
HAL Id: hal-00663638
https://hal.science/hal-00663638v2

Submitted on 13 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dwell-and-Spring: Undo for Direct Manipulation
Caroline Appert, Olivier Chapuis, Emmanuel Pietriga

To cite this version:
Caroline Appert, Olivier Chapuis, Emmanuel Pietriga. Dwell-and-Spring: Undo for Direct Manipula-
tion. Proceedings of the 30th international conference on Human factors in computing systems, May
2012, Austin, United States. pp.1957–1966, �10.1145/2207676.2208339�. �hal-00663638v2�

https://hal.science/hal-00663638v2
https://hal.archives-ouvertes.fr

Dwell-and-Spring: Undo for Direct Manipulation
Caroline Appert1,2,3 Olivier Chapuis1,2,3 Emmanuel Pietriga3,1,2

appert@lri.fr chapuis@lri.fr emmanuel.pietriga@inria.fr
1Univ Paris-Sud (LRI) 2CNRS (LRI) 3INRIA
F-91405 Orsay, France F-91405 Orsay, France F-91405 Orsay, France

ABSTRACT
In graphical user interfaces, direct manipulation consists in
incremental actions that should be reversible. Typical ex-
amples include manipulating geometrical shapes in a vector
graphics editor, navigating a document using a scrollbar, or
moving and resizing windows on the desktop. As in many
such cases, there will not be any mechanism to undo them,
requiring users to manually revert to the previous state us-
ing a similar sequence of direct manipulation actions. The
associated motor and cognitive costs can be high. We argue
that proper and consistent mechanisms to support undo in this
context are lacking, and present Dwell-and-Spring, an inter-
action technique that uses the metaphor of springs to enable
users to undo direct manipulations. A spring widget pops up
whenever the user dwells during a press-drag-release interac-
tion, giving her the opportunity to either cancel the current
manipulation or undo the last one. The technique is generic
and can easily be implemented on top of existing applica-
tions to complement the traditional undo command. Empir-
ical evaluation shows that users quickly adopt it as soon as
they discover it.
Author Keywords
Direct manipulation; canceling; undo; dwell; spring.
ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces - Graphical user interfaces;

INTRODUCTION
Direct manipulation principles stipulate that any action should
be reversible. Often implemented as press-drag-release se-
quences, direct manipulation actions can be reverted ei-
ther manually, i.e., by performing the reciprocal press-drag-
release action sequence, or via an undo command invoked
through a menu item or keyboard shortcut. In some situations,
it is also possible to cancel an on-going press-drag-release
sequence (where release has not occurred yet) by pressing a
key such as Escape, or by releasing the mouse button while
the cursor is over an area of the display where performing the
release action does not make sense or is forbidden.

Undo techniques all have drawbacks. Using the keyboard or
a menu item breaks the direct manipulation paradigm. The

C. Appert, O. Chapuis, and E. Pietriga. Dwell-and-Spring: Undo for Direct
Manipulation. In CHI ’12: Proceedings of the SIGCHI Conference on
Human Factors and Computing Systems, 1957-1966, ACM, 2012.
http://doi.acm.org/10.1145/2207676.2208339
c© ACM, 2012. This is the author’s version of the work. It is posted here

by permission of ACM for your personal use. Not for redistribution. The
definitive version will be published in CHI’12, May 5–10, 2012, Austin,
Texas, USA.

technique that consists in manually reverting the action may
have a potentially high cost. From a motor perspective, the
cost of repairing the action is as high as that of the manipula-
tion that caused the error. But the cognitive cost can also be
high, as the user may have to go into a great deal of effort to
revert to the original state of the system/view. Examples in-
clude precisely restoring a window to its original location and
size, or navigating to a distant page in a long document using
a scrollbar and trying to get back to the original paragraph, as
when checking a reference in a bibliography.

The cancel operation is rarely supported. Only a few anec-
dotal direct manipulation techniques exist. For instance, in
some Microsoft Windows applications, it is possible to can-
cel navigation, initiated with a scrollbar, by moving the cur-
sor orthogonally to the scrollbar’s gutter before releasing the
mouse button. However, this technique is specific to one-
dimensional navigation and does not offer any kind of feed-
back or feedforward. Another example is implemented on
Mac OS X, where the user can cancel a drag-and-drop by
dropping the icon in the top menu bar. This technique also
provides very limited feedback or feedforward. Moreover it
might leave the cursor far from the original area of interest.

A source of possible confusion for undo is the lack of con-
sistency across scenarios for a given platform. For instance,
a press-drag-release interaction on an icon allows the user
to both move a file to another folder on the desktop, and to
change the graphical position of that icon on the desktop.
However, the user can only undo the first case (usually with
Ctrl-Z), even though these actions look very similar. Indeed,
an undo command is typically available when the action to
revert is at the functional level of the application: moving an
icon to a new folder, resizing a graphical object in a drawing
application, or moving a text selection in a word processor.
But it is generally not available when the action only changes
the state of the view: moving an icon on the desktop, scrolling
a document, or resizing a window.

This functional level vs. view level distinction is application-
dependent and is only understood by few users. Many users
think, for the most part, in terms of interactions that ma-
nipulate graphical objects, but proper and consistent mech-
anisms to support undo and cancel at the interaction level are
lacking. We present Dwell-and-Spring, a technique that uses
the metaphor of springs to reify press-drag-release interac-
tions. If the user hesitates (dwells) while she is manipulating
a graphical object, a spring widget pops up, giving her the op-
portunity to either cancel the current interaction or undo the
last one on that particular object. The Dwell-and-Spring tech-
nique provides feedforward and feedback through its graphi-

1

http://doi.acm.org/10.1145/2207676.2208339

Press on P

DragTracking Dragging

Release

Dwell on PContinue

Undo?

