%0 Journal Article %T Multiscale investigation of graphene layers on 6H-SiC(000-1) %+ Laboratoire Charles Coulomb (L2C) %+ Nano-Electronique Quantique et Spectroscopie (NEEL - QuNES) %+ Circuits électroniques quantiques Alpes (NEEL - QuantECA) %A Tiberj, Antoine %A Huntzinger, Jean-Roch %A Camassel, Jean %A Hiebel, Fanny %A Mahmood, Ather %A Mallet, Pierre %A Naud, Cécile %A Veuillen, Jean-Yves %< avec comité de lecture %Z L2C:11-308 %@ 1931-7573 %J Nanoscale Research Letters %I SpringerOpen %V 6 %P 171 %8 2011 %D 2011 %R 10.1186/1556-276X-6-171 %K FILMS %K GRAPHITE %K EPITAXIAL GRAPHENE %K RAMAN-SPECTROSCOPY %Z Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Journal articles %X In this article, a multiscale investigation of few graphene layers grown on 6H-SiC(000-1) under ultrahigh vacuum (UHV) conditions is presented. At 100-mu m scale, the authors show that the UHV growth yields few layer graphene (FLG) with an average thickness given by Auger spectroscopy between 1 and 2 graphene planes. At the same scale, electron diffraction reveals a significant rotational disorder between the first graphene layer and the SiC surface, although well-defined preferred orientations exist. This is confirmed at the nanometer scale by scanning tunneling microscopy (STM). Finally, STM (at the nm scale) and Raman spectroscopy (at the mu m scale) show that the FLG stacking is turbostratic, and that the domain size of the crystallites ranges from 10 to 100 nm. The most striking result is that the FLGs experience a strong compressive stress that is seldom observed for graphene grown on the C face of SiC substrates. %G English %2 https://hal.science/hal-00666156/document %2 https://hal.science/hal-00666156/file/1556-276X-6-171.pdf %L hal-00666156 %U https://hal.science/hal-00666156 %~ UGA %~ CNRS %~ UNIV-GRENOBLE1 %~ INPG %~ NEEL %~ L2C %~ MIPS %~ UNIV-MONTPELLIER %~ NEEL-QUANTECA %~ NEEL-QUNES %~ UM-2015-2021