These estimates are crucial to be able to control in a sharp form the
moments of the gain operator by estimates for lower bounds of the loss operator.
They were originally introduced in [4, Corollary 1] and further developed in [6,
Lemma 3 and 4] and more recently in [1, Lemma 2.6]. We summarize these results
as follows:

Lemma 3 (Sharp Povzner (angular averaging) Lemma). Assume that b : (−1, 1) →
[0,∞) satisfies (3), and impose without loss of generality the following normaliza-
tion condition

(6)

∫ 1

−1

b(z)(1− z2)
d−3

2 dz =
1

|Sd−2|
,

where |Sd−2| is the area of the (d − 2)-dimensional unit sphere. Then for p ≥ 1 it
holds that

(7)

∫

Sd−1

(

|v′|
2p

+ |v′∗|
2p
)

b(cos θ) dσ ≤ γp

(

|v|
2
+ |v∗|

2
)p

where γp > 0 are constants such that γ1 = 1, p 7→ γp is strictly decreasing and tends
to 0 as p → ∞.

Remark 4. In the case when the symmetrization z 7→ b(z) + b(−z) of b is nonde-
creasing in [0, 1], these constants are controlled by

(8) γp ≤
1

|Sd−2|

∫ 1

−1

b(z)

(

1 + z

2

)p

(1 − z2)
d−3

2 dz .

Remark 5. In addition, when b ∈ Lq([−1, 1], (1 − z2)(d−3)/2 dz) with q > 1, the
decay of γp can be estimated and shown to be polynomial: there exists a constant
C > 0 such that

γp ≤ min

{

1,
C

p1/q′

}

(p > 1),

with q′ the Hölder dual of q (i.e., 1/q+1/q′ = 1). Furthermore, in the case q = +∞,
that is, for b bounded, it holds that

γp ≤ min

{

1,
16πb∗

p+ 1

}

(p > 1),

with b∗ := max−1≤z≤1 b(z).

Let us now state the key a priori estimate on the polynomial moments, which
shall be used in the sequel. For later reference, we define the following quantity for
any s, p > 0:

(9) Ss,p = Ss,p(t) :=

kp
∑

k=1

(

p

k

)

(

msk+β ms(p−k) +msk ms(p−k)+β

)

,

with kp the integer part of (p+ 1)/2.
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Lemma 6 (A priori estimate on the polynomial moments). For s ∈ (0, 2] and
p0 > 2/s, the following a priori inequality is true whenever all the terms make
sense:

(10)
d

dt
msp ≤ 2γsp/2Ss,p −K1msp+β +K2msp for t ≥ 0, p ≥ p0 >

2

s
,

with Ss,p given by (9) and constants

(11) K1 := 2(1− γsp0/2)Cβm0 and K2 = 2mβ

with Cβ := min{1, 21−β}.
Alternatively in the case β ∈ (0, 1], it is possible to get rid of the second constant,

and obtain

(12) K1 := 2(1− γsp0/2)C̄βm0 and K2 = 0

for some constant C̄β depending on β and the initial data.
In both cases, the constant γsp0/2 depends on the integrability of the angular

function b and on p0 > 2/s.

Proof. Using Lemma 3 one obtains for any p ≥ 2/s:

(13)
d

dt
msp

≤ γsp/2

∫

Rd×Rd

ff∗

(

(

|v|2 + |v∗|
2
)

sp

2 − |v|sp − |v∗|
sp
)

|v − v∗|
β dv dv∗

− 2(1− γsp/2)

∫

Rd×Rd

ff∗|v|
sp|v − v∗|

β dv dv∗.

In order to estimate the right hand side of (13) we first focus on an upper bound
for its positive term. Since 0 < s/2 ≤ 1, then

(

|v|2 + |v∗|
2
)

sp

2 ≤ (|v|s + |v∗|
s)

p
.

Hence, using Lemma 11 in the Appendix (a classical result taken from [4, Lemma
2]) and the estimate |v − v∗|

β ≤ 2|v|β + 2|v∗|
β we obtain that, for any p ≥ 1, the

first integral in (13) is controlled by

(14) γsp/2

∫

Rd×Rd

ff∗

(

(

|v|2 + |v∗|
2
)

sp
2 − |v|sp − |v∗|

sp
)

|v − v∗|
β dv dv∗

≤ 2γsp/2Ss,p.