Cancel?

Undo

Cancel

2-
st

at
e

m
od

el

Dwell on P’ ≠ PContinue

Figure 1. The 2-state model enriched with Cancel and Undo. The figure
represents the model for an indirect input device such as a mouse. In
the case of a direct input device such as a finger, state Tracking would
be state Out of range, and the transitions to, and from, state Dragging
would be Touch/Untouch instead of Press/Release.

cal representation, which makes the widget itself amenable to
direct manipulation. The technique is generic and can easily
be implemented on top of existing applications to comple-
ment the traditional undo command.

We present Dwell-and-Spring in the next section. We then
report on a laboratory experiment designed to understand its
potential in terms of discovery, learning and use. The fourth
section describes several high-fidelity prototypes and gener-
alizations of the basic technique. We conclude with a review
of related work and directions for further research.

DWELL-AND-SPRING
The view of a system is defined by the positions of the graph-
ical objects it contains (including the cursor) and the set of se-
lected objects. As mentioned earlier, this view is mostly ma-
nipulated via press-drag-release interactions: drag and drop
to move a graphical object, rubber-band selection, etc. These
interactions all rely on Buxton’s 2-state model [8], that sup-
ports press-drag-release interactions in the context of indi-
rect input (e.g., mouse) or touch-drag-untouch interactions in
the context of direct input (e.g., finger). The strength of this
ubiquitous model is its simplicity. It is very easy to discover
and learn, and is now deeply integrated in most users’ mental
model of graphical user interfaces.

However, the examples introduced earlier clearly demonstrate
that we need ways to easily revert back to previous states
of the view. For now, the cost of repair is high, as it basi-
cally consists in manually performing the reverse operation,
requiring significant cognitive effort to figure out what was
the previous state of the view and how to revert to it.

Our goal is to integrate in the 2-state model a way of nav-
igating in the view’s history without sacrificing the model’s
simplicity. Figure 1 depicts the model we propose. The origi-
nal 2-state model is kept as is. But other states can be reached
from the Dragging state through Dwell events. If dwelling oc-
curs very close to the location of the Press event, the model

Folder

Folder

Folder

Folder

(a)

Folder

Folder

(b)

Folder

Folder

(b’)

(c)

Drag elsewhere
or Release

Continue

(Drag toward Spring)

Release

Cancel

Figure 2. Cancel scenario: the user dwells while dragging an icon (a). A
spring pops up. She either (b) catches the spring’s handle and releases
the mouse button to cancel the current drag and drop ; the spring then
smoothly shrinks (c), bringing the cursor and the icon back to their orig-
inal locations. Or she (b’) continues dragging in any direction but that
of the spring’s handle. The model then gets back in the Dragging state.

offers users a way to easily perform the opposite of the last
move action that affected the object at that location at the
time of press (Undo case). If dwelling occurs after the user
has started moving the cursor, the model offers a way of eas-
ily canceling that move (Cancel case). In this context, using
dwell as a trigger is a natural choice: dwell is a temporal event
that does not interfere with the input trajectory, and does not
make the usual interactions captured by the original model
more complicated. It is also known as an event that usually
occurs in case of hesitation [24].

Beyond the model, important design choices have to be made
as to how users may express Cancel (resp. Undo) and Con-
tinue high-level events to trigger the transitions from the Can-
cel? (resp. Undo?) state. These events should be:
• easy to discover and learn (C1),
• fast to invoke (C2), and
• not prone to accidental trigger, and easy to repair (C3).

To address criterion C1, we use springs as the fundamental
metaphor. We find the idea of a device that returns to its for-
mer shape when released to be an appropriate depiction of
actions enabled by Dwell-and-Spring. We draw a spring be-
tween the current cursor location and the location the cursor
will have if the user activates a cancel (resp. undo) action.
The spring is a link between two points, that can be stretched
under tension, but that will recover its initial length if the ten-
sion is released. Figure 2 illustrates how we use this metaphor
to express the high-level events we need. So as not to interfere
with the 2-state model, the spring’s handle is slightly offset
from the current cursor location (10 pixels by default). The
user can thus easily continue his current interaction, implic-
itly triggering the Continue event (Figure 2-(b’)). This offset
is combined with a temporal delay (dwell), so that Dwell-and-
Spring will not interfere with most existing operations.

Figure 2-(b-c) shows how users can easily cancel an on-going
manipulation (C2), by simply catching the spring’s handle
and releasing the mouse button to activate the spring. This

2

Folder

Folder

Folder

Folder

Folder

Folder

Folder

Folder

Folder

Folder

Folder

Folder

H
O

O
K

S
P

E
E

D
-D

E
P

E
N

D
E

N
T

C
R

O
S

S
IN

G

(a)

(b)

(c)

Figure 3. Three alternatives to discard a spring triggered accidentally.
(a) Getting out of the handle through an aperture. (b) Moving fast
enough to get out. (c) Crossing the boundary of a predefined activation
area around the handle (translucent gray circle).

triggers an animation where the spring shrinks as if it were
compressed indefinitely, taking the cursor and any object it
may carry along, back to the spring’s origin.

