
HAL Id: hal-00677784
https://hal.science/hal-00677784

Submitted on 11 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint Elastic Cloud and Virtual Network Framework for
Application Performance-cost Optimization

Tram Truong Huu, Guilherme Koslovski, Fabienne Anhalt, Johan Montagnat,
Pascale Vicat-Blanc Primet

To cite this version:
Tram Truong Huu, Guilherme Koslovski, Fabienne Anhalt, Johan Montagnat, Pascale Vicat-Blanc
Primet. Joint Elastic Cloud and Virtual Network Framework for Application Performance-cost Op-
timization. Journal of Grid Computing, 2011, 9 (1), pp.27-47. �10.1007/s10723-010-9168-6�. �hal-
00677784�

https://hal.science/hal-00677784
https://hal.archives-ouvertes.fr

Journal of Grid Computing manuscript No.

(will be inserted by the editor)

Joint elastic cloud and virtual network framework for

application performance-cost optimization

Tram Truong Huu · Guilherme Koslovski ·

Fabienne Anhalt · Johan Montagnat ·

Pascale Vicat-Blanc Primet

Received: date / Accepted: date

Abstract Cloud computing infrastructures are providing resources on demand for tackling

the needs of large-scale distributed applications. To adapt to the diversity of cloud infras-

tructures and usage, new operation tools and models are needed. Estimating the amount of

resources consumed by each application in particular is a difficult problem, both for end

users who aim at minimizing their costs and infrastructure providers who aim at control-

ling their resources allocation. Furthermore, network provision is generally not controlled

on clouds. This paper describes a framework automating cloud resources allocation, deploy-

ment and application execution control. It is based on a cost estimation model taking into

account both virtual network and nodes managed by the cloud. The flexible provisioning of

network resources permits the optimization of applications performance and infrastructure

Tram Truong Huu
University of Nice - Sophia Antipolis
I3S Laboratory, FRANCE
Tel.: +33 4 92 96 50 58
E-mail: tram@polytech.unice.fr
http://modalis.polytech.unice.fr/˜tram

Guilherme Koslovski
INRIA - University of Lyon, FRANCE
E-mail: guilherme.koslovski@ens-lyon.fr
http://perso.ens-lyon.fr/guilherme.koslovski

Fabienne Anhalt
INRIA - University of Lyon, FRANCE
E-mail: fabienne.anhalt@ens-lyon.fr
http://perso.ens-lyon.fr/fabienne.anhalt

Johan Montagnat
CNRS - I3S Laboratory, FRANCE
Tel.: +33 4 92 96 51 03
E-mail: johan@i3s.unice.fr
http://www.i3s.unice.fr/˜johan

Pascale Vicat-Blanc Primet
INRIA - University of Lyon, FRANCE
Tel.: +33 4 7272 8802
E-mail: pascale.primet@inria.fr
http://perso.ens-lyon.fr/pascale.primet

http://modalis.polytech.unice.fr/~tram
http://perso.ens-lyon.fr/guilherme.koslovski
http://perso.ens-lyon.fr/fabienne.anhalt
http://www.i3s.unice.fr/~johan
http://perso.ens-lyon.fr/pascale.primet

2 T. Truong Huu, G. Koslovski, F. Anhalt, J. Montagnat, P. Vicat-Blanc Primet

cost reduction. Four resource allocation strategies relying on the expertise that can be cap-

tured in workflow-based applications are considered. Results of these strategies are confined

virtual infrastructure descriptions that are interpreted by the HIPerNet engine responsible for

allocating, reserving and configuring physical resources. The evaluation of this framework

was carried out on the Aladdin/Grid’5000 testbed using a real application from the area of

medical image analysis.

Keywords Cloud computing · Resources allocation · IaaS · Workflows · Network

virtualization · Description language

1 Introduction

Cloud computing infrastructures are being increasingly exploited for tackling the compu-

tation needs of large-scale distributed applications. They provide resources on demand to

address the computation needs of the applications. The virtualization technologies exploited

ease the migration of heavyweight applications by adapting the execution environment to

the specific application requirements. A challenging problem, both for cloud providers and

cloud users is the estimation of the amount of resources to allocate out of the cloud for a

specific usage. In the commercial cloud offers, various business models have been devel-

oped to bill resources usage. They are usually based on a coarse-grained metering of the

amount of CPU and disk space consumed. Estimating the proper amount of resources to al-

locate is left to the responsibility of the user, although such an estimation is far from trivial,

especially when considering distributed applications. From a user point of view, assistance

in resources consumption planing and cost management is therefore highly desirable. Fur-

thermore, there exist non-commercial platforms for which a finer estimate of the resources

allocation process is of interest for the infrastructure providers. Finally, CPU and disk space

are not necessarily the only resources that can be provisioned. For instance, network band-

width is also a critical resource for many distributed applications. This paper addresses the

problem of estimating the “optimal” amount of cloud resources (network links and nodes)

needed to run complex distributed applications according to various strategies.

From an infrastructure provider point of view, the major challenge is to account (fi-

nancially or not) for resources usage according to specific criteria (e.g. fair share among

users, degressive price, etc). Commercial cloud infrastructures use a simple cost computa-

tion model (e.g. Amazon EC21 charges users per hours of resources usage, per GB/month of

storage and for the generated trafic in networks) that lets the user responsible for precisely

estimating the amount of resources to reserve. This practice is less suitable for dedicated

infrastructures, such as academic clouds or intra-enterprise clouds, for which providers are

not only interested in billing but also aim at improving quality of services and optimizing

resources sharing. Therefore, a finer grain model has to be proposed to (i) decide on the

amount of resources to allocate to each application and (ii) compute the resources usage

cost.

From a user point of view, the problem of determining the size of the infrastructure

to deploy for supporting a given application run is often a difficult one. Although a quasi-

unlimited amount of computing resources may be allocated, a trade-off has to be found

between (i) the allocated infrastructure cost, (ii) the performance expected and (iii) the opti-

mal performance achievable, that depends on the level of parallelization of the application.

1 http://aws.amazon.com/ec2/

http://aws.amazon.com/ec2/

Joint elastic cloud and virtual network framework for application cost/performance 3

Without assistance, the user has to resort to a qualitative appreciation of the optimal infras-

tructure to allocate, based on her previous experience with the application and the cloud

computing system used.

Theoretically, the cost of an infrastructure deployment and usage scenario may be quan-

titatively estimated by the system if sufficient information on the application and the infras-

tructure is known. In the general case though, it is hardly feasible to anticipate the precise

needs of a parallel application or the behavior of such an application given a determined size

infrastructure. Restraining the problem a bit more, it appears that workflow-based applica-

tions have good properties for such a quantitative estimation. Workflow-based applications

represent a large class of coarse-grained distributed applications [16]. Taking advantage of

the workflow formalism, the application logic can be interpreted and exploited to produce

an execution schedule estimate.

Determining the amount of computational and storage resources needed for each appli-

cation run is often not sufficient when considering distributed applications. Communication

network bandwidth is also a critical resource, shared among the infrastructure users, which

may impact application performance significantly. Nowadays, the virtualization paradigm

can be applied and combined to both network and computing resources and the Infrastruc-

ture as a Service can be extended to the network. This advanced cloud computing paradigm

enables the definition of confined execution environments, including the amount of virtual

resources needed, virtual network topology and network links bandwidth. The global cloud

infrastructure manager is able to create multiple, isolated and protected environments for

multiple users concurrently sharing the same set of physical resources without interfering

with each others.

The objective of this paper is to develop virtual infrastructures design strategies for cloud

computing platforms which size and topology is optimized according to some well-defined

metric. These strategies can be used for (i) users to foresee the optimal infrastructure needed

for their application given a determined input data set and (ii) infrastructure providers to

allocate resources. These strategies are implemented into a framework which allows users

to describe and automatically deploy their execution environment. The paper is structured

as follows. Section 2 defines the concept of customized virtual private execution infras-

tructure which extends the Infrastructure as a Service paradigm to the network. Section 3

formulates the workflow-based cost estimation model used to design such execution in-

frastructures according to four different strategies. Section 4 describes the HIPerNet virtual

infrastructure management middleware developed and proposes an experimental validation

of our approach using a real distributed application in the area of medical image analysis.

Experiments are carried out on the Aladdin/Grid’5000 research infrastructure.

2 Network extension of IaaS paradigm

In the cloud computing context, the network is generally not controlled and network re-

sources are charged according to the total volume of data transferred. Nowadays, networking

technology such as network resource virtualization or dynamic bandwidth control enables

the flexible provisioning of virtual network resources.

4 T. Truong Huu, G. Koslovski, F. Anhalt, J. Montagnat, P. Vicat-Blanc Primet

2.1 The VPXI concept

We define the Virtual Private eXecution Infrastructure (VPXI) concept as a time-limited

interconnection of virtual computing resources through a virtual private overlay network.

Any user of a VPXI has the illusion that she is using her own distributed system, while in

reality she is using shared cloud resources. The resulting virtual instances are kept isolated

from each others. The members of a VPXI have a consistent view of a single private TCP/IP

overlay, independently from the underlying physical topology. A VPXI can span multiple

networks belonging to disparate administrative domains. Users can join from any location,

and deploy and use the same TCP/IP applications they were using on the Internet or their

intranet.

A VPXI can be formally represented as a graph in which a vertex is in charge of ac-

tive data-processing functions and an edge is in charge of moving the data between ver-

tices. A VPXI specification comprises the recursive description of: a) individual computing

resources or resource aggregates (clusters) involved, b) performance attributes for each re-

source element (capacity), c) security attributes, d) commercial attributes, e) temporal at-

tributes, f) elementary functions, which can be attributed to a single resource or a cluster

(e.g. request of computing nodes, storage nodes, visualization nodes, or routing nodes), g)

specific services to be provided by the resource (software), h) the virtual-network’s topol-

ogy, including the performance characteristics (typically bandwidth and latency), as well as

the security, commercial and temporal attributes of the virtual channels.

Fig. 1 illustrates this concept representing a virtual infrastructure composed by the ag-

gregation of virtual machines interconnected through virtual links. It shows two virtual

routers (vertices rvA and rvB) which are used to interconnect and perform the bandwidth

control among the other virtual resources (vertices rv 1 to 8). The virtual routers can in-

dependently forward the traffic of the different virtual infrastructures which share the same

physical network. Each edge represents a virtual link (as lv1 and lv2) with different config-

urations, used to interconnect a pair of virtual resources.

Fig. 1: Example of a VPXI composition using graph notation

Joint elastic cloud and virtual network framework for application cost/performance 5

2.2 Virtual Infrastructures description

A VPXI is described through the Virtual eXecution Description Language (VXDL [24]).

VXDL is an XML-based language that allows the user to describe not only the end re-

sources, but also the virtual network’s topology, including virtual routers and timeline rep-

resentation. The VXDL grammar is divided into Virtual Resources, Virtual Network Topol-

ogy, and Virtual Timeline description as described below. Note that these descriptions are

partially optional: it is possible to specify a simple communication infrastructure (a virtual

private overlay network) or a simple aggregate of end resources without any network topol-

ogy description (a virtual cluster or grid).

Virtual Resources Description. This part of VXDL grammar enables users and applica-

tions to describe, in a simple and abstract way, all the required end hosts and host groups.

VXDL allows the basic resource parametrization (e.g. minimum and maximum acceptable

values for RAM memory and CPU frequency). An important feature of VXDL is that it

proposes cross-layer parameters. With the specification of anchor and the number of vir-

tual machines allocated per physical host users can directly interact with lower layers and

transmit application-specific information. The anchor parameters corresponds to a physi-

cal allocation constraint of a VPXI. Indeed, in theory a VPXI can be allocated anywhere

in a virtualized substrate, but sometimes it is desirable that a virtual end host (or group) be

positioned in a given physical location (e.g. a site or a machine - URL, IP) for an application-

specific reason. On the other hand, in a virtualized substrate, multiple virtual machines can

be allocated in the same physical host, sharing the real resources. VXDL enables the defi-

nition of a maximum number of virtual machines that must be allocated in a physical host,

enabling users to interact directly with the allocation algorithm.

Virtual Network Topology Description. VXDL brings two original aspects within the net-

work’s topology description: (i) the joined specification of network elements and computing

elements and (ii) the link-organization concept, which permits a simple and abstract descrip-

tion of complex structures. Links can define connections between end hosts, between end

hosts and groups, inside groups, between groups and VXrouters, and between VXrouters.

In VXDL grammar, the definition of source - destination pairs for each link is proposed.

The same link definition can be applied to different pairs, simplifying the specification of

complex infrastructures. For example, links used to interconnect all components of an ho-

mogeneous group, as a cluster, can all be defined in a same link description. Each link can

be defined by attributes such as latency, bandwidth, and direction. Latency and bandwidth

can be defined by the maximum and minimum values.

Virtual Timeline Description. Any VPXI can be permanent, semi-permanent, or temporary.

The VPXI are allocated for a defined lifetime in time slots. Time slots duration is specific

to the substrate-management framework and consequently this parameter is configured by

the manager of the environment. Often the VPXI components are not used simultaneously

or all along the VPXI lifetime. Thus, the specification of an internal timeline for each VPXI

can help optimizing the allocation, scheduling, and provisioning processes. Periods can be

delimited by temporal marks. A period can be activated after the end of another period.

6 T. Truong Huu, G. Koslovski, F. Anhalt, J. Montagnat, P. Vicat-Blanc Primet

3 Virtual infrastructure design optimization problem

The virtual infrastructure design optimization problem is to determine, given a specific ap-

plication run to carry out, both the amount of resources and the network topology needed.

Minimizing the amount of resources needed is not necessarily the best objective function.

Indeed, it may be better to find a good trade-off between an execution infrastructure cost

and the application performance. Such an objective can be formulated as a cost function

whose parameters depend on the allocated infrastructure size. Both computing resources

and network bandwidth have to be considered in this cost function.

The general optimization problem is intractable given that it depends on the exact dis-

tributed application execution behavior. However, restraining the problem to workflow-

based applications makes it possible to exploit the knowledge on the application captured by

the formal workflow description to address this problem. Many coarse-grained distributed

application can be modeled as workflows of service invocation sequences. The workflow

directed graph features the application services to be executed (workflow nodes) and the

dependencies between these services (edges). As will be discussed later, only acyclic work-

flows for which the execution schedule can be statically determined are considered in this

paper. An example application workflow, used later on in the experimental validation, is

shown in Fig. 11. In this case, there are six services which are interconnected by data depen-

dencies. The workflow describes the application computational logic independently from

the actual data sets to be processed. Many workflow engines have been proposed to scale

the execution for a specific input data set [37]. Each application service might be invoked a

variable number of times depending on the data set size and, as long as no dependency exists

between two of these invocations, they can be performed concurrently to exploit distributed

resources.

3.1 Cost model for workflow-based applications

In our approach, an execution can occur in several stages. For each stage, the VPXI can

be reallocated with respect to a specific configuration, to perform the execution of part of

the workflow. After completing the execution, allocated resources are returned to the cloud.

The VPXI reconfiguration between different stages, which may involve redeployment of re-

sources, is time-consuming. One extreme condition, is to create a static VPXI for the whole

duration of the complete workflow execution, thus sparing the redeployment cost. Another

extreme, is to allocate new resources one by one on demand. The cost model proposed below

makes a fine-grained estimate of the resources that will be consumed for each application

run. Note that this model is applicable to estimate the cost of a single run of an applica-

tion on the infrastructure. It does not take into account other costs, such as the long term

storage of data onto the cloud storage service. Should users need data storage before and/or

after execution, they would be charged additionally and independently of the cost calculated

below.

All parameters used in the cost model described below are summarized in table 1. Let

mmax be the maximum number of computing nodes available on the infrastructure and s
be the number of execution stages of the application. The vector m = (m1,m2, ...,ms) is

the number of nodes used at each execution stage with ∀i,mi ≤ mmax. Let cr be the per-

Joint elastic cloud and virtual network framework for application cost/performance 7

Table 1: Notations used in the cost function model.

mmax maximum number of computing nodes available on the infrastructure
n number of input data items
s number of execution stages of the application
m = (m1,m2, ...,ms) number of nodes used at each execution stage with ∀i,mi ≤ mmax

cr per-second cost of a computing resource
cb per-Mbps cost of bandwidth
Tdi deployment time of stage i (in seconds)
Ti(mi, n, b) execution time of stage i (in seconds)
b = (b1, b2, ..., bki), i ∈ [1..s] links bandwidth used at stage i (in Mbps)

second cost of a computing resource. The total computing cost of the infrastructure allocated

for the application is:

Cr = cr ×

s
∑

i=1

mi × (Tdi + Ti(mi, n, b)) (1)

where Tdi is the deployment time (including resource reservation and initialization

time) and Ti(mi, n, b) is the execution time at stage i. Ti depends both on computing

time and data transfer time involved within stage i. It is parameterized by the number of

resources reserved (mi), the number of input data items to process (n) and the bandwidth

(b = (b1, b2, ..., bki), i ∈ [1..s]) of the network links used for data transfer. The compu-

tation of Ti is possible using the application logic described through the workflow. The

workflow engine used in our experiment, MOTEUR [16], was seminally designed to pro-

duce an execution schedule and control the distribution of an application at runtime. It was

enriched with a resource allocation and scheduling planner that is used to estimate Ti, given

that information on the workflow services execution time and transferred data amount is

available.

The total infrastructure cost is also impacted by the data transfer time. If the per-Mbps

cost of the reserved bandwidth is cb, then the total data transfer cost is:

Cb = cb ×

s
∑

i=1

(Tdi + Ti(mi, n, b))

ki
∑

j=1

bj (2)

This cost applies to an infrastructure where the amount of network bandwidth allocated

is controlled (e.g. HIPerNet [23]). It sums all data transfer costs involved in the workflow

execution, including workflow input data transferred from outside the cloud (at stage 1),

the temporary data generated during workflow execution (at all stages) and the output data

transferred to external resources (at stage s).

From formulas 1 and 2, the total infrastructure cost to execute the application can be

computed:

C = Cr + Cb (3)

This cost has to be optimized considering a maximum admissible cost and the applica-

tion performance scalability. A trade-off has to be found between the amount of computing

resources and network resources allocated (which impacts Ti), and the resulting cost.

8 T. Truong Huu, G. Koslovski, F. Anhalt, J. Montagnat, P. Vicat-Blanc Primet

3.2 Comparison to a commercial offer

The cost model described in equations 1 and 2 can be used for cost estimation both from an

infrastructure provider and an infrastructure user point of view. Depending on the intended

usage, it may be tuned. For instance, Amazon EC2 cloud computing offer charge users per

hour, day or week of usage. The times estimated are therefore rounded at the ceil value in

the unit considered. In addition, Amazon EC2 does not account for infrastructure deploy-

ment time in billing (Tdi = 0). This cloud infrastructure also does not make it possible to

adapt nor guarantee the network bandwidth allocated. The amount of network resources is

therefore billed on the basis of the total amount of data transferred rather than the amount of

bandwidth consumed. Finally, Amazon charges for workflow input and output data transfers

(data transfer from and to the storage resources outside the cloud) additionally, while in the

model proposed above this transfer is accounted for in Cb (equation 2).

Consequently, the cost billed for the EC2 computing resources usage is one of:

C′

r =











































c′r ×mmax ×

















s
∑

i=1

Ti(mi, n, b)

3600

















(4a)

c′r ×

s
∑

i=1

mi ×

⌈

Ti(mi, n, b)

3600

⌉

(4b)

where c′r is the Amazon EC2 per-hour unit cost of computing resources. Case 4a applies

if a single reservation is made for the whole duration of the workflow execution. In that case,

there is a single stage and the maximum number of resources (mmax) will be reserved.

Case 4b applies if one reservation is made for each stage. Compared to equation 1, the cost

computed in equation 4 is impacted by rounding to the next hour. In particular in case of

multiple reservations (case 4b), the rounding at each stage may be penalizing. A trade-off has

to be found between reserving the maximum number of resources for the whole duration of

the computation (case 4a) and adapting the number of resources at each stage, at the expense

of an over-estimated platform usage time (case 4b).

Similarly, the cost charged for usage of network resources when transferring input/out-

put data in Amazon EC2 is:

C′

b = c′b × VD (5)

where VD is the total amount of data transferred between EC2 and other data sources

(e.g. the user machine or a database server on Amazon S3), and c′b is a per-volume unit cost.

Unlike equation 2, this cost cannot be adapted to specific network usage requirements. This

reflects the fact that this infrastructure does not provide any bandwidth control mechanism.

The total Amazon EC2 cost is:

C′ = C′

r + C′

b (6)

3.3 VPXI design strategies

The application execution time for each stage (Ti) depends on the amount of resources

allocated within each VPXI. Four strategies are described below to determine VPXIs and

estimate the corresponding execution times.

Joint elastic cloud and virtual network framework for application cost/performance 9

3.3.1 Naive strategy

Given p the number of services composing an application workflow and ti the benchmarked

execution time of service i ∈ 1..p, a set of mmax virtual computing nodes is allocated and

split proportionally to each service execution time: mmaxti/
∑

j
tj nodes are dedicated to

the service i. The network bandwidth is similarly allocated proportionally to the amount

of data to transfer between each pair of services, or the same bandwidth is reserved for

all links in the infrastructure. This strategy is naive in the sense that it only considers a

single execution stage and the resources are statically allocated to each service even though

a service may not be involved during the whole duration of the workflow execution. This

strategy serves as a performance base-line.

3.3.2 FIFO strategy

In this approach, we make the simplifying assumption that all services can be deployed on

every computing resources. These resources are thus indistinguishable and the scheduler

may request any task to be executed on any resource. A FIFO scheduling strategy is optimal

in this case and a single stage is considered since infrastructure redeployment is unnecessary

(T = T1). In addition, the same bandwidth is reserved for all links in the infrastructure

(b1 = b2 = ... = bk). As an example, Fig. 2 displays the estimated execution time and the

total cost of the workflow from Fig. 11 with regard to the bandwidth (for n = 32 input data

items and unit costs cr = cb = 0.2). When the bandwidth is small, the total cost is high

due to the data transfer time. When the bandwidth increases, the execution time and cost

both decrease. However, after a 2.0Mbps threshold, the execution time only slightly reduces

while the bandwidth allocation cost increase dominates. The optimization method used to

numerically approximate the optimal bandwidth leads to 0.6517Mbps.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10 12
 0

 5000

 10000

 15000

 20000

 25000

 30000

T
im

e
 (

s
)

C
o
s
t
(c

u
rr

e
n
c
y
 u

n
it
)

Bandwidth (Mbps)

Time (s)
Cost (currency unit)

Fig. 2: Estimation of the execution time and total cost with regard to the bandwidth of the

FIFO strategy

10 T. Truong Huu, G. Koslovski, F. Anhalt, J. Montagnat, P. Vicat-Blanc Primet

3.3.3 Optimized strategy

The FIFO strategy can only apply with identical resources and without optimizing the band-

widths between each pair of resources. Conversely, the optimized strategy described below

considers dividing the workflow execution in multiple stages and allocating resources and

bandwidth independently for each stage. The cost minimization algorithm is executed for

each stage to allocate an optimal number of virtual resources to the services involved in this

stage.

An algorithm is needed to decide on the number of stages and when infrastructure re-

configuration should happen. Firstly, the workflow of services is transformed into a Directed

Acyclic execution Graph (DAG), using the second composition approach presented in [39]

for instance. Secondly, the DAG is divided in execution stages, each of them meant to be

executed on a specific virtual infrastructure. An example execution DAG for the workflow

of Fig. 11 is shown in Fig. 3, where IN and OUT are special entry and exit nodes that are not

accounted for in the execution and data transfer times estimation. The pseudo-code of the

DAG split into stages is presented in algorithm 1. An execution stage is defined as the set of

invocations which have the same depth in the DAG graph.

Note that the DAG generation is only possible for workflows without unbounded loops

(the exact number of invocations of each service needs to be known) so that the workflow

planer can determine a complete execution schedule. Workflows including while kind of

loops, or foreach constructs iterating over unknown size data structures make the workflow

unresolvable prior to execution. This is limiting the class of applications that can be planed.

Yet, this represents a broad category of workflow applications in e-Science (many data-

intensive, scientific workflow languages do not support loops [12]). A solution for dealing

with workflows with unresolvable constructs is to divide them into smaller resolvable sub-

workflows. This generation process has to be revised dynamically though (e.g. each time a

loop is iterated, the loop body sub-workflow can be generated). Such a strategy was imple-

mented in the workflow manager of the DIET middleware (MA DAG) for instance, to deal

with workflows which could not be represented by DAGs2.

Algorithm 1 Execution DAG split into stages

Require: processedServices list initialized with all workflow inputs.
Require: stage = 1

while There are still services to process do

stage-services = empty list
for each service S in workflow do

if all inputs of S come from the list of processed services then

add S into stage-services

set stage of service S to stage

end if

end for

add list stage-services to list processedServices

increment the stage counter (stage = stage + 1)
end while

At each execution stage, the infrastructure is reconfigured for only deploying the specific

services involved in that stage. The resources are allocated proportionally to the number of

2 DIET MA DAG: http://graal.ens-lyon.fr/˜diet/workflow.html

http://graal.ens-lyon.fr/~diet/workflow.html

Joint elastic cloud and virtual network framework for application cost/performance 11

IN

...

OUT

Stage 1

Stage 2

Stage 3

Stage 4

CL1

CM1

PM1 YAS1 BAL1

PR1

CL2

CM2

PM2 YAS2 BAL2

PR2

R2

I2

CLn

CMn

PMn YASn BALn

PRn

Rn

In I1

R1

Fig. 3: DAG jobs of Bronze Standard application for n inputs

invocations needed for each service. In a typical data intensive application execution, there

are more data items to process (n) than resources available (mmax). For instance, in the

case of a stage i with only one service S (e.g. stage 1, 2 or 4 in Fig. 3), mmax data items

are processed concurrently by S and the process is repeated n/mmax times, leading to the

execution time:

Ti =
⌈

n

mmax

⌉

× TS (7)

where TS is the execution time for S.

More generally, the optimal resources and bandwidth allocation strategy, taking into

account the number of service invocations, the execution time and the data transfer time in

each stage is computed using the multi-criterions Downhill Simplex minimization method.

Let invj , j = 1..s be the number of invocations of service j at stage i where s is the

number of services being executed at this stage. Let vector m = (m1,m2, ...,ms) be a

combination of number of resources allocated to the service j. This combination must satisfy

the condition
∑s

j=1
mj ≤ mmax. The resulting optimal execution time to complete invj

invocations of service j is:

Tj =

⌈

invj
mj

⌉

× Tuj (8)

where Tuj is the unit execution time of service j.

3.3.4 Services grouping optimization

The total execution cost also depends on the infrastructure deployment time of each stage.

An optimization of the total resources reservation and redeployment time was designed, ex-

tending the job grouping strategy without loss of parallelism introduced in [15]. This strategy

minimizes the application makespan by grouping services which would have been executed

sequentially, thus reducing data transfers and the number of job invocations needed. Apply-

ing this strategy to the workflow of Fig. 11, two services groups are identified which do not

12 T. Truong Huu, G. Koslovski, F. Anhalt, J. Montagnat, P. Vicat-Blanc Primet

CrestLines

CrestMatch

PFMatchICP Yasmina Baladin

PFRegister

Database

(a) Grouping without parallelism loss

CL-CM1

PM-PR1 YAS1 BAL1

Stage 1

Stage 2

IN

…

R1

OUT

…

CL-CMn

PM-PRn YASn BALn

Rn

I1 In

(b) Resulting execution DAG considering n input data items

Fig. 4: Services grouping without parallelism loss

cause loss of parallelism as shown in Fig. 4a. The number of execution stages can also be

reduced as shown in Fig. 4b.

This strategy only exploits workflow topology information but not the actual execution

cost of the services, although it might be preferable to loose some degree of parallelism,

when the grouping gain is higher. The trade-off can be found thanks to the execution planner

developed for the allocation strategies. Starting from the execution DAG split into stages,

job invocation groups are evaluated for each consecutive pair of stages. For each service A
of the workflow involved in the stage i, let B0, B1, ..., Bj be all children from A in stage

i+1. All possible combinations of grouping A with one or more of the Bk services is tested

and the resulting execution cost is evaluated by optimizing the number of resources and the

bandwidth allocated. In the example used throughout this paper, the best solution is shown

in Fig. 5.

CrestLines

CrestMatch

PFMatchICP Yasmina Baladin

PFRegister

Database

Fig. 5: Grouping CrestMatch, PFMatchICP, Yasmina and Baladin

Joint elastic cloud and virtual network framework for application cost/performance 13

<vxdl : resource>

<vxdl : id>database </ vxdl : id>

<vxdl : ramMemory>

<vxdl : min>1</vxdl : min>

<vxdl : minUnit>GB</ vxdl : minUnit>

</ vxdl : ramMemory>

</ vxdl : resource>

Fig. 6: Generic part description in VXDL language

<vxdl : group>

<vxdl : id>C l u s t e r S e r v i c e i </ vxdl : id>

<vxdl : func t ion>

<vxdl : id>computing</ vxdl : id>

</ vxdl : fun c t ion>

<vxdl : s i z e>

<vxdl : min>m i</ vxdl : min>

</ vxdl : s i z e>

<vxdl : resource>

<vxdl : id>N o d e C l u s t e r S e r v i c e i </ vxdl : id>

<vxdl : ramMemory>

<vxdl : min>512</ vxdl : min>

<vxdl : minUnit>MB</ vxdl : minUnit>

</ vxdl : ramMemory>

</ vxdl : resource>

</ vxdl : group>

Fig. 7: VXDL description of one cluster of computing resources

3.4 Virtual resources description generation

For each VPXI design strategy, a VPXI is described through VXDL. This VPXI is composed

of two parts: a generic part and variable one. The generic part is used to describe manda-

tory nodes to execute an application (e.g. middleware, database). In our model, we use one

node for this part. It is used for the database server storing the input data, intermediate and

final results. Fig. 6 presents the description of this part. The variable part composing of

computing resources is generated according to the design strategies presented in section 3.3.

The naive strategy divides the set of m virtual computing resources proportionally to the

execution time of workflow services. We use the <vxdl:group> tag to describe a cluster

of virtual computing resources corresponding to a workflow service. This cluster composes

of mi = mmaxti/
∑

j
tj resources with a minimum amount of RAM. Fig. 7 presents the

description of this strategy.

Similarly to the naive strategy, the FIFO strategy runs the application in a single stage

and assumes that all services can be deployed on every computing resources. Therefore, the

VXDL description has only one group.

The optimized strategy has a more complex description which uses the Virtual Timeline

Description of VXDL language. Fig. 8 presents an example of the application which has

two stages. The first stage has one service which executes in ti seconds. The second stage

has three services starting at the same time after first stage has finished.

14 T. Truong Huu, G. Koslovski, F. Anhalt, J. Montagnat, P. Vicat-Blanc Primet

<vxdl : v i r t u a l T i m e l i n e>

<vxdl : id>Ap pl i c a t io n Time l in e </ vxdl : id>

<vxdl : t i m e l i n e>

<vxdl : id>T1</ vxdl : id>

<vxdl : a c t i v a t e>S e r v i c e i </ vxdl : a c t i v a t e>

<vxdl : u n t i l>

<vxdl : tota lTime>t i </ vxdl : tota lTime>

<vxdl : to ta lTimeUni t>s</ vxdl : to ta lTimeUni t>

</ vxdl : u n t i l>

</ vxdl : t i m e l i n e>

<vxdl : t i m e l i n e>

<vxdl : id>T2</ vxdl : id>

<vxdl : a f t e r>T1</ vxdl : a f t e r>

<vxdl : a c t i v a t e>S e r v i c e j 1 </ vxdl : a c t i v a t e>

<vxdl : a c t i v a t e>S e r v i c e j 2 </ vxdl : a c t i v a t e>

<vxdl : a c t i v a t e>S e r v i c e j 3 </ vxdl : a c t i v a t e>

<vxdl : u n t i l>

<vxdl : tota lTime>t j </ vxdl : tota lTime>

<vxdl : to ta lTimeUni t>s</ vxdl : to ta lTimeUni t>

</ vxdl : u n t i l>

</ vxdl : t i m e l i n e>

</ vxdl : v i r t u a l T i m e l i n e>

Fig. 8: Virtual Timeline Description for the optimized strategy

<vxdl : v i r tu a lTopo lo gy>

<vxdl : id>VirtualNetwork </ vxdl : id>

<vxdl : l ink>

<vxdl : id>l v 1</ vxdl : id>

<vxdl : bandwidth>

<vxdl : min>2</vxdl : min>

<vxdl : minUnit>Mbps</ vxdl : minUnit>

</ vxdl : bandwidth>

<vxdl : d i r e c t i o n>bi </ vxdl : d i r e c t i o n>

<vxdl : pair>

<vxdl : source>database </ vxdl : source>

<vxdl : d e s t i n a t i o n>c l u s t e r s e r v i c e i </ vxdl : d e s t i n a t i o n>

</ vxdl : pair>

</ vxdl : l ink>

</ vxdl : v i r tua lTopo logy>

Fig. 9: Virtual network topology description

The virtual network topology is specified by depending on each application. The more

dependence between workflow services, the more complicated network topology. Each link

is specified by a minimum amount of bandwidth and one or more pairs of source/destina-

tion. Fig. 9 shows a typical link between the database storing the workflow input and the

computing resource cluster of a workflow service.

Joint elastic cloud and virtual network framework for application cost/performance 15

4 Validation on the Aladdin/Grid’5000 testbed

The cloud nodes and network allocation framework described in this paper is implemented

using the HIPerNet middleware [3,35], designed in the context of the HIPCAL project3.

HIPerNet manages a set of VPXIs as illustrated in Fig. 10 where two virtual execution in-

frastructures (VPXI A and VPXI B) are represented. Each application can execute, confined

in a VPXI dedicated for a defined time period. Our workflow application manager was in-

strumented with the HIPerNet API to make it able to control the cloud resources allocation.

Fig. 10: Example of a VPXI allocation on a distributed and virtualized HIPerSpace.

4.1 HIPerNet framework and Grid’5000 substrate

HIPerNet provides a framework to build and manage private, dynamic, predictable, and

large-scale virtual computing environments, that high-end challenging applications can use

with traditional APIs: standard POSIX calls, sockets, and Message Passing (e.g. MPI and

OpenMP) communication libraries. With this framework, a user preempts and, for a given

timeframe, virtually interconnects a pool of virtual resources from a distributed physical

substrate, in order to execute her application. VPXIs correspond to the HIPerNet’s manage-

ment unit.

The HIPerNet framework aims at partitioning a distributed physical infrastructure (com-

puters, disks, and networks) into dedicated virtual private computing environments com-

posed dynamically. When a new machine joins the physical resource set, HIPerNet prepares

its operating system to enable several virtual machines (VMs) to be instantiated dynami-

cally when required. This set of potential virtual machines is called an HIPerSpace and it

is represented in the HIPerSpace database. The HIPerSpace is the only entity that sees the

physical entities. A resource, volunteer to join the resource pool, is automatically initiated

and registered in the HIPerSpace database. The discovery of all the devices of the physical

node is also automatic. An image of the specific HIPerNet operating system is deployed

on it. In our current HIPerNet implementation, the operating system image basically con-

tains the Xen Hypervisor and its domain of administration called domain 0 (Dom 0). The

HIPerSpace registrar (operational HIPerVisor) collects and stores data persistently, and man-

ages accounts (e.g. the authentication database). It is therefore hosted by a physical machine

3 http://www.ens-lyon.fr/LIP/RESO/Projects/HIPCAL/ProjetsHIPCAL.html

http://www.ens-lyon.fr/LIP/RESO/Projects/HIPCAL/ProjetsHIPCAL.html

16 T. Truong Huu, G. Koslovski, F. Anhalt, J. Montagnat, P. Vicat-Blanc Primet

outside of the HIPerSpace itself. For the sake of robustness and scalability, the HIPerSpace

registrar can be replicated or even distributed.

When a user submits a VPXI request specified using the VXDL language, the HIPer-

Net allocator examines the request and executes an embedding algorithm to map the virtual

infrastructure on the physical one. Then if the request is accepted, HIPerNet deploys or

reconfigures the virtual resources of the VPXI according to this specification. Using the

bandwidth control concept in Grid’5000 [34], HIPerNet allocates link bandwidth to all the

virtual links whose bandwidth was explicitly specified in VXDL during the request submis-

sion. When a VPXI is created, virtual links are provisioned according to the VXDL request.

Within this request, the user can specify several stages for the VPXI, involving different

configurations of bandwidth to best fit the application’s requirements. While the VPXI is

running, the user can change its configuration moving from one stage to another.

The experiments are carried out using several virtual infrastructures managed by HIPer-

Net within the Aladdin/Grid’5000 testbed4. Aladdin/Grid’5000 enables a user to request,

reconfigure, and access physical machines belonging to 9 sites distributed in France. In our

experiments, several Aladdin/Grid’5000 nodes were reserved to compose a pool of physical

resources that we initialize to form a HIPerSpace. To instantiate an HIPerSpace, specific

tools provided by the testbed are used. This is the only part aware of the physical infras-

tructure of the HIPerNet middleware. All the other parts are independent of the physical

resources because they use them indirectly through the services provided by HIPerNet.

4.2 Test application

The experiments are performed using the Bronze Standard (BS) a real workflow-based ap-

plication from the area of medical image analysis [17]. The BS technique tackles the difficult

problem of validating medical-image analysis tools. As there is usually no reference, or gold

standard, to validate the result of a medical image analysis algorithm, it is very difficult to

objectively assess the results’ quality. The BS technique statistically quantifies the maximal

error resulting from widely used image registration algorithms. The larger the sample im-

age database and the number of registration algorithms to compare with, the most accurate

the method. This procedure is very scalable and described through a complex application

workflow illustrated in Fig. 11. In the experiments reported below, a clinical database with

59 pairs of patient images was used. For each run, 354 computing tasks were generated.

4.3 Experiments

For testing the allocation strategies, a system image containing the OS (based on a De-

bian Etch Linux distribution with a kernel version 2.6.18-8), the domain-specific image

processing services was created. The infrastructures allocated are managed by the HIPerNet

framework which enables the joint virtualization of computing and network resources. The

physical resources were reserved on the fully reconfigurable Aladdin/Grid’5000 research

infrastructure, cluster sagittaire in Lyon, France. The physical resources are Sun Fire V20z

machines, 2.4GHz, 2 cores and 2GB RAM interconnected through 1Gbps Ethernet. The

experimental infrastructure is diagrammed in Fig. 12. For all experiments, 36 physical com-

puters were reserved. The MOTEUR workflow engine, as a client of the HIPerNet cloud

4 https://www.grid5000.fr

https://www.grid5000.fr

Joint elastic cloud and virtual network framework for application cost/performance 17

CrestLines

Floating Reference CL_size

CrestMatch

PFMOpt

PFMatchICP

Yasmina

YasminaOpt

Baladin

BaladinOpt

PFRegister

Results

Fig. 11: Bronze Standard workflow.

manager engine, was hosted on one physical host, outside of the cloud. The 35 remaining

computers were registered in the HIPerSpace. The HIPerNet engine deploys and manages

virtual machines on these computer on demand (dark arrows), either with on OS image

of the input database server or the application services. In our experiments, each physical

computer hosts a single virtual machine. MOTEUR produces VXDL descriptions that are

requested to the HIPerNet engine (blue connection). After receiving all virtual machines al-

located to the VPXI, MOTEUR connects to the computing nodes to invoke the application

services (red connections). The computing nodes connect to the database host to copy the

input data and send the computational results, and the final results are sent to MOTEUR

(green connections).

Virtual Machine 2
Computing Node

Virtual Machine 1
Database

HIPerNet engine

Virtual Machine k
Computing Node

Virtual Machine 35
Computing Node

Fig. 12: Experimental infrastructure

18 T. Truong Huu, G. Koslovski, F. Anhalt, J. Montagnat, P. Vicat-Blanc Primet

Table 2: Benchmark of the BS services execution time and data transfer volumes.

Services Time (average ± standard deviation) Input data Produced data

CrestLines 31.06s ± 0.57 15MB 10MB
CrestMatch 3.22s ± 0.51 25MB 4MB
PFMatchICP 10.14s ± 2.41 10.2MB 240kB
PFRegister 0.64s ± 0.22 240kB 160kB
Yasmina 52.94s ± 12.96 15.2MB 4MB
Baladin 226.18s ± 19.36 15.2MB 4MB

For the needs of the MOTEUR planner, all 6 services involved in the BS workflow

have been benchmarked for execution time and amount of data transferred as reported in

table 2. For each experiment, the application was executed 5 times and the makespan was

averaged to minimize the execution time variations encountered in distributed computing.

The standard deviation is also reported.

For each strategy, the planner optimizer was executed to determine the configuration

with the minimal execution cost. The number of virtual machines allocated to the applica-

tion and the bandwidth between the database node and computing nodes are specified by

corresponding VXDL documents.

4.3.1 Single stage strategies

The naive and FIFO strategies are single-stage. They use maximum available computing

resources (34 computing machines) with an optimal bandwidth yielding to a minimal exe-

cution cost. The virtual infrastructures of the naive and FIFO strategies are represented in

Fig. 13 and 14, respectively. Conversely, the optimized strategies are multi-stages, optimize

bandwidth needed, and may allocate less resources than the maximum available when there

is no gain in doing so.

Fig. 13: Virtual Infrastructure composition considering naive strategy.

Joint elastic cloud and virtual network framework for application cost/performance 19

Fig. 14: Virtual Infrastructure composition considering FIFO strategy.

We also measured the deployment time of the virtual infrastructure before running the

application and the reconfiguration time between stages of the optimized strategies. The

reconfiguration time takes into account bandwidth reconfiguration between the database host

and computing nodes allocated to application services in each stage. The virtual machines

in stage n are reused in stage n+1. If the stage n+1 use more virtual machines than stage

n, additional virtual machines are deployed during the execution of stage n.

The naive allocation strategy allocated the 34 computing nodes to application services as

follows: 3 nodes for CrestLines, 1 node for CrestMatch, 1 node for PFMatchICP, 1 node for

PFRegister, 5 nodes for Yasmina, and 23 nodes for Baladin. The same bandwidth, 2.69Mbps,

is used for all computing nodes. The application makespan is 67.08min ± 0.10min. This ex-

periment shows that the virtual resources are not well exploited during the execution. Fig. 15

shows a schedule of this strategy. Each colored line represent one task duration: it starts once

the corresponding task has been submitted and stops at the end of its execution. The first,

brighter part of the line represents the task waiting time spent from submission until a re-

source becomes available for execution. Colors are arbitrary and just help to distinguish the

different tasks. As can be seen, at the beginning of the execution, only three nodes are used

to execute the CrestLines service. Other resources are wasted. Similarly, the result of Crest-

Match is needed for three services: PFMatchICP, Yasmina and Baladin but there is only one

resource allocated to this service according to this strategy and it becomes a bottleneck.

Fig. 15: Tasks schedule with the naive strategy

20 T. Truong Huu, G. Koslovski, F. Anhalt, J. Montagnat, P. Vicat-Blanc Primet

The makespan of the FIFO strategy is lower: 46.88min ± 0.78min with the optimal

bandwidth (1.16Mbps). The standard deviation of this strategy is higher due to the variable

arriving order of the tasks. Some long tasks can be executed on the same computing resource,

leading to the increase of the application makespan. Fig. 16 shows a typical task schedule

for this strategy.

Fig. 16: Tasks schedule with the FIFO strategy

4.3.2 Multi-stages strategies

For the optimized strategies, the planer determines the number of virtual resources and the

bandwidths yielding to a minimal execution cost. Without services grouping there are 4

execution stages which are represented in Fig. 17. According to the optimization results:

only 30 nodes were allocated for the first, second and fourth stages (additional resources

would be wasted). The bandwidths are 4.62Mbps, 14.74Mbps and 3.87Mbps, respectively.

For the third stage, 4 nodes were allocated to PFMatchICP, 6 nodes for Yasmina and 20

nodes for Baladin. The bandwidth for each service in this stage is 0.87Mbps, 1.36Mbps and

1.29Mbps, respectively. The corresponding application makespan is 37.05min ± 0.25min.

Further grouping the application services as shown in Fig. 5, the application is divided

into three stages only, using 30 nodes each. As presented in Fig. 18, the bandwidth allo-

cated for each stage is 4.90Mbps, 1.95Mbps and 3.87Mbps, respectively. The application

makespan is then 22.93min ± 0.35min. Besides the execution time improvement, the num-

ber of resources consumed is also lowered. As we can observe in Fig. 19, all tasks of the

same stage do not finish exactly at the same time though, due to some variations of the im-

age analysis tools execution time depending on the exact processed image content. This has

an impact as the tasks of stage n have to wait for the longest task of stage n− 1 before the

system can be reconfigured.

Joint elastic cloud and virtual network framework for application cost/performance 21

Fig. 17: Virtual Infrastructure composition considering optimized strategy without grouping

services

Fig. 18: Virtual Infrastructure composition considering optimized strategy with grouping

services

4.3.3 Summary

In conclusion, table 3 compares the performance of the strategies presented above and the

associated platform cost computed using equation 3. The worst case is the naive strategy

that uses the maximum number of resources for a very large makespan and a long deploy-

ment. The FIFO strategy spends the same time to deploy the infrastructure but it has a better

makespan than the naive strategy. The naive and FIFO strategies reconfiguration time is

null since they are single-stage. The optimized strategy without grouping services has better

22 T. Truong Huu, G. Koslovski, F. Anhalt, J. Montagnat, P. Vicat-Blanc Primet

Fig. 19: Tasks schedule with optimized services grouping

results both in terms of application makespan and number of resources consumed than the

naive and FIFO strategies, although it has to spend time to reconfigure the infrastructure

after each stage. The best case is obtained for the optimized strategy with services grouping.

It uses less resources, spends less time to reconfigure the infrastructure and returns the re-

sults faster. In terms of the deployment time, the naive and FIFO strategies take 29.83min

to deploy 35 virtual machines. It is to be noted that HIPerNet does not enable the paral-

lel deployment of resources yet. This duration corresponds to the time needed to copy the

OS images (319MB) from the HIPerNet engine to the virtual machines and start them se-

quentially. The optimized strategies use only 31 machines, reducing the deployment time to

25.68min. In the future, parallel deployment is expected to lower this redeployment over-

head. As expected, the cost estimated is lowered for higher performing strategies to the

reduction of the application makespan and of the network bandwidth consumed.

Table 3: Performance comparison between the four strategies

Strategy Makespan #VM
Deployment Reconfiguration Execution cost

time time (×105)

Naive 67.08min ± 0.10 35 29.83min 0 1.40 × cr + 3.68 × cb

FIFO 46.88min ± 0.78 35 29.83min 0 0.98 × cr + 1.10 × cb

Optimized
(without grouping) 37.05min ± 0.25 31 25.68min 79.29s 0.69 × cr + 0.98 × cb

Optimized
(with grouping) 22.93min ± 0.58 31 25.68min 52.86s 0.42 × cr + 0.48 × cb

4.3.4 Comparison with a commercial offer

Table 4 presents the cost billed by Amazon EC2 (equation 6) as a function of the unit costs

(currently in Europe, c′r =$0.10 / VM / hour, and c′b =$0.15 / day / GB). For these com-

putations we made the hypothesis of the same running times on Amazon EC2 nodes as on

Joint elastic cloud and virtual network framework for application cost/performance 23

the Aladdin/Grid’5000 platform. While Amazon EC2 data transfer cost is the same for all

strategies (transfer of 1GB input and output data), the cost payed for computing resources

varies. The naive strategy, executing in more than one hour, dominates the reservation cost

for computing resources (2 hours × 35VMs × c′r). The reservation duration reduces to

one hour for other strategies. Since the FIFO strategy uses 35VMs, its cost is higher than

the optimized strategy with and without grouping optimization which use less resources

(31VMs). Compared to Amazon EC2 cost, the cost model introduced in this paper is not

rounded to the next hour, thus showing a decrease of the execution cost following the ap-

plication makespan decrease. Moreover, the exact amount of bandwidth allocated is taken

into account, thus showing a decrease on the data transfer cost for higher performing strate-

gies. This cost is closer to a real measurement of the amount of resources consumed on the

platform.

Table 4: Comparison with Amazon EC2

Strategy Makespan #VM
Execution cost

HIPerNet (×105) Amazon EC2

Naive 67.08min ± 0.10 35 1.40 × cr + 3.68 × cb 2h × 35VMs × c
′

r
+ 1GB × c

′

b

FIFO 46.88min ± 0.78 35 0.98 × cr + 1.10 × cb 1h × 35VMs × c
′

r
+ 1GB × c

′

b

Optimized
(without grouping) 37.05min ± 0.25 31 0.69 × cr + 0.98 × cb 1h × 31VMs × c

′

r
+ 1GB × c

′

b

Optimized
(with grouping) 22.93min ± 0.58 31 0.42 × cr + 0.48 × cb 1h × 31VMs × c

′

r
+ 1GB × c

′

b

4.3.5 Impact of bandwidth control on application cost

Further experiments to evaluate the bandwidth control mechanism were also performed.

The application was executed using the optimized strategy with service grouping under two

additional network bandwidth configurations: lower and higher bandwidth values than the

optimal found were tested (1 Mbps and 10 Mbps respectively). Table 5 displays for each

configuration: the data transfer time in each stage (in seconds), the application makespan (in

minutes) and the corresponding cost. Comparing the results with the optimized bandwidth

allocation, it appears that using a low bandwidth, the makespan increases as expected. How-

ever, the cost increases as well because the cost gain on network bandwidth is compensated

by the loss on computing nodes reservation time. With the high bandwidth, the application

makespan can be reduced (-22.72% in this case) at a higher cost (+102% computed with

cr = cb = 0.10).

Table 5: Bandwidth control mechanism evaluation

Bandwidth Stage 1 Stage 2 Stage 3 Makespan Execution cost

(s) (s) (s) (min) (×105)

Low (1 Mbps) 222.59 ± 2.51 316.57 ± 40.37 2.91 ± 0.50 34.78 ± 0.67 0.65 × cr + 0.31 × cb

Optimized 53.8 ± 4.56 171.72 ± 24.66 1.53 ± 0.23 22.93 ± 0.58 0.42 × cr + 0.48 × cb

High (10 Mbps) 30.79 ± 3.85 42.68 ± 9.55 1.09 ± 0.18 17.72 ± 0.23 0.33 × cr + 1.61 × cb

24 T. Truong Huu, G. Koslovski, F. Anhalt, J. Montagnat, P. Vicat-Blanc Primet

5 Related work

This work is related to workflow scheduling, resources management and mapping work-

flows onto resources. Many existing resource allocation and task scheduling strategies for

grid applications (e.g. [8]) focus on matchmaking algorithms which goal is not to determine

an optimal allocation but is limited to identify suitable resources. Workflow-based alloca-

tion algorithms [6,7,18,26] can deliver better performances than matchmaking algorithms.

However, the objective of these algorithms is to minimize the application makespan and they

do not take into account the execution cost on a pay-per-use platform.

The best-effort algorithms such as Min-Min, Max-Min [25] or HEFT [32] focus only

on minimizing the application makespan while other QoS constraints algorithms such as

Deadline/Time Distribution [38] and LOSS/GAIN [29] consider a multi-objective scheduling

problem. However, all of them do not take into account the link bandwidth for data exchange

between workflow services.

In [28], Ramakrishnan et al presented a fault tolerance workflow scheduling algorithm to

orchestrate multiple workflows on Grid and Cloud infrastructures by duplicating the execu-

tion of some workflows to increase the probability of success of individual tasks. This kind

of approach, although potentially efficient in reducing execution time, does not consider the

infrastructure cost. Other workflow scheduling algorithms under resource allocation con-

straints have been also proposed [30,36]. In [30], Senkul et al presented an architecture for

workflow scheduling that considers resource allocation cost and control constraints (e.g. co-

allocation of tasks on a same resource). It does not take into account resource limitations

and heterogeneity. Furthermore, our approach differs as it considers the trade-off between

allocation cost and performance.

Silva et al presented in [31] a heuristic for resources allocation on utility computing

infrastructure. This heuristic optimizes the number of machines allocated to process tasks

and speed up the execution within a limitation of budget. However, this heuristic is only

suitable for bag-of-tasks problems in which there is no dependence and the communication

between tasks.

Within the Service Level Agreements (SLA) context, Dang et al presented in [10,11]

the resource allocation algorithms to map grid-based workflows onto grid resources. These

algorithms try to assign the workflow tasks to grid resources so as to meet the user’s deadline

and minimize the cost. These algorithms do not take into account the network bandwidth.

Concerning the virtual resources and network description language, new challenges

coming from virtualization techniques have to be considered to complement the specifi-

cation proposed by classical infrastructures [21,33,13]. Some works have proposed specific

languages to describe, model, and exchange information on network topologies [22,2,5].

But in addition, it is needed to combine the spatial and temporal aspects of virtual infras-

tructures. For example, the Open Virtualization Format (OVF) [9] proposes a mechanism

to package and distribute software to be run in one or more virtual machines. Already, the

Open Cloud Computing Interface Working Group (OCCI-WG) [1] is investigating a solu-

tion to interface with Cloud Infrastructures exposed as services. The cloud infrastructures

resources (compute, network and storage) are described using a simple key-value-based de-

scriptor format.

These languages are very efficient for their proposal, but none of them meet all the

specification requirements in terms of flexibility, expressiveness, reliability, and simplicity,

required to achieve an optimal VPXI specification and allocation [23].

The use of virtual grids to simplify application scheduling has been explored in [20].

They propose a descriptive language, vgDL, which enables users to specify an initial de-

Joint elastic cloud and virtual network framework for application cost/performance 25

scription of the desirable resources, resulting in a pre-selected virtual grid corresponding

to a simple vgDL description. vgDL proposes three aggregation types to specify the inter-

connection network: LooseBag, TightBag and Cluster. The approach proposed in VXDL

is more comprehensive and allows the definition of the infrastructure’s shape through the

description and configuration of virtual links.

The approach of controlled virtual network infrastructures, running in parallel over a

shared physical network is an emerging idea offering a variety of new features for the net-

work. Cabo [14] proposes to exploit virtual networks for Internet Service Providers, dis-

tinguishing them from the physical infrastructure providers, and giving them end-to-end

control. HIPerNet shares the same vision but focuses more on distributed computing appli-

cation and proposes a language to express the infrastructure requirements in capacity, time,

and space.

In [4], the authors propose VINI, a virtual network infrastructure that allows several

virtual networks to share a single physical infrastructure, in a similar way to HIPerNet. VINI

makes the network transparent to the user, representing each component of the network.

This being one of our main interests, HIPerNet provides a language, VXDL, to specify the

topology of those components. The GENI project [27] aims to build a shared infrastructure

for hosting multiple types of network experiments. VXDL can help in the description of

slices and HIPerNet is an orchestration framework that suits GENI’s requirements.

Similarly to the network elasticity of HIPerNet, DaVinci [19] is a concept proposing also

virtual networks adapting to performance objectives. In DaVinci, the network is monitored

and the different virtual networks adapt dynamically to the conditions in order to optimize

their performance. While this approach is an interesting way to improve virtual network

quality, our approach considers virtual network user’s as well as substrate provider’s inter-

ests, coming with a cost model. A user reserves virtual network capacity to a certain cost

and has in return performance guarantees for the reserved period of time.

6 Conclusion

This paper proposed strategies to determine a cost/performance trade-off when executing

workflow-based distributed applications on a cloud infrastructure. The advanced network

bandwidth control capabilities of the HIPerNet middleware are exploited to extend the tra-

ditional cloud paradigm to network provisioning. An experimental validation was carried

out using a real workflow-based medical application. Results assess the performance of the

optimized strategy with job grouping optimization. They show the critical impact of network

performance on the application. The solution implemented can be exploited by end-users to

minimize their costs or service provider to design resources sharing strategies.

Acknowledgements This work is funded by the French National Agency for Research (ANR), program
“Calcul Intensif et Simulation”, HIPCAL project (http://hipcal.lri.fr), under contract number
ANR-06-CIS-005. Experiments presented in this paper were carried out using the Grid’5000 experimen-
tal testbed, being developed under the INRIA ALADDIN development action with support from CNRS,
RENATER and several Universities as well as other funding bodies (https://www.grid5000.fr).

References

1. Open Cloud Computing Interface Working Group (OCCI-WG). http://www.occi-wg.org/

doku.php, 2009.

http://hipcal.lri.fr
https://www.grid5000.fr
http://www.occi-wg.org/doku.php
http://www.occi-wg.org/doku.php

26 T. Truong Huu, G. Koslovski, F. Anhalt, J. Montagnat, P. Vicat-Blanc Primet

2. Ron Addie, Stephen Braithwaite, and Abdulla Zareer. Netml: a language and website for collaborative
work on networks and their algorithms. In ATNAC 06, 2006.

3. Fabienne Anhalt, Guilherme Koslovski, and Pascale Vicat-Blanc Primet. Specifying and provisioning
Virtual Infrastructures with HIPerNet. ACM International Journal of Network Management (IJNM) -

Special issue on Network Virtualization and its Management, 20(3):129–148, May/June 2010.
4. Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jennifer Rexford. In VINI Veritas:

Realistic and Controlled Network Experimentation. ACM SIGCOMM Computer Communication Review

(CCR), 36(4):3–14, 2006.
5. Kyrre Begnum and John Sechrest. The MLN Manual - version 1.0. http://mln.sourceforge.

net/doc/mln-manual.pdf, November 2009.
6. Luiz Fernando Bittencourt and Edmundo R. M. Madeira. Towards the Scheduling of Multiple Workflows

on Computational Grids. Journal of Grid Computing (JOGC), 8(3):419441, September 2010.
7. Jim Blythe, Sonal Jain, Ewa Deelman, Yolanda Gil, Karan Vahi, Anirban Mandal, and Ken Kennedy.

Task Scheduling Strategies for Workflow-based Applications in Grids. In International Symposium on

Cluster Computing and the Grid (CCGrid’05), pages 759–767, 2005.
8. Tracy D. Braun, Howard Jay Siegel, Noah Beck, Lasislau L. Bölöni, Muthucumara Maheswaran, Al-

bert I. Reuther, James P. Robertson, Mitchell D. Theys, Bin Yao, Debra Hensgen, and Richard F. Freund.
A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems. J. of Parallel and Distributed Computing (JPDC), 61(6):810–837, 2001.

9. Simon Crosby, Ron Doyle, Mike Gering, Michael Gionfriddo, Steffen Grarup, Steve Hand, Mark Hapner,
Daniel Hiltgen, Michael Johanssen, Lawrence J. Lamers, John Leung, Fumio Machida, Andreas Maier,
Ewan Mellor, John Parchem, Shishir Pardikar, Stephen J. Schmidt, Rene W. Schmidt, Andrew Warfield,
Mark D. Weitzel, and John Wilson. Open Virtualization Format Specification (OVF). Technical Report
DSP0243, Distributed Management Task Force, Inc., February 2009.

10. Minh Quan Dang and Jorn Altmann. Resource allocation algorithm for light communication grid-based
workflows within an SLA context. International Journal of Parallel, Emergent and Distributed Systems,
24(1):31–48, 2009.

11. Minh Quan Dang and D. Frank Hsu. Mapping Heavy Communication Grid-Based Workflows Onto Grid
Resources Within an SLA Context Using Metaheuristics. International Journal of High Performance

Computing Applications (IJHPCA), 22(3):330–346, 2008.
12. Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Karan Vahi, Kent Black-

burn, Albert Lazzarini, Adam Arbree, Richard Cavanaugh, and Scott Koranda. Mapping Abstract Com-
plex Workflows onto Grid Environments. Journal of Grid Computing (JOGC), 1(1):9–23, 2003.

13. Freek Dijkstra and Martin Swany. Network Mark-up Language Working Group (NML-WG). https:
//forge.gridforum.org/projects/nml-wg, 2007.

14. Nick Feamster, Lixin Gao, and Jennifer Rexford. How to lease the internet in your spare time. SIG-

COMM Comput. Commun. Rev., 37(1):61–64, 2007.
15. Tristan Glatard, Johan Montagnat, David Emsellem, and Diane Lingrand. A Service-Oriented Archi-

tecture enabling dynamic services grouping for optimizing distributed workflows execution. Future

Generation Computer Systems (FGCS), 24(7):720–730, July 2008.
16. Tristan Glatard, Johan Montagnat, Diane Lingrand, and Xavier Pennec. Flexible and efficient workflow

deployement of data-intensive applications on grids with MOTEUR. Int. Journal of High Performance

Computing and Applications (IJHPCA), 22(3):347–360, August 2008.
17. Tristan Glatard, Xavier Pennec, and Johan Montagnat. Performance evaluation of grid-enabled registra-

tion algorithms using bronze-standards. In Medical Image Computing and Computer-Assisted Interven-

tion (MICCAI’06), October 2006.
18. Wei Guo, Weiqiang Sun, Weisheng Hu, and Yaohui Jin. Resource Allocation Strategies for Data-

Intensive Workflow-Based Applications in Optical Grids. In 10th IEEE Singapore International Confer-

ence on Communication Systems (IEEE ICCS 2006), pages 1–5, October 2006.
19. Jiayue He, Rui Zhang-Shen, Ying Li, Cheng-Yen Lee, Jennifer Rexford, and Mung Chiang. Davinci:

dynamically adaptive virtual networks for a customized internet. In CoNEXT ’08: Proceedings of the

2008 ACM CoNEXT Conference, pages 1–12, New York, NY, USA, 2008. ACM.
20. R. Huang, H. Casanova, and A.A. Chien. Using virtual grids to simplify application scheduling. In 20th

IEEE International Parallel and Distributed Processing Symposium (IPDPS 2006), April 2006.
21. Distributed Management Task Force Inc. Common Information Model (CIM) Standards. http://

www.dmtf.org/standards/cim/.
22. Xuxian Jiang and Dongyan Xu. vbet: a vm-based emulation testbed. In MoMeTools ’03: Proceedings of

the ACM SIGCOMM workshop on Models, methods and tools for reproducible network research, pages
95–104, New York, NY, USA, 2003. ACM.

23. Guilherme Koslovski, Tram Truong Huu, Johan Montagnat, and Pascale Vicat-Blanc Primet. Executing
distributed applications on virtualized infrastructures specified with the VXDL language and managed

http://mln.sourceforge.net/doc/mln-manual.pdf
http://mln.sourceforge.net/doc/mln-manual.pdf
https://forge.gridforum.org/projects/nml-wg
https://forge.gridforum.org/projects/nml-wg
http://www.dmtf.org/standards/cim/
http://www.dmtf.org/standards/cim/

Joint elastic cloud and virtual network framework for application cost/performance 27

by the HIPerNET framework. In First International Conference on Cloud Computing (CLOUDCOMP

2009), Munich, Germany, October 2009.
24. Guilherme Koslovski, Pascale Vicat-Blanc Primet, and Andrea Schwertner Charão. VXDL: Virtual

Resources and Interconnection Networks Description Language. In GridNets 2008, Oct. 2008.
25. Muthucumaru Maheswaran, Shoukat Ali, Howard Jay Siegel, Debra Hensgen, and Richard F. Freund.

Dynamic Matching and Scheduling of a Class of Independent Tasks onto Heterogeneous Computing
Systems. In Eighth Heterogeneous Computing Workshop (HCW’99), pages 30–44, San Juan , Puerto
Rico, April 1999. IEEE Computer Society.

26. Anirban Mandal, Ken Kennedy, Charles Koelbel, Gabriel Marin, John Mellor-Crummey, Bo Liu, and
Lennart Johnsson. Scheduling strategies for mapping application workflows onto the grid. In 14th IEEE

International Symposium on High Performance Distributed Computing (HPDC’05), pages 125–134,
Washington, DC, USA, 2005. IEEE Computer Society.

27. Larry Peterson, Tom Anderson, Dan Blumenthal, Dean Casey, David Clark, Deborah Estrin, Joe Evans,
Dipankar Raychaudhuri, Mike Reiter, Jennifer Rexford, Scott Shenker, and John Wroclawski. GENI
Design Principles. Computer, 39(9):102–105, 2006.

28. Lavanya Ramakrishnan, Daniel Nurmi, Anirban Mandal, Charles Koelbel, Dennis Gannon, T.M Huang,
Yang-Seok Kee, Graziano Obertelli, Kiran Thyagaraja, Rich Wolski, Asim YarKhan, and Dmitri
Zagorodnov. VGrADS: Enabling e-Science Workflows on Grids and Clouds with Fault Tolerance. In
International Conference for High Performance Computing, Networking, Storage and Analysis (SC09),
November 2009.

29. Rizos Sakellariou, Henan Zhao, Eleni Tsiakkouri, and Marios D. Dikaiakos. Scheduling Workflows
with Budget Constraints. In CoreGRID Integration Workshop (CGIW2005), pages 347–357, Pisa, Italy,
November 2005. Springer-Verlag.

30. Pinar Senkul and Ismail H. Toroslu. An architecture for workflow scheduling under resource allocation
constraints. Information Systems, 30(5):399–422, 2005.

31. João Nuno Silva, Luı́s Veiga, and Paulo Ferreira. Heuristic for resources allocation on utility computing
infrastructures. In 6th International Workshop on Middleware for Grid Computing (MGC 2008), pages
1–6. ACM, December 2008.

32. H. Topcuoglu, S. Hariri, and Wu Min-You. Performance-effective and low-complexity task scheduling
for heterogeneous computing. International Journal of Supercomputer Applications (IJSA), 13(3):260–
274, March 2002.

33. Jeroen van der Ham, Paola Grosso, Ronald van der Pol, Andree Toonk, and Cees de Laat. Using the
network description language in optical networks. In Proc. IFIP/IEEE IM, May 2007.

34. Pascale Vicat-Blanc Primet, Fabienne Anhalt, and Guilherme Koslovski. Exploring the virtual infras-
tructure service concept in Grid’5000. In 20th ITC Specialist Seminar on Network Virtualization, Hoi
An, Vietnam, May 2009.

35. Pascale Vicat-Blanc Primet, Vincent Roca, Johan Montagnat, Jean-Patrick Gelas, Olivier Mornard, Li-
onel Giraud, Guilherme Koslovski, and Tram Truong Huu. A Scalable Security Model for Enabling
Dynamic Virtual Private Execution Infrastructures on the Internet. In IEEE International Symposium on

Cluster Computing and the Grid (CCGRID 2009), Shanghai, China, May 2009.
36. Zhijiao Xiao, Huiyou Chang, and Yang Yi. Optimization of Workflow Resources Allocation with Cost

Constraint, pages 647–656. Springer Berlin / Heidelberg, August 2007.
37. Jia Yu and Rajkumar Buyya. A Taxonomy of Workflow Management Systems for Grid Computing.

Journal of Grid Computing (JOGC), 3(3-4):171 – 200, September 2005.
38. Jia Yu, Rajkumar Buyya, and Chen Khong Tham. Cost-Based Scheduling of Scientific Workflow Ap-

plication on Utility Grids. In First International Conference on e-Science and Grid Computing (E-

SCIENCE’05), pages 140–147, Melbourne, Australia, December 2005. IEEE Computer Society.
39. Henan Zhao and Rizos Sakellariou. Scheduling Multiple DAGs onto Heterogeneous Systems. In 15th

Heterogeneous Computing Workshop (HCW 2006), Rhodes Island, Greece, April 2006.

	Introduction
	Network extension of IaaS paradigm
	Virtual infrastructure design optimization problem
	Validation on the Aladdin/Grid'5000 testbed
	Related work
	Conclusion