The estimate of the negative term in (13) requires a control from below. When
β ∈ (0, 1] it follows from Lemma 12 in the Appendix (taken from [6, Lemma 2])
that the lower bound for the negative term in (13) satisfies

(15) 2(1− γsp/2)

∫

Rd×Rd

ff∗|v|
sp|v − v∗|

β dv dv∗ ≥ 2 C̄β (1 − γsp/2)m0msp+β

for some constant C̄β related to β and the initial data. So estimate (10) follows
with K1 and K2 as in (12).

In the general case β ∈ (0, 2], the previous argument does not necessarily follow,
yet it is still possible to obtain an easier lower bound that still allows for the control
of moments and their summability. We use the fact that |v−v∗|

β ≥ 21−β|v|β−|v∗|
β
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(which can be obtained from the triangle inequality and the inequality (x+ y)β ≤
C−1

β (xβ + yβ) for x, y ≥ 0.) This gives a lower bound for the negative term in (13):

(16) 2(1− γsp/2)

∫

Rd×Rd

ff∗|v|
sp|v − v∗|

β dv dv∗

≥ 2(1− γsp/2)Cβm0msp+β − 2mβmsp.

Since γsp decreases as p → ∞, it follows that 2(1−γsp/2)Cβm0 ≥ K1 for any p ≥ p0.
Hence, estimate (10) follows with K1 and K2 as in (11). �

Remark 7. We note that neither in the work [6] nor in here the finiteness of the
entropy is required, however it was needed in the earlier work [12] in order to
obtain lower bounds for the negative term in (13). If the solution has a finite
entropy, then these lower bounds may be obtained by the same technique as in [12].
Observe however that the constant C̄β in the case β ∈ (0, 1] with K2 = 0 depends
on the initial data in a non-trivial way, through the positive constant C > 0 such
that

∫

Rd

f0(v∗) |v − v∗|
β dv∗ ≥ C(1 + |v|β)

which cannot be expressed simply in terms of the mass and energy of f0. Neverthe-
less the general argument (involvingK2 > 0) does provide constants only depending
on the initial data through its mass and momentum.

Next, we recall and prove a very similar result to that in [12, Theorem 4.2].
The main difference is that finiteness of the entropy of the initial condition is not
required here.

Lemma 8 (Creation and propagation of polynomial moments). Assume (2) and
(3) with 0 < β ≤ 2. Set s ∈ (0, 2], and let f be an energy-conserving solution to the

homogeneous Boltzmann equation (1) with initial data f0 ∈ L1(1+ |v|
2
). For every

p > 0 there exists a constant Csp ≥ 0 depending only on p, s, b and the initial mass
and energy, such that

(17) msp(t) ≤ Csp max{1, t−sp/β} for t > 0.

If msp(0) is finite, then the control can be improved to simply

(18) msp(t) ≤ Csp for t ≥ 0

for some constant Csp depending only on p, s, b, the initial mass and energy, and
mp(0).

Proof. Following a common procedure (see [10, 12]), the estimates can be carried
first on a truncated solution (for which all moments are finite and our calculations
are rigorously justified), and then proved for the solution to the full problem by
relaxing the truncation parameter.

Let us prove (17): observe that by Hölder’s inequality

Ss,p ≤ Cmβmsp and msp+β ≥ Km1+β/(sp)
sp

for some constants C, K > 0 depending only on s, p, the initial mass and energy.
Since β ≤ 2, we have 1 ≤ 2/β and therefore mβ is controlled by the mass and
energy. We deduce that msp satisfies the differential inequality

(19)
d

dt
msp ≤ C′msp −Km1+β/(sp)

sp
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for some other constant C′ > 0 depending only on s, p, the initial mass and en-
ergy. This readily implies the bound (17) by computing an upper solution to this
differential inequality, and the bound (18) by a maximum principle argument. �

Remark 9. Observe that the polynomial bound O(t−sp/β) on the appearance of
mp is not optimal, as can be seen from [10, Theorem 1.1]. However our rate of
appearance of exponential moments can be seen to be optimal by inspection of
the simpler equation ∂tf = −C

(

1 + |v|β
)

f which provides subsolutions to the
Boltzmann equation.