Requiring users to actually release the mouse button to con-
firm spring activation minimizes chances that the latter will be
triggered accidentally, as it introduces an intermediate state
that gives users an opportunity to discard the spring, after the
spring has been caught, but before it actually gets activated.
During that period, the spring widget behaves according to
the metaphor (C1): it gets stretched or compressed to give the
impression that the cursor is pulling or pushing it by direct
manipulation of its handle.

To discard the spring in case of accidental trigger (C3), we
tested three methods that all come down to getting the cursor
out of the spring’s handle, as illustrated in Figure 3:

• HOOK method: the spring’s handle features an aperture
through which the cursor can get out;

• SPEED-DEPENDENT method: the cursor can get out of the
spring’s handle if moved fast enough;

• CROSSING method: crossing the boundary of a predefined
activation area around the spring’s handle. The handle
shrinks as the cursor gets further away from the activation
point, providing feedback that the “link” is getting weaker.

These techniques can be fine-tuned to make the spring more
or less easy to discard: the hook’s aperture can be adjusted,
and so can the threshold speed and activation area’s radius.
In our implementation, the default values are aperture = π/3,
threshold speed = 1 pixel.ms−1 and area radius = 100 pix-
els. Informal tests showed that the CROSSING design was the
easiest to manipulate. The HOOK design leads to accidental
discarding when slightly overshooting the handle, and the
SPEED-DEPENDENT one needs a fast gesture that can interfere
with the intended trajectory. We thus used the CROSSING de-
sign for the evaluation described in the next section. Daily
use of the technique in a window manager and experiment pi-
lots helped us adjust dwell time to 1000ms for Cancel and to
500ms for Undo.

Implementation
Implementations of Dwell-and-Spring involve two main ob-
jects: an overlay to the interface, and a data structure keep-
ing a history of objects that have moved. The overlay listens
to events and displays the spring in response to dwell events
when the mouse button is pressed. It directly re-dispatches all
events to the underlying graphical component, except for re-
lease events: those are dispatched after a series of drag events,
while the spring gets animated as described above, so as to
simulate the sequence of events that would be received if the
user had been performing the cancel/undo manipulation by
herself. The data structure maintains a history of actions per
object. This way, when the user dwells on a given press lo-
cation, the spring offers the action that is the exact reciprocal
of the last interaction this graphical object has been involved
in. This enables an object-centric, sometimes called regional,
undo. For instance, the user can resize a window to make an
icon visible (Interaction1), move the icon (Interaction2)
and then dwell on the window corner used for resizing to undo
Interaction1 without having to undo Interaction2.

Based on this method, we developed (i) an implementation of
Dwell-and-Spring for a window manager [9] (in C++); and
(ii) a Java library1 using SwingStates [3], that enables Dwell-
and-Spring in any Java Swing application with a single line
of code. See the Applications section for more detail.

EXPERIMENT
We conducted an experiment to capture what users typically
do in situations where they want to cancel or undo a press-
drag-release direct manipulation. We also wanted to evalu-
ate whether Dwell-and-Spring is a viable alternative or not.
The experiment lasted around 45 minutes and contained two
parts: an interactive questionnaire to gather data about how
users currently undo various representative direct manipula-
tion actions, followed by a formal experiment to evaluate how
easy it is to discover and understand Dwell-and-Spring, and
how often they would actually use it once discovered.

Participants & Apparatus
Twelve unpaid volunteers (10 male, 2 female), aged 24 to 36
year-old (average 29.1, median 28.5), all daily users of per-
sonal computers, participated in this experiment. 7 used Mac
OS X, 4 Microsoft Windows, and 1 an X-Window system.

Each session started with a short paper questionnaire asking
participants about their familiarity with, and use of, undo op-
erations. Nine participants said that they use the undo op-
eration very often, two often, and one sometimes. All but
one participants reported using keyboard shortcuts often (e.g.,
Ctrl/Cmd-Z). Only one said that she mainly uses a toolbar
button, with five participants sometimes using such a button.
One participant also mentioned using an elaborate menu to
navigate in the command history of an image editor (namely
Adobe Photoshop).

All sessions were conducted on a workstation with a 30” LCD
monitor (2560×1600, 100 dpi, 1 pixel is about 0.256 mm in
width) running Mac OS X. The mouse was a standard optical

1http://insitu.lri.fr/das/

3

http://insitu.lri.fr/das/

mouse with 400 dpi resolution and default system accelera-
tion. The software was implemented in Java.

Capturing Users’ Habits
To gather data about how users cancel or undo a press-drag-
release direct manipulation, we used an interactive question-
naire where participants actually played several scenarios
leading to cognitive states where they want to either cancel an
on-going interaction or undo that interaction right after they
have completed it. To simulate this cognitive state, partici-
pants were instructed to move a graphical object to a target
location highlighted on screen. We considered two cases:

• DRAGGING case: an instruction pops up in the middle of
the press-drag-release interaction (i.e., the user has not yet
released the mouse button) asking the participant to stop
and to put the object back where she grabbed it (Cancel);

• DROPPED case: an instruction pops up as soon as the par-
ticipant has dropped the object at the target location (i.e.,
the user has just released the mouse button) asking her to
restore the object to its previous location (Undo).

In both cases, we considered four scenarios involving differ-
ent graphical objects: a desktop icon (Sicon), a scrollbar knob
(Sscrollbar), a window (Swindow), and a geometrical shape
in a vector graphics editor (Seditor). As mentioned before,
the answer can be highly dependent on the context of use, as
there is no unified way of doing such a cancel/undo operation
across systems. This sample of scenarios was aimed at col-
lecting answers representative of the different contexts of use.
We also believe that asking participants to interactively show
us what they would do in each scenario, as opposed to simply
tell us in response to a verbal description, captures answers
that have higher ecological validity.

We asked questions for the four scenarios, first in the DRAG-
GING case, and then in the DROPPED case. We decided to
use a fixed order of presentation for the two cases because the
DRAGGING case can always be solved the same way the cor-
responding DROPPED case is, i.e., the user can always decide
to commit his current drag by releasing the mouse button and
then undo it. Within both cases, the order of presentation of
scenarios was counterbalanced using a Latin Square.

Our interactive questionnaire presented the user with a desk-
top environment where all existing techniques were made
available, in all contexts we tested. This means that the drag-
and-drop of any graphical object could be cancelled by right-
clicking, dropping in the menu bar, or pressing the Escape

key. Once committed (i.e., mouse button released), the user
could undo the last action by either using the Cmd-Z keyboard
shortcut or by selecting an Undo item in the menu bar (always
displayed at the top edge of the screen). In scenario (Seditor),
there was an additional possibility: an undo button in a tool-
bar, as most applications of this kind actually feature one.
Our environment offered a kind of “ideal setting” by making
all possible techniques available, whatever the scenario. Our
goal was to let participants show us both what they would like
to do (Q1), and what they usually do with their current system
(Q2) in each situation.

DRAGGING case (would like to do, usually do)
Sicon Swindow Seditor Sscrollbar

Manual 9 9 10 12 8 4 12 11
Escape Key 2 2 1 0 1 1 0 0
Menubar drop 0 0 0 0 0 0 0 1
Drop-then-Undo 1 1 1 0 3 7 0 0

DROPPED case (would like to do, usually do)
Sicon Swindow Seditor Sscrollbar

Manual 9 11 8 11 3 1 10 11
Cmd-Z 3 1 4 1 8 10 2 1
Toolbar button - - - - 1 1 - -
Menu item 0 0 0 0 0 0 0 0

Table 1. Strategies reported in the interactive questionnaire. Each cell
corresponds to a strategy and contains two numbers: first the number
of participants who effectively used this strategy in the questionnaire,
second the number of participants who usually employ this strategy.

Table 1 summarizes the answers we collected. It first
shows a clear difference between the graphical editor scenario
(Seditor), which is at the functional level, and the other sce-
narios, which are at the view level. With Seditor, many more
participants employed another technique than manually re-
verting. Ten participants reported using the Cmd-Z keyboard
shortcut once they have DROPPED the object. Seven partici-
pants usually choose to drop and then undo when they are still
DRAGGING. Very few participants used the Escape key and
no participant used the right-click technique to abort and can-
cel the current action. These techniques are actually inconsis-
tent with the original 2-state model (the user has stopped her
press-drag-release interaction while the left button can still
be pressed). In the three other scenarios, participants mainly
restored the object to its original position manually, i.e., by
performing the same action in the opposite direction. This is
even more pronounced in the DRAGGING case, where partic-
ipants almost never used another technique.

There was almost no difference between answers to what par-
ticipants would like to do and answers to what they usually
do. However, we did collect a few surprising answers. For
instance, one participant said that she usually used Cmd-Z in
the DROPPED case under all the presented scenarios while her
system only supports undo for the Seditor scenario. This indi-
cates that some users might expect their system to be consis-
tent over these four scenarios. Three (resp. four) participants
told us that they usually use Cmd-Z to move back a desktop
icon (resp. window) to its original position. They might have
been thinking they can do this because undo works when the
user drops an icon to a new folder, i.e., a command at the
functional level. This reinforces our intuition that the distinc-
tion between the functional level and the view level is not
always clear to users.

Some participants made interesting comments during this in-
teractive questionnaire. In particular, four participants told
us that they would like to have an undo mechanism when
scrolling, such as a button or an implicit bookmarking sys-
tem. This supports findings reported in [2], that describes a
scrollbar that facilitates revisitation through a set of colored
marks added by the system according to the number of times
a document portion has been visited. As we will see later,
Dwell-and-Spring is particularly well-suited to canceling on-
going, or undoing just-performed, scrolling actions.

4

Time

Continue
Cancel

Continue
Undo

Discovery Use
Continue
Cancel

Continue
Undo

Discovery Use

{ {Dragging Dropped

Figure 4. Design outlines of the discovery-and-use experiment.

Discovery and Use: Experiment Design
After the interactive questionnaire, participants ran an exper-
iment whose purpose was to study the following questions:
• Is Dwell-and-Spring easy to discover?
• Will people be willing to use Dwell-and-Spring once they

have discovered it?
Figure 4 outlines our experimental design. As in the question-
naire, we considered both cases DRAGGING and DROPPED.
Trials were blocked by case, with the DRAGGING case always
presented first. As mentioned before, we chose this fixed pre-
sentation order because the DRAGGING case can always be
considered as a DROPPED case. We also expect that, in a real
context of use, there should be transfer from the situations
modeled by the DRAGGING case to the situations modeled
by the DROPPED case. Dwelling in the middle of a move-
ment that the user finally wants to cancel seems rather natu-
ral: consider, e.g., the scenario where the user takes a quick
look at a given object in a scrollable view before coming back
to the location where she was editing; or the scenario where
the user temporarily moves a window to look at the graphical
scene under it. We expect this case to lead to discovery of
Dwell-and-Spring so that users will more easily understand
they can adopt a similar approach in the DROPPED case.

To limit the length of the experiment, we only considered the
desktop icon scenario (Sicon). The task consisted in mov-
ing the icon to a target location shown as a red rectangle. In
the DRAGGING case, the participant was told before start-
ing that she would be interrupted in the middle of her move
by a pop-up message that would give her further instructions
about how to finish the trial. The instruction would be either
to put the icon back to its original location (Cancel condition)
or to finish the current operation, i.e., move the icon to drop
it at the intended target location (Continue condition). Once
she had followed the new instructions, the participant had to
press the Space bar to end the trial. In the DROPPED case,
the participant also had to drag-and-drop a desktop icon to a
target location. As soon as she had dropped the icon, she got
a message asking her to either put it back where it was before
she moved it, and then press the Space bar (Undo condition),
or to just press the Space bar immediately (Continue condi-
tion). In both cases, when she was told to restore the icon
to its original location (Cancel and Undo conditions), the in-
struction explicitly mentioned that “various techniques may
be available” to help her.

In both cases, trials were organized into 4 blocks of 24 tri-
als. For instance, when DRAGGING, a block contained 12
trials in the Cancel condition and 12 trials in the Continue
condition, presented randomly. The 12 trials in the same con-
dition always involved an icon of 48x48 pixels, located 800

pixels from the target location. Only the direction of move-
ment varied across trials to take into account the fact that the
spring’s orientation depends on the movement direction. To
vary movement direction, we laid out icons and target loca-
tions in a circular way.

There were two phases for each case: discovery and use. For
the first two blocks, participants did not receive any indication
about available techniques. They were simply encouraged to
explore the interface. After completion of these two discovery
blocks, the experimenter demonstrated each available tech-
nique before the participant ran into the two other use blocks.
These last two blocks were aimed at observing what strategy
participants adopted once they had been exposed to all tech-
niques, with clear instructions about how to use them.

Because we were interested in observing how people behave
with the Dwell-and-Spring technique in a traditional desktop
environment, but also in contexts where the hardware does
not feature additional physical buttons or keys (e.g., a touch-
screen), the environment only proposed techniques that rely
on “single-point input”. The environment only proposed: the
Dwell-and-Spring technique (Dwell-and-Spring), the tech-
nique that consists in dropping the icon in the top menu bar
(MenuBar), an undo menu item (EditMenu) and, of course,
the manual technique that basically consists in dragging the
icon back manually (Manual).

Discovering Techniques
We first analyze data we collected in the discovery phase of
both cases DRAGGING and DROPPED.

DRAGGING Case
4 out of 12 participants discovered how to use the Dwell-and-
Spring technique. This is less than we expected since the
spring popped up in 96% of the trials and we thought that
the spring offered powerful feedforward. The experimenter’s
observations help explain this low rate of discovery: several
participants only used the spring as a visual guide, and not
as a reactive graphical object. The same participants spon-
taneously said to the experimenter that the spring was useful
because it showed the icon’s original position. Quantitative
evidence backs this interpretation: the participants who did
not discover the technique grabbed but dropped the spring in
about 70% of all cases (under the Cancel condition; this hap-
pened in only 3% of the cases under the Continue condition).

The four participants who discovered the Dwell-and-Spring
technique understood how to use it during the first block: at
first try for two of them, at second and sixth try for the two
others. Once discovered, they used the technique a lot: in
100%, 92%, 79% and 70% of all cases (Cancel condition).
They also made a few errors in the first block where they
activated the spring under the Continue condition, but no such
accidental spring activation was observed in the second block.

This suggests that feedforward about spring activation should
be stronger. A simple solution consists in making the spring
more difficult to drop, to offer more opportunities to activate
the spring (e.g., by enlarging the area where the spring is vis-
ible around the activation point or by making it more difficult
to compress). Another approach would consist in removing

5

1 2 3 4 5 6 7 8 9 10 11 12

F
re

q
u
e
n
c
y
 o

f
U

s
e

(%

)

0
2
0

4
0

6
0

8
0

1
0
0

Dragging Dropped

Figure 5. Use of Dwell-and-Spring in the last block for both DRAGGING
and DROPPED, per participant.

the need for a release event to activate the spring (the spring
would get activated as soon as the cursor enters the spring’s
handle). However these design solutions are in contradiction
with criterion C3, which stipulates that the spring should be
easy to discard. An interesting trade-off might be to come
up with a way of discarding the spring that is a function of
expertise: the spring could be made difficult to drop only the
first few times the user explicitly interacts with it.

DROPPED Case
7 participants discovered how to use Dwell-and-Spring. This
may seem like a lot, given that contrary to case DRAGGING,
the spring would not spontaneously pop up; participants had
to explicitly press and dwell on the object to see the spring.
But once a participant had found how to invoke the spring,
they already knew how to use it as they had all learnt how
to do so in the DRAGGING case. This observation tends to
support our expectation of an asymmetrical transfer between
the cancel and undo conditions during the experiment.

As in the DRAGGING case, participants discovered the spring
technique in the first block: 2 at first try, 2 at third try, 2 at
fourth try, and 1 at eighth try. Then, as in the DRAGGING
case, they used the Dwell-and-Spring technique a lot: 95%,
92%, 68%, 100%, 88%, 87% and 86%.

Using Techniques
The above analysis reveals that users who discovered the
Dwell-and-Spring technique made extensive use of it. In the
following, we analyze data collected in the use phase (after
discovery), to find out whether the other participants, who did
not discover the technique by themselves, eventually adopted
Dwell-and-Spring once exposed to it and to the other tech-
niques (MenuBar, EditMenu or Manual) by the experimenter.

Frequency of Use & Qualitative Results
Figure 5 shows the frequency of use of Dwell-and-Spring
in the last block2 for conditions Undo (DROPPED case) and
Cancel (DRAGGING case). The only other technique that was
used significantly is Manual: MenuBar was used only twice
and EditMenu was used 6 times.

Except for P3, P7 and P10, participants used Dwell-and-
Spring very often, with P1 and P4 using it systematically. The
three participants who used Dwell-and-Spring in less than
50% of the trials in the DROPPED case said that they were
not willing to wait for the spring to pop up to precisely repo-
sition the icon, as precision did not matter much. They also
2We analyze data in the last block only, as it is more likely that
participants had made a “definitive” choice by then.

stated that they would have used Dwell-and-Spring, had pre-
cision been an issue, e.g., had the task been to reposition a
scrollbar knob. We discuss this speed-accuracy trade-off in
the next section. We can also observe that the frequency of
use is a bit lower in the DROPPED case than in the DRAG-
GING case. This is probably due to the fact that doing a long
press on an object to undo its last move is less natural than
making a pause during a movement the user wants to cancel.

The above results show that most participants quickly adopted
Dwell-and-Spring. Of course, the Hawthorne effect [25] may
have led to higher frequency of use than we would have ob-
served in a real setting. However, the qualitative comments
we collected at the end of the experiment were very positive
and showed a real interest for the technique. Several partic-
ipants spent a lot of time discussing design issues with the
experimenter. Interestingly, more than half of the participants
suggested that Dwell-and-Spring should enable users to trig-
ger multiple undos in a single “spring step”.

Errors
We define an error as a trial that ends while the icon is more
than 400 pixels away from the ideal position it would have
been at, had the participant correctly followed instructions
(the distance between start and target icon locations is ini-
tially 800 pixels). These errors represent 2.78% of all trials
in the DRAGGING case and 2.09% in the DROPPED case. In
the DROPPED case, errors correspond to trials where the par-
ticipant pressed the space bar before putting the icon back
to its original position in the Undo condition (i.e., instruc-
tion ignored, possibly because of mechanical routine). In the
DRAGGING case, 75% of all errors were made under the Can-
cel condition: 75% of those correspond to trials where the
participant ignored the instruction, and 25% to trials where
the participant dropped the spring before activating it. Errors
in the Continue condition correspond to trials where the par-
ticipant activated the spring while she should have continued
her current interaction. In the DRAGGING case, the overall
error rate caused by springs is about 1%.

We also recorded occurrences of accidentally spring grab-
bing in the Continue condition. This happened in 3.86% of
the trials in the DRAGGING case and in only one trial in the
DROPPED case. All these trials ended without any error, in-
dicating that participants were able to drop the spring. In the
DROPPED case, a cancel spring popped up in about 6.62% of
the trials under the Continue condition (typically just before
the end of the task), but participants never activated it. These
observations tend to show that the Dwell-and-Spring tech-
nique fulfills design criterion C3 (minimize accidental trig-
gers and enable easy repair).

Movement Time & Precision
Figure 6 shows movement time and precision (distance be-
tween the icon’s original location and its position at trial end
time) for trials in the Cancel and Undo conditions, after hav-
ing removed the errors mentioned above. We do not use any
statistical test (e.g., ANOVA) on purpose. We designed an ob-
servational experiment, not a strict experimental protocol to
quantitatively compare Manual and Dwell-and-Spring.

6

Dragging Dropped

M
T

 (
m

s
)

0
2

0
0

0
4

0
0

0
Manual Spring

Dragging Dropped

P
re

c
is

io
n

 E
rr

o
r

(p
x
)

0
2

0
4

0
6

0
8

0

Manual Spring

Figure 6. Movement time (left) and precision error in pixels (right) for
Manual and Dwell-and-Spring, in both cases DRAGGING and DROPPED
(under Cancel and Undo). Error bars show the 95% confidence limits.

In the DRAGGING case, we observe very similar movement
time for Dwell-and-Spring and Manual, and a better precision
(distance close to zero) for Dwell-and-Spring than for Man-
ual. In the DROPPED case, Manual was about 1.2 seconds
faster than Dwell-and-Spring, but Manual was far less precise
than Dwell-and-Spring. It is not surprising that Dwell-and-
Spring offers a much better precision since its implementa-
tion performs the ideal reverse manipulation, putting the ob-
ject back to its exact original location. The average preci-
sion error with Manual was 71.5 pixels (median 69 pixels).
There is thus a trade-off between movement time and preci-
sion when comparing Dwell-and-Spring and Manual in the
DROPPED case. Note that precision error in the DRAGGING
case is somewhat lower than the one we would have observed
in a more realistic context of use, as the spring visually helped
participants recover the exact icon’s location.

Summary
Collecting users’ habits in different contexts of use revealed
that they always repair their direct manipulation errors man-
ually, except when the direct manipulation acts at the func-
tional level of the corresponding application. Observing users
when they are in an environment where Dwell-and-Spring is
available revealed that one third of users spontaneously tried
to make use of it, and that demonstrating the technique even
a single time is sufficient for users to understand and adopt
it. Our quantitative analysis highlighted the speed-accuracy
trade-off that users may face with such a technique. While
it may be a bit slower in some cases, Dwell-and-Spring al-
lows users to accurately cancel or undo a direct manipulation,
which can be a significant advantage for precise positioning.

APPLICATIONS
The basic Dwell-and-Spring technique readily applies to
many cases of direct manipulation: manipulating icons on
the desktop, moving and resizing windows, navigating docu-
ments using a scrollbar, or any other action where the spring’s
actions are equivalent to what the user would manually do to
revert to the original state. The metaphor can also be extended
to more advanced cases. We first give examples of applica-
tion in a WIMP environment, and then discuss extensions to
the original design to support more advanced interactions that
facilitate other actions associated with direct manipulation,
such as text selection and editing.

Manipulating Widgets
The technique straightforwardly applies to widgets such as
sliders and scrollbars. Figure 7 illustrates a simple yet pow-

(a) (b)
Figure 7. While reading a document, a user wants to have a quick look
at a reference cited on the current page. (a) She drags the scrollbar knob
to the end of the document. (b) Once she has checked this reference, she
dwells on the knob to invoke a spring that will automatically take her
back to the page she was reading.

erful example, where Dwell-and-Spring is used to navigate
back and forth between two distant pages in a document. Go-
ing back to the original page would typically be a tedious
task as the scrollbar knob would have to be positioned very
precisely. Dwell-and-Spring makes such a task very easy by
enabling the user to undo her last manipulation of the scroll-
bar. Similarly, the technique can be used to freely browse
the values of a variable controlled by a slider and effortlessly
revert to the original setting. This can be very useful when
performing dynamic queries or any other visual analysis task.

One issue with the straightforward application of the basic
Dwell-and-Spring technique to these uni-dimensional wid-
gets is that the spring’s hook can be in the way of the cursor
if the user chooses to reverse course but does not want to ac-
tivate the spring. This can be especially bothersome when the
user’s focus of attention is elsewhere than on the widget itself,
as is typically the case when scrolling a document (attention
focused on the pages) or performing dynamic queries (atten-
tion focused on the result-set). To avoid the spring becoming
an annoyance, its hook is offset orthogonally as illustrated
in Figure 7-b. With this minor change, the spring’s hook
no longer interferes with direct manipulation of the scrollbar
knob, even when reversing course.

To further address potential problems of accidental triggering
due to the focus of attention not always being on the widget,
the spring is discarded, even if acquired, when the user dwells
a second time after its appearance. Indeed, such a second
dwell likely means that the user is focusing on another part of
the interface and did not intend to activate the spring.

Manipulating Objects and Navigating Spaces
In addition to widgets, Dwell-and-Spring can be used to undo
direct manipulations of arbitrary objects in applications such
as vector graphics editors like Adobe Illustrator or InkScape.
This is especially useful in cases where the user wants to re-
store the manipulated object to its exact former position. Sim-
ilarly, Dwell-and-Spring applies directly to pan & zoom navi-
gation. Panning a map or image can be seen as a displacement
of the map object, displacement that can be undone as simply
as that of any other object.

7

(1)

(2)

(3)

(4)

(5)

Figure 8. Adjusting a text selection: (1) the user starts selecting a sen-
tence, but misses the first character. (2) She dwells to get a spring. (3)
Entering the spring handle immediately triggers the undo action: (4) the
cursor gets sent to the selection’s start point coordinates; that point be-
comes the active text selection endpoint controlled by the cursor. (5) The
user can freely adjust her selection to include the missing character, all
this in a single press-drag-release sequence.

Dwell-and-Spring maintains a per-object history of direct ma-
nipulations that enables users to undo actions on specific
objects regardless of when they happened, as in regional
undo [21]. The user simply selects and dwells on the object
to be reverted. For instance it is possible to remove a first ob-
ject from an alignment of objects, then a second object, and
finally revert the first object to its aligned position without
having to undo anything about the second object. Dwell-and-
Spring can also address the problem of editing occluded ob-
jects [28]. The user simply moves the occluding objects so as
to be able to edit the object of interest, and then restores the
objects’ positions by activating a spring on each one of them.

Text Selection
Dwell-and-Spring can also be extended to support more elab-
orate scenarios that go beyond a simple undo. For instance,
when selecting text, it is not uncommon for the user to miss
the first character of the string she actually intended to select.
She will often realize this only after the cursor has reached
the selection’s end point. Dwell-and-Spring can offer an al-
ternative to the tedious solution that consists in starting the
selection from scratch.

Figure 8 shows how the spring’s behavior can be modified
so that the user can switch back and forth between selection
endpoints and adjust them at will. The spring gets activated
as soon as the cursor enters the spring’s handle (no need to re-
lease the mouse button) and the new cursor position becomes
the current selection end point. This mechanism can apply
to any rubber band selection, enabling smooth adjustment of
endpoints in a single press-drag-release sequence.

Window Management & Buttons
The examples presented above were implemented with our
Java library. This library allows the developer to put an over-
lay on top of any Java Swing application, enabling Dwell-
and-Spring for any press-drag-release interaction. In order
to assess the value of Dwell-and-Spring in a more ecologi-
cal setting, we implemented it in an actual window system,
Metisse [9], and used it for two months. We wanted to find
out how much Dwell-and-Spring can improve interaction for
each possible window operation that usually does not support

Figure 9. Pressing the Iconify button and dwelling makes a spring pop
up, which allows the user to easily cancel the iconification operation.

Figure 10. Pressing the mouse button in a window overlapped by an-
other makes the latter roll to reveal the former. Dwelling triggers a
spring that can be used to restore the windows’ original z-ordering.

undo: move, resize, iconify, and z-reordering, i.e., bring a
window to front.

Move and resize operations rely on standard press-drag-
release interactions, and are compatible with the original de-
sign of Dwell-and-Spring. Iconify and z-reordering com-
mands are more challenging, because the user usually invokes
them through interactions located on a single point (a click or
a press). The spring metaphor can apply to such operations
by thinking in terms of displacement of graphical objects as
explained below.

To iconify a window, the user clicks on the Iconify button lo-
cated in the window’s title bar. Even though the user’s action
is located on the button, the operation can be seen as if the
window were shrinking and moving to the taskbar. Restor-
ing the original position and size of the window is achieved
through a click on its taskbar icon. In our implementation,
the window is smoothly animated into an icon as soon as the
user presses the Iconify button. If she waits a little with the
mouse button still pressed (dwelling), a spring shows up to
link the current cursor position to the taskbar icon (Figure 9).
Grabbing the spring’s handle and releasing the mouse button
then restores the window to its state before it got iconified.
Contrary to the basic Dwell-and-Spring design, which con-
tinuously attracts the cursor toward the spring’s origin, the
cursor location remains unchanged so as to stay close to the
window of interest (the spring actually attracts the window).

Interpreting a z-reordering operation as a displacement of a
local part of a window makes the operation amenable to undo
with the spring metaphor. As described in [10], when the user
presses the mouse button on an overlapped window and starts
dragging, the top window rolls to make the selected window
fully visible (Figure 10-b). The rationale for not putting the

8

top window below is that it may be the destination of a press-
drag-release interaction (drag-and-drop). In our implementa-
tion, the user can dwell to make a spring pop up, that will
allow her to roll back the window on top. Note that if the
press is immediately followed by a release without any drag,
the window rolls back behind the selected window.

This new way of implementing operations to iconify and
change windows’ depth allows users to have a look at what
is behind a window without changing the current layout of all
the opened windows. It provides a low-cost alternative to the
technique described in [6], where the user has to manipulate
the windows’ borders, which are rather small targets. The
above examples also show how Dwell-and-Spring can apply
to buttons that change the view. This may, however, require
the introduction of additional graphical feedback as we did
with the window rolling effect in the last example.

RELATED WORK
The introduction of direct manipulation in our interfaces has
enabled users to easily invoke commands. The need for an
undo mechanism then rose very quickly. Indeed, the first
personal computer, the Xerox Star [20], already had a ded-
icated undo physical key. This means of trying some com-
mands while relying on the assumption that they can always
be undone allows users to adopt an exploratory behavior [12].
While an intensive use of the undo command for a problem
solving task is not surprising, it can also give an indication
of the usability of an interface by detecting critical incidents
in other contexts [1]. The undo mechanism in an interface is
thus more than a simple command and has received a lot of
attention in both academia and industry.

Most applications implement a linear model of undo. The
application manages a stack of command objects that imple-
ment both the effect and the reverse effect for that command.
The user can thus navigate in the application history by se-
quences of undo and redo actions. A few applications exhibit
this stack as a textual list so that users can directly jump back
to a given state (e.g., Adobe Photoshop). However, this has
the effect of undoing all the commands that were invoked af-
ter it. Some research tools offer a more sophisticated model of
undo. For instance, selective undo [7] allows users to isolate
a command in the history so that the revert operation will be
pushed on top of the current state. This mechanism requires a
sophisticated implementation so as to propose only the com-
mands that make sense for the current state. Edwards et al.
[14] also propose a clever implementation to handle undo in
Flatland, an application that allows users to specify behaviors
a posteriori, that will reinterpret past input. The approach
consists in introducing commands that will be nested with
past commands already stored in the history. Chimera [23]
exhibits the history as a list of graphical panels that allow
users to edit an object in the history. Chimera propagates
these changes to the current state. Collaborative environ-
ments also raise specific challenges because they involve both
shared and individual history so that tools may even propose
time as a first class object (e.g., [15] and [30]).

All these approaches require a complex model of the history
of commands of an application, while the model of history

of Dwell-and-Spring is a simple list of per-object displace-
ments. All the tools and applications mentioned above work
at the functional level, while we work at the interaction level.
Those levels do not interfere, since Dwell-and-Spring actu-
ally simulates direct manipulations of objects users would
have manually performed to undo a previous manipulation
on top of the current state. If this movement corresponds to
a command at the functional level, it will be integrated in the
application history. Also, keeping a per-object history makes
Dwell-and-Spring a kind of spatial selective undo by allowing
users to undo the displacements of a given object without un-
doing more recent displacements of other objects. Some edi-
tors also support such regional undo by making the command
apply within a certain region (e.g., Emacs, DistEdit [27], and
the spreadsheets described in [21]).

Complementary to the above, several tools propose advanced
visualizations of the interaction history. For example, Chroni-
cle [18] or the application-independent approach presented in
[26] propose visualizations of the user’s workflow by empha-
sizing relevant areas to better explain the current state. These
tools are very powerful to visualize, and thus reflect on, the
current state to either communicate or retrieve sequences of
interest. However they are not intended to support undo nav-
igation by, e.g., restoring a previous state as Rekimoