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Adoption dynamics: sequential or synchronous
modelling

February 6, 2012

Abstract

This paper deals with the choice of dynamics in spatial simulation and
modelling. In economical context, N agents choose between two tech-
nological standards according to a local assignment rule. The adoption
dynamics is sequential if the choices are made one after the other; it
is synchronous or partially synchronous if all or some part of the agents
choose simultanously. This paper points out differences between the three
dynamics, especially in their evolution.

Key words: standard adoption, sequential dynamics, synchronous dy-
namics, partial parallelism, Markov chain, ergodicity.

1 Introduction
In many applications, we are interested in the study of the evolution of a sys-
tem, in space and in time. For instance it may concern competition between
different species in ecology, diffusion of technological innovation involving social
behaviour, particles system in physics, fluid spread model, disease propagation,
image sequences. Some models are deterministic (cellular automata (Chopard
et al. 2002), differential equations for instance), while others are based on a
stochastic framework, like Gibbs dynamics, probabilistic automata, or particle
systems (David and Foray 1993; Cox 1989; Galam 1997).
Our framework is standard’s adoption (Arthur 1989; Banerjee 1992; Bikhchan-

dani et al. 1998) but the results may apply to other applications. We do not
provide new theoretical results but we hope to shed light on different modellings,
offering information tools about the ins and outs.
We consider a finite set of sites S = {1, 2, · · · , N}. Each site i is associated

to an agent who makes a choice Xi in a state space E. The state space E can be
finite or not. In all the following, we will assume for simplicity E = {−1,+1},
which is associated to a choice between two competitive technologies. When this
choice Xi depends of the local context, we say that there is spatial coordination,
the spatial dependency being positive if there is cooperation between the agents,
and negative in case of competition. We proposed in Guyon and Hardouin (2001)
tests for spatial coordination allowing to distinguish between “independent”
and influenced choices. We consider in this work probabilistic assignment rules
depending on the neighbourhood, and compare different adoption dynamics:
sequential, synchronous or partially synchronous.
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A scan or a sweep of S is a tour of all the sites. We studied in Hardouin
(2007) and Hardouin (2008) the case of a non iterative dynamics with a unique
sequential scan of S, under the assumption of an initial occurence of standards
A. When the scans are sequential and indefinitely repeated, the agents make
their decision one by one; then we get the well known Gibbs sampler and it
is possible to characterize the probability distribution of the limit configura-
tion. When the dynamics is synchronous, all the agents make their decision
simultaneously, there is still ergodicity but it is difficult to explicit the limit
distribution (See Geman and Geman 1984, Geman1990 for a full description).
However this is possible in some cases and we present such an example. Finally,
partial synchronous dynamics run step by step, a significant part of the changes
happening simultaneously at each step; the latter has not been much studied
though it is often used in economic applications; Winkler (2006) presents a result
for conditional independent subsets; however, most of the results are provided
for simulated annealing (Trouvé 1992; Trouvé 1993).
Our purpose is not to discuss about the choice of the dynamics. We just

want to point out that, for a same local assignment rule, the configurations of
the systems can differ widely according to a synchronous or sequential course.
In section 2, we briefly describe the difference between deterministic and

probabilistic assignment rules, through standard examples. Then we present
the sequential, synchronous and partially synchronous dynamics in section 3,
followed by their ergodic properties in section 4. Some illustrating examples are
given in section 6.

2 Assignment rules
Let us specify the model and give some notations. S is equipped with a sym-
metric graph G and hi, ji denotes a pair of neighbouring sites i and j. If A
is a subset of S, we denote ∂A = {i ∈ S, i /∈ A and ∃j ∈ A s.t. i and j
are neighbouring sites} the neighbourhood of A, and ∂i = ∂{i}. Let us note
x = (x1, x2, · · · , xN ) a realization of X = (X1,X2, · · · ,XN ) in Ω = ES ; for a
subset A ⊂ S, xA (resp. xA) is the configuration x on A (resp. outside of A),
and xi = x{i}.The agent i makes his choice according to a local assignment rule
πi(. | x∂i) depending on x∂i. We give below two commonly used examples of
deterministic and probabilistic rules.