3. Proof of the main theorems

In this section we give a proof of Theorems 1 and 2 valid for any integrable cross-
section b. We first carry out the estimates on a finite sum of polynomial moments,
and then pass to the limit.

Our goal is to estimate the quantity

Es(t, z) :=

∫

Rd

f(t, v) exp
(

z |v|
s )

dv =

∞
∑

p=0

msp(t)
zp

p!

where s = β and z = at for Theorem 1 and s ∈ (0, 2] and z = a for Theorem 2, for
some a > 0. For use below let us define the truncated sum as

En
s (t, z) :=

n
∑

p=0

msp(t)
zp

p!

for n ∈ N, z ≥ 0, and t ≥ 0. We also define

Ins,β(t, z) :=

n
∑

p=0

msp+β(t)
zp

p!
.

Let us first prove the key lemma, which identifies the discrete convolution struc-
ture. This result gives a control for finite sums of the moments associated to the
gain operator. It is uniform in β ∈ (0, 2]:

Lemma 10. Assume 0 < β ≤ s ≤ 2. For any p0 ≥ 2/s, we have the following
functional inequality

(20)

n
∑

p=p0

zp

p!
Ss,p(t) ≤ 2En

s (t, z)I
n
s,β(t, z)

where Ss,p was defined in (9).

Proof. Let us recall the definition of Ss,p from (9):

Ss,p :=

kp
∑

k=1

(

p

k

)

(

msk+β ms(p−k) +msk ms(p−k)+β

)

,
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where kp is the integer part of (p+ 1)/2. The first part of the sum in the left hand
side of (20) can be bounded as:

n
∑

p=p0

zp

p!

kp
∑

k=1

(

p

k

)

msk+β ms(p−k) =

n
∑

p=p0

kp
∑

k=1

msk+β
zk

k!
ms(p−k)

zp−k

(p− k)!

≤
n
∑

k=1

msk+β
zk

k!

n
∑

p=max{p0,2k−1}

ms(p−k)
zp−k

(p− k)!
≤ Ins,β(t, z)E

n
s (t, z).

We carry out a similar estimate for the other part:

n
∑

p=p0

zp

p!

kp
∑

k=1

(

p

k

)

msk ms(p−k)+β =

n
∑

p=p0

kp
∑

k=1

msk
zk

k!
ms(p−k)+β

zp−k

(p− k)!

≤

n
∑

k=1

msk
zk

k!

n
∑

p=max{p0,2k−1}

ms(p−k)+β
zp−k

(p− k)!
≤ En

s (t, z)I
n
s,β(t, z)

which concludes the proof. �

We now can prove both Theorem 1 and Theorem 2. We write the proof first for
the case β ∈ (0, 1] with the choice of constants (12) in (10) (hence with K2 = 0).
Later we show the corresponding estimates for the full range β ∈ (0, 2] using the
choice of constants (11) in (10).

Proof of Theorem 1. First we notice that it is enough to prove the following (under
the same assumptions): there are some constants T,C, a > 0 (which depend only
on b and the initial mass and energy) such that

(21)

∫

Rd

f(t, v) exp
(

at |v|β
)

dv ≤ C for t ∈ [0, T ].

Indeed, since the assumptions of lower and upper bounds on the mass and energy
are satisfied uniformly in time along the flow, for t ≥ T it is then possible to apply
(21) starting at time (t− T ).

Hence, we aim at proving the estimate (21). We set s = β. Consider a > 0 to
be fixed later, n ∈ N and define T > 0 as

T := min
{

1 ; sup
{

t > 0 s.t. En
β (t, at) < 4m0

}

}

.

The definition is consistent since En
β (0, 0) = m0 and the Lemma 8 ensures that

T > 0 for each given n. The bound of 1 is not essential, and is included just to
ensure that T is finite. We note that a priori such T depends on the index n in the
sum En

β . However, we will show that T has a lower bound that depends only on
b, β and the initial mass and energy, thus proving the theorem. Unless otherwise
noted, all equations below which depend on time are valid for t ∈ [0, T ].

Choose an integer p0 > 2/β, to be fixed later. Starting from Lemma 6 (inequal-
ity (10)), we have

(22)
d

dt
mβp ≤ 2γβp/2Sβ,p −K1mβ(p+1) for t ≥ 0, p ≥ p0,

with Sβ,p given by (9) and K1 defined in (12), independent of p with p ≥ p0 as
soon as p0 is strictly bounded away from 2/β.
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In addition, from Lemma 8 (inequality (17)) we know that there exists a constant
Cp0

> 0 (depending on p0) such that

(23)

p0
∑

p=0

mβp(t) t
p ≤ Cp0

for all t ∈ [0, T ].

Taking any a < 1 and using the product rule,

d

dt

n
∑

p=p0

mβp
(at)p

p!

≤

n
∑

p=p0

(at)p

p!

(

2γβp/2Sβ,p −K1mβ(p+1)

)

+ a

n
∑

p=p0

mβp
(at)p−1

(p− 1)!

≤ 2

n
∑

p=p0

(at)p

p!
γβp/2Sβ,p + (a−K1)I

n
β,β(t, at) + (K1 + a)

p0
∑

p=1

mβp
(at)p−1

(p− 1)!

≤ 2

n
∑

p=p0

(at)p

p!
γβp/2Sβ,p + (a−K1)I

n
β,β(t, at) +

1

t
(K1 + a)Cp0

,

where we have used a < 1 and (23) in the last step. Hence, from Lemma 10
(inequality (20)) we obtain

d

dt

n
∑

p=p0

mβp
(at)p

p!
≤ Inβ,β(t, at)

[

4γβp0/2E
n
β (t, at) + (a−K1)

]

+
1

t
(K1 + a)Cp0

.

Next, choose p0 large enough such that 16γβp0/2m0 ≤ (1/4)K1 (or equivalently, by

using the definition of K1 in (11), γβp0/2 < (32 + C̄β)
−1) and restrict further the

parameter a, so that a ≤ K1/2. Then, as En
β (t, at) ≤ 4m0 for t ∈ [0, T ], by the

definition of T we have

(24)
d

dt

n
∑

p=p0

mβp
(at)p

p!
≤ −

1

4
K1I

n
β,β(t, at) +

1

t
(K1 + a)Cp0

≤ −
1

t

(

K1

4a
(En

β (t, at)−m0)− (K1 + a)Cp0

)

where for the last inequality we have used that

Inβ,β(t, at) ≥
(En

β (t, at)−m0)

at
.

We make the additional restriction that a < m0/(6Cp0
), which together with a <

K1/2 implies that

K1

4a
m0 > (K1 + a)Cp0

.

Then, whenever En
β (t, at) ≥ 2m0,

(25)
d

dt

n
∑

p=p0

mβp
(at)p

p!
≤ 0
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for any time t ∈ [0, T ] for which En
β (t, at) ≥ 2m0 holds. This is true in particular

when
∑n

p=p0
mβp

(at)p

p! ≥ 2m0. We deduce that

(26)

n
∑

p=p0

mβp
(at)p

p!
≤ 2m0 for t ∈ [0, T ].

In order to finish the argument we need to bound the initial part of the full sum
(from p = 0 to p0 − 1.) Indeed, we note that from (23),

(27)

p0−1
∑

p=0

mβp
(at)p

p!
≤ m0 + aCp0

for t ∈ [0, T ],

so, recalling that 6aCp0
< m0 and using (26) and (27)

En
β (t, at) =

p0−1
∑

p=0

mβp
(at)p

p!
+

n
∑

p=p0

mβp
(at)p

p!
≤ 3m0 + aCp0

≤
19

6
m0

for t ∈ [0, T ], uniformly in n. Finally, gathering all conditions imposed along the
proof on the parameter a, we choose

(28) a := min

{

1,
K1

2
,
m0

6Cp0

}

independently of n, where K1 was defined in (12) and Cp0
in (23). We conclude,

from the definition of T , that T = 1 for all n. Sending n → ∞, Theorem 1 follows.

In the general case β ∈ (0, 2], since K2 in (11) is not zero, equation (22) has an
extra term in the right hand side, namely

d

dt
mβp ≤ 2γβp/2Sβ,p −K1mβ(p+1) +K2mβp for t ≥ 0, p ≥ p0.

In this case using again that En
β (t, at) ≤ 4m0 on [0, T ], (24) is now modified as

(29)
d

dt

n
∑

p=p0

mβp
(at)p

p!
≤ −

1

4
K1I

n
β,β(t, at) +

1

t
(K1 + a)Cp0

+K2E
n
β (t, at)

≤ −
1

t

(

K1

4a
(En

β (t, at)−m0)− (K1 + a)Cp0

)

+ 4K2m0.

Hence by tuning the constants as before, at any time t ∈ [0, T ] for which En
β (t, at) ≥

2m0 we have

d

dt

n
∑

p=p0

mβp
(at)p

p!
≤ K3

with K3 = 4K2m0. The corresponding to equation (26) is then
n
∑

p=p0

mβp
(at)p

p!
≤ 2m0 +K3t t ∈ [0, T ].

It follows as before that

En
β (t, at) ≤

19

6
m0 +K3t , t ∈ [0, T ] ,

uniformly in n. Then T ≥ m0/(2K3), where K3 is a constant which depends only
on b, the hard potential exponent β and initial mass and energy. In particular for
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the same rate a as in (28) the conclusion follows since both a and T are uniform in
the index n and the limit in n can be performed as well. �

Proof of Theorem 2. Consider again first the case β ∈ (0, 1], and s ∈ [β, 1] as in
(5), a > 0 to be fixed later and n ∈ N. Define T > 0 as

T := sup
{

t > 0 s.t. En
s (t, a) < 4m0

}

.

This definition is consistent since En
s (0, a) ≤ Es(0, a) < 4m0 for a small enough

thanks to the assumption (5) on the initial data, and the Lemma 8 ensures that
T > 0 for each given n. We will show that, for a chosen small enough, T = +∞ for
any n, thus proving the theorem.

Choose an integer p0 > 2/s, to be fixed later. Starting again from Lemma 6
(inequality (10) with the choice of constants (12)), we have

(30)
d

dt
msp ≤ 2γsp/2Ss,p −K1msp+β for t ≥ 0, p ≥ p0,

with Ss,p given by (9) and K1 given by (12), independent of p with p ≥ 0. Also,
from Lemma 8 (inequality (18)) we know that there exists a constant Cs,p0

> 0
(depending on s, p0) such that

(31)

p0
∑

p=0

msp ≤ Cs,p0
for all t ∈ [0, T ].

Taking any a < min{1, a0}, we have

d

dt

n
∑

p=p0

msp
ap

p!
≤

n
∑

p=p0

ap

p!

(

2γsp/2Ss,p −K1msp+β

)

≤ 2
n
∑

p=p0

ap

p!
γsp/2Ss.p −K1I

n
s,β(t, a) +K1

p0−1
∑

p=0

msp+β
ap

p!

≤ 2
n
∑

p=p0

ap

p!
γsp/2Ss,p −K1I

n
s,β(t, a) +K1Cs,p0

,

where we have used a < 1 and (31) in the last step. Hence, from Lemma 10
(inequality (20)) we obtain

(32)
d

dt

n
∑

p=p0

msp
ap

p!
≤ Ins,β(t, a)

[

4γsp0
En

s (t, a)−K1

]

+K1Cs,p0
,

where, as in the previous proof, we also choose p0 such that 16γsp0/2m0 ≤ (1/2)K1.
Then, as En

s (t, a) ≤ 4m0 for t ∈ [0, T ] by definition of T we have

d

dt

n
∑

p=p0

msp
ap

p!
≤ −

1

2
K1I

n
s,β(t, a)+K1Cs,p0

≤ −
K1

2a
En

s (t, a)+K1

(m0

2a
+ ea

)

+K1Cs,p0
,
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where for the last inequality we have used that

Ins,β(t, a) ≥

∫

|v|≥1

(

n
∑

p=1

|v|sp+β a
p

p!

)

f dv ≥

∫

|v|≥1

(

n
∑

p=1

|v|sp
ap

p!

)

f dv

≥

∫

Rd

(

n
∑

p=1

|v|sp
ap

p!

)

f dv − ea
∫

Rd

f dv ≥
(En

s (t, a)−m0)

a
− ea,

so that

(33)
d

dt

n
∑

p=p0

msp
ap

p!
≤ −

K1

2a
En

s (t, a) +K1

(m0

2a
+ ea

)

+K1Cs,p0
.

Next, recalling estimate (19) in the proof of Lemma 8

d

dt
msp ≤ C′msp

valid for any p ∈ N and constant C′ depending only on s, p, initial mass and energy.
Summing in p, from 0 to p0 − 1, and using estimate (18) we obtain

d

dt
En

s (t, a) ≤ −
K1

2a
En

s (t, a) +K1

(m0

2a
+ ea

)

+ (K1 + C′)Cs,p0
.

This implies, by a maximum principle argument for ODEs, that the bound

En
s (t, a) ≤ m0 + 2a

[(

1 +
C′

K1

)

Cs,p0
+ ea

]

holds uniformly for t ∈ [0, T ], as the parameters in the right hand side are uniform
in time. Choosing a small enough such that

m0 + 2a

[(

1 +
C′

K1

)

Cs,p0
+ ea

]

< 4m0 ,

or equivalently

a < min







1, a0,
K1

2
,

3m0

2
[(

1 + C′

K1

)

Cs,p0
+ ea

]







,

where K1 was defined in (12) and Cs,p0
in (31), proves by definition of T that

T = +∞ for any n. Passing to the limit n → +∞ concludes the proof.

In the general case β ∈ (0, 2], again as in the previous proof it follows that
equation (30) has the extra positive term in the right hand side K2msp. The
corresponding equation to (32) is now

(34)
d

dt

n
∑

p=p0

msp
ap

p!
≤ Ins,β(t, a)

[

4γsp0
En

s (t, a)−K1

]

+K2E
n
s (t, a) + (K1 +K2)Cs,p0

and consequently, arguing as before we get

d

dt

n
∑

p=p0

msp
ap

p!
≤

(

K2 −
K1

2a

)

En
s (t, a) +K1

(m0

2a
+ ea

)

+ (K1 +K2)Cs,p0
.
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In particular, making the additional restriction that a < K1/(4K2) we obtain the
bound

En
s (t, a) ≤ 2m0 + 4a

[(

1 +
K2

K1
+

C′

K1

)

Cs,p0
+ ea

]

uniformly for t ∈ [0, T ], where now a is chosen so that

a < min







1, a0,
K1

8K2
,

m0

2
[(

1 + K2

K1

+ C′

K1

)

Cs,p0
+ ea

]







,

with K1 and K2 given in (11), with p0 such that γsp0/2 < (32+21−β)−1. The proof
is then completed as in the case β ∈ (0, 1] above. �

Appendix A. Some technical tools on moments

We collect here two technical calculations from previous works.

Lemma 11 (Lemma 2 in [4]). Assume that p > 1, and let kp denote the integer
part of (p+ 1)/2. Then for all x, y > 0 the following inequalities hold

kp−1
∑

k=1

(

p

k

)

(

xkyp−k + xp−kyk
)

≤ (x+ y)p − xp − yp ≤

kp
∑

k=1

(

p

k

)

(

xkyp−k + xp−kyk
)

.

Lemma 12 (Lemma 2 in [6]). The energy-conserving solutions to the Boltzmann
equation (1) on [0,+∞) with initial data f0 ∈ L1(1 + |v|2) satisfy

∀ t ≥ 0, ∀ v ∈ R
d,

∫

Rd

f(t, v∗)|v − v∗|
s dv∗ ≥ cs

∫

Rd

f0(v∗)|v − v∗|
s dv∗

for any s ∈ (0, 1] and some constant cs > 0 depending on s. This implies that

∀ t ≥ 0, ∀ v ∈ R
d,

∫

Rd

f(t, v∗)|v − v∗|
s dv∗ ≥ Cf0,s (1 + |v|s)

for any s ∈ (0, 1] and some constant Cf0,s > 0 depending on s and the initial data
f0.
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