Example 1 Deterministic Majority choice

Let S = {1, 2, ..., n}2 be a square lattice of size n × n, with the 4 nearest
neighbours system. The agent i chooses the state +1 (resp. −1) if +1 (resp.
−1) is majority among his neighbours, and makes a choice at random in case
of equality. If we add the assumption that the agent also takes into account his
own advice, or private information, then there is always a majority state among
the 5 sites of ∂i∪{i} and the rule is deterministic; the system is a kind of cellular
automata. For those two rules, general consensus (same state everywhere) is
an absorbing state. That means that if the number of scans is large, one of
the technologcial standards will emerge and dominate, ending the only one.
The only point is to know which one of the standards will disappear, and the
necessary number of scans to determine the winner. The answer depends on the
rule, that is the kind of majority, and on the initial rates of the two standards.
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Example 2 Probabilistic Ising rule

Let us consider an Ising type model; we note Ni(x) = N(x∂i) =
P

j∈∂i xj ;
then agent i chooses state +1 with probability:

πi(xi | x∂i) =
expxi(α+ βNi(x))

exp(α+ βNi(x)) + exp−(α+ βNi(x))
. (1)

This probability is nothing but the conditional distribution probability of a
Gibbs field on Ω with a joint distribution given by:

π(x) = Z−1 exp{α
X
i∈S

xi + β
X
hi,ji

xixj} (2)

The normalization constant Z of the joint distribution, which is often compu-
tationally intractable, does not occur in the expression of local distributions.
In this example, the choice of the agent depends on two parameters α and

β. The parameter α is a measure of the global frequency of +1 and −1; α > 0
strengthens states +1 while α < 0 increases the number of states -1, and α = 0
balances the two standards. The parameter β determines the resemblance or
dissimilarity between neighbouring sites. There is cooperation between neigh-
bouring sites if β > 0, while β < 0 ensures competition. If β = 0, the assignment
is independent of the neighbourhood.
If we set α = 0 and β > 0, β rather large, the rule meets the previous ma-

jority choice. Then, a deterministic rule can be approximated by a probabilistic
rule.

In all the following, we consider the case of a probabilistic rule in terms of
conditional distributions; this implies to define properly the underlying model.
Let us consider the general positive distribution π on the configuration set Ω:

π = {π(x), x ∈ Ω}, with π(x) > 0 for all x and
X
Ω

π(x) = 1 (3)

The positivity condition allows us to define, for all A and xA, the conditional
probabilities πA(. | xA), particularly the conditional distributions {πi(. | xi), i ∈
S}. When πA(. | xA) depends only on x∂A, π refers to a Markov random field,
as in the example above (2).

3 Sequential, synchronous dynamics
Let us describe the three dynamics involved in standards adoption.

The sequential dynamics
A sequential dynamics is defined by a sequence of scans of the set of sites

S. For instance, we browse the sites 1 to N , sequentially, in this order.
◦ step 1: the initial state is x = (x1, x2, · · · , xN ).
◦ step 2: we browse the sites 1 to N ; at the k-th site, we (uniquely) re-

lax (modify) its value according to the local conditional assignment rule, and
conditionally to the previous configuration,

xk 7→ yk according to πk(yk | y1, y2, · · · , yk−1, xk+1, · · · , xN ).
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◦ step 3: we come back to step 1 with the new initial state y = (y1, y2, · · · , yN ).
Then a scan of S changes the configuration x to the new one y = (y1, y2, · · · , yN )

in N steps.
Some variants are possible: (i) the route to visit all sites can be different

from one scan to the other; (ii) an individual site can be visited several times
during the scan, the important point being to visit all sites; (iii) the order
of the visits can be choosen at random; (iv) the release can also be done by
groups of sites, one group followed by another one, with S being the union of
the groups, and each group evolving internally sequentially. As we will see, all
those sequential procedures are asymptotically equivalent, leading to the same
stationary distribution (Geman 1990; Guyon 1995).

The synchronous dynamics
Synchronous dynamics is also called total parallelism; in fact, all the sites

are relaxed simutaneously in one scan.
◦ step 1 : the initial state is x = (x1, x2, · · · , xN ).
◦ step 2: we release simultaneously all the states, getting x to y = (y1, y2, · · · , yN )

with the simultaneous rules on each site k,

xk 7→ yk according to πk(yk | xk) = πk(yk | x1, x2, · · · , xk−1, xk+1, · · · , xN ), k ∈ S.

◦ step 3 : we come back to step 1 with the new initial state y.

Partial parallelism. Between sequential and synchronous dynamics, we
can define partially synchronous dynamics.
Let M be an integer, 1 ≤M ≤ N .
◦ step 1 : the initial state is x = (x1, x2, · · · , xN ).
◦ step 2: we choose a subset A of S with M elements (|A| = M) and we

simultaneously modify the values of the sites in A, while the other sites remain
unchanged, getting x = (xA, x

A) to y = (yA, x
A) with the simultaneous rules

on each site of A,

xk 7→ yk according to πk(yk | xk) = πk(yk | x1, x2, · · · , xk−1, xk+1, · · · , xN ), k ∈ A.

◦ step 3 : we come back to step 1 with the new initial state y = (yA, xA).

The ratio τ = M
N is called the parallelism rate; M = 1 corresponds to

the sequential dynamics, while M = N defines the synchronous one. Let us
precise that iterating the dynamics, we choose a new subset A at each step 2.
This hybrid dynamics depends on the way of choosing A. It can be chosen at
random, for instance with a uniform distribution giving the same weight to the¡
N
M

¢
subsets of S with M elements, or not, for instance we fix a covering of S

with subsets of cardinal M .
More generally, we can consider several rates of active sites; let A1, ..., An

be some subsets of S such that ∪iAi = S; at each step, we choose a subset Ai

of S with probability γ(Ai) > 0 and we update the sites of Ai. .

We distinguish a particular case of partial parallelism; let us assume that
there is a neighbourhood graph on S; a coding subset C is a subset of S such
that any two sites of C are not neighbours with respect to this graph. Then,
let us consider a partition of coding subsets {C1, C2, ...Ck} of S; if we run
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the previous partial algorithm with these coding subsets, then it meets the
sequential dynamics. As for a simple example, consider the square lattice for S
with the four nearest neighbours system, C is the subset of the “black” nodes,
and C̄ is the white ones. Obviously, C and C̄ are coding subsets and S = C∪ C̄;
changing simultaneously the black sites then the white ones leads to the same
result as changing all the sites one by one in n2 steps. In fact, there is no
interaction between the sites that simultaneously change.

4 Ergodicity

4.1 General results

Let us consider the same generating distribution π for each dynamics; we as-
sume that, for each dynamics, we repeat the scans a large number of times;
the following result shows that the final configurations differ from each other;
specifically, in the case of sequential dynamics, the generating distribution π is
stationary, whereas it is not the case for toher dynamics. The result is obtained
writing the dynamics in terms of Markov chains.
Let us note σk the k−th scan, x = X(k) = (X1(k),X2(k), · · · ,XN (k)) and

y = X(k + 1) the configurations before and after the kth scan; let us write
P = (P (x, y))x,y∈Ω, the dynamics’ transition matrix for the scan σk defined by:

Pσk(x, y) = P (X(k + 1) = y | X(k) = x), x, y ∈ Ω

The following properties hold for X = (X(k), k ≥ 0), the evolution of these
configurations.

Proposition 3 Let X = (X(k), k ≥ 0) be the dynamics generated by probability
π.
(1) X is an ergodic Markov chain on Ω.
(2) For a sequential dynamics, the invariant distribution is π.
(3) For a synchronous dynamics, the invariant distribution is ν, and ν differs

from π.
(4) For a partially synchronous dynamics with M ≥ 2, τ = M

N , the invariant
distribution is λτ , and λτ differs from π.

We give hereafter the main lines of the proof and refer the reader for instance
to Feller (1968) or Isaacson (1985), Kemeny and Snell (1960) for general results
on Markov chains.

4.2 Sequential dynamics

The transition is for one scan

Pσ(x, y) =
Y

i=1,N

πi(yi | y1, y2, · · · , yi−1, xi+1, · · · , xN ) > 0.

If we have different ways of scanning, we note Pk = Pσk and μ the initial
distribution of X(0); X is an inhomogeneous chain, and the distribution of X(k)
is

X(k) ∼ μP1P2P3 · · ·Pk.
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On the other hand, if the scanning order is always the same, σk ≡ σ for
all k ≥ 1, the chain is homogeneous with transition probabilities P = Pσ, and
X(k) ∼ μP k.
It is easy to see that π is invariant for each Pσ which is strictly positive;

therefore π is the stationary distribution. For instance in the homogeneous
case, we write

∀x ∈ Ω, P k(x, y) −→
k→∞

π(y).

Hence, if we repeat the scans a large number of times, the “final” layout of the
standards depends on π and its parameters.

Application: this result enables one to simulate any law π; it sufficies to use
it as generating distribution in the sequential dynamics.This procedure is the
well-known Gibbs sampler.

4.3 Synchronous dynamics

4.3.1 The general case

Let us write the transition

Q(x, y) =
NY
i=1

πi(yi | x1, x2, · · · , xi−1, xi+1, · · · , xN ) =
NY
i=1

πi(yi | xi) .

Again, this expression is strictly positive, which ensures the ergodicity of the
dynamics:

∀x ∈ Ω, Qk(x, y) −→
k→∞

ν(y)

But the stationary distribution ν is different from π and in most cases, not
explicit. Indeed, π is no more invariant for Q.

ν verifies νQ = ν; then ν is an eigenvector associated to Q and the eigenvalue
1. The search of this eigenvector is difficult because of the high dimension of the
matrix Q (originated by the large cardinal number of Ω) while in the sequential
case, this search of the eigenvector is trivially solved since πP = π.
However, if the πi are the conditional distributions of the nearest neighbours

Ising model, it is possible to write ν; we detail this in the following example
(Trouvé 1988).

4.3.2 The Ising model

We consider the torus S = {1, 2, · · · , n}2, n being even, equipped with the 4
nearest neighbours system. The generating distribution π is the trimed Gibbs
law (1) :

πi(xi | x∂i) =
expxi(α+ βNi(x))

2ch(α+ βNi(x))
,

with Ni(x) =
P

j:|i−j|=1
xj.

Then the transition for one synchronous scan is

Q(x, y) =
Y
i∈S

exp yi(α+ βNi(x)

2ch(α+ βNi(x))
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One can show that the invariant distribution ν for the transition Q is

ν(x) = Γ−1 exp{α
X
i∈S

xi}
Y
i∈S

ch(α+ βNi(x))

where Γ is a normalization constant.
Indeed, it is easily seen that the transition matrix Q is ν−reversible, which

implies that ν is Q−invariant:
ν(x)Q(x, y) = Γ−1 exp{α

P
i∈S xi} exp{α

P
i∈S yi}

Q
i∈S expβyiNi(x)

= Γ−1 exp{α
P

i∈S xi} exp{α
P

i∈S yi}
Q

i∈S expβxiNi(y)
(since for instance for i = (s, t),

P
ys,t(xs−1,t + xs+1,t) =

P
xs,t(ys−1,t +

ys+1,t))
that is ν(x)Q(x, y) = ν(y)Q(y, x).

From this explicit expression for ν, let us underline two important differences
between the sequential and synchronous dynamics:
(i) We have seen that the πi are the conditional distribution probability of

a Gibbs field on Ω with a joint distribution given by π(x) = Z−1 exp{
P
i∈S

αxi +

β
P
i∈S

P
j:|i−j|=1

xixj}. From this form, we see that π is a Markov distribution and

the cliques of the associated neighbourhood graph (the four nearest neighbours)
are of order 1 and 2, made up with singletons and pairs of sites at distance 1,
which are of two types, horizontal or vertical.
Similarly, we write ν(x) = Γ−1 exp{

P
i∈S

αxi+
P
i∈S

log{ch(α+β
P

j:|i−j|=1
xj)}}.

Then ν is a Markov distribution, like π. But the neighbourhood system is quite
different: the cliques are the singletons and the sets of four sites that are squares
of side

√
2.

(ii) Let us denote S+ the subset of sites i = (u, v) with u+v even (the black
fields on a chequer board), S− the complementary subset (the white fields), and
x+ (resp. x−) the configuration on S+ (resp. S−).
We define ν+(x+) = Γ−

1
2 exp{a

P
i∈S+ x+i }

Q
i∈S− ch(a+bNi(x

+)) and ν−(x−) =
Γ−

1
2 exp{a

P
i∈S− x

−
i }
Q

i∈S+ ch(a+ bNi(x
−)).

We have ν(x) = ν+(x+)ν−(x−): contrary to the sequential dynamics, the
synchronous evolutions on S+ and S− are independent from each other. Figure
1 and Figure 2 in section 5 illustrate this difference.

4.4 Partially synchronous dynamics

Let us denote R the transition matrix of this dynamics.

4.4.1 The general case

We choose the subset A at random, for instance uniformly in the set of the
subsets of cardinal number M (with τ = M

N ). Therefore,

R(x, y) =
¡
N
M

¢−1 X
A⊂S:|A|=M

(
1(xA = yA)

Y
k∈A

πk(yk | xA)
)
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This transition is positive. Hence the partially synchronous dynamics is ergodic,
with the stationary distribution ρτ ,

∀x ∈ Ω, Rm(x, y)
m→∞−→ λτ (y).

If M ≥ 2, we verify that π is not invariant for R, and then λν 6= π.
More generally, let us consider A1, ..., An some subsets of S such that

γ(Ai) > 0 (3); the dynamics is ergodic with limit distribution λγ if and only if
∪iAi = S (Trouvé 1988).

Again, λτ is not explicit but we have some properties:

If the parallelism rate tends to zero, and for a fix value of the interaction
parameter β > 0, we get a continuity property with limτ→0 λτ = π (Trouvé
1993 Theorem 2.7).

On the other hand, limβ→+∞ λτ (β) = λτ (∞) = λ(∞) if 0 < τ < 1, and the
limit distribution λτ (∞) does not depend on τ (Trouvé 1992); this is no
more true for τ = 1. Therefore we can have discontinuity for large β. This
is illustrated by Figure 3 in the next section.

4.4.2 The coding case

On the other hand, if π has a Markov property with respect to a neighbourhood
graph, and if we choose a partition {C1, C2, ...Ck} of coding subsets of S, then

RCk(x, y) = 1(x
Ck = yCk)

Y
s∈Ck

πs(ys | xCk), k = 1 à K

and R(x, y) = RC1 ...RCK (x, y); but for each k and each Ck = {s1, ...s|Ck|},
RCk(x, y) = πs1 ...πs|Ck|(x, y); finally R coincides with the transition probability
P for a sequential sweep of S.

5 Some illustrating examples
We propose a simulation experiment to illustrate the differences of the previous
dynamics. As for the generating distribution we consider the Ising model defined
in the previous section with the four or eight nearest neighbours system, with
conditional distributions

πi(xi | x∂i) =
expxi(α+ βVi(x) + γWi(x))

2ch(a+ βVi(x) + γWi(x))

where Vi(x) is the sum of the four nearest neighbours (at distance 1) of site i
and Wi(x) is the sum of the four diagonal neighbours (at distance

√
2) of site

i.If γ = 0, then we come back to the four nearest neighbours. We will consider
α = 0, that is +1 and -1 occur with the same probability.

We initialize at random and for one initialization we simulate the three dy-
namics described above: the sequential, synchronous and partially synchronous
dynamics. Each simulation of the sequential and synchronous dynamics is ob-
tained running 600 scans on a square toric lattice of size 64×64. In the case of
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partial parallelism, we iterate the scans until each site has been visited at least
600 times. We also compute the empirical spatial correlation ρ1 at distance
1 (based on the four nearest neighbours) and ρ8 based on the eight nearest
neighbours.
The parameters are β and γ, and the parallelism rate τ . First we present

below some examples of realizations of distributions π, ν, and λ0.5 obtained
from the same generating distribution π for different values of β and γ.We can
see that the resulting configurations may strongly visually differ. On the other
hand, for other sets of parameters, we may have similar final configurations;
for instance we get perfect or nearly chessboard images for π, ν, and λ0.5 for
parameters β = −0.5 and γ = +0.5, and configurations looking like the one of
the sequential (and partially synchronous) case with β = 1, γ = 0 (see below)
for the three π, ν, and λ0.5 and for parameters β = γ = 0.5.

Fig. 1: Simulations of fields with parameters β = 1, γ = −1 for different dynamics
Sequential, τ = 0 Partially synchronous τ = 50% Synchronous, τ = 1

sequentiel beta=1 gamma=−1
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ρ1 = 0.0083, ρ8 = −0.4624
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ρ1 = −1, ρ8 = 0

Fig. 2: Simulations of fields with parameters β = 1, γ = 0 for different dynamics
Sequential, τ = 0 Partially synchronous τ = 50% Synchronous, τ = 1

sequentiel beta=1 gamma=0
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ρ1 = 0.9594, ρ8 = 0.9468
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10 20 30 40 50 60

10

20

30

40

50

60

ρ1 = −0.1173, ρ8 = 0.3976

Then we consider only the partially synchronous dynamics. We repeat hun-
dred times each simulation and compute the mean of the empirical correlations
ρ1 and ρ8 We draw the evolution of those two correlations when τ increases
from 0 to 1 by steps of 5%. We know that for large positive values of β, the the
stationary distribution doesn’t depend of τ , 0 < τ < 1; in fact, we observe that
the correlations are constant from 5% to 95% in the cases β > 0 (β ≥ 0.5 is
large enough) and γ = 0, but also if β < 0 (β ≤ −0.5) and γ = 0. In both cases
we observe constancy or a light gap between the sequential dynamics with τ = 0
and the partial dynamics with τ = 5%; most of all, we observe discontinuity
between τ = 0.95 and τ = 1. The same thing occurs if we permute parameters
β and γ (for instance β = 0, γ = 1 or β = 0, γ = −1), see Figure 3.
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Fig. 3: Correlations ρ1 − ∗− and ρ8 − o−
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Finally, if the parameters have different signs, we observe different behav-

iours; we observe constant correlations in the case β = −0.5, γ = 0.5; in fact
the observed images at different parallelims rates are all similar to the sequen-
tial and synchronous dynamics cases, leading to chessboard like configurations
(see Figure 4a). On the other hand, if β > 0, and γ < 0, the behaviour of the
correlations is quite different; the correlations are quite equal for small paral-
lelism rate and then slowly meet the total synchronous correlations values. It
seems there is a threshold rate from which the configurations change, from the
correlations point of view (see Figure 4b)

Fig. 4: Correlations ρ1 − ∗− and ρ8 − o−
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In conclusion, our simulations allow us to illustrate the theoretical results;
we have shown that the choice of the dynamics is very important in standards
adoption context, as well as in other application fields. Moreover, we point
out that except in specific examples, the limit ergodic distributions remain un-
known for the synchronous and partially (general) synchronous choices; we may
suppose that they coincide or strongly differ for specific values of the dynamics
parameters, as presented in the previous examples.
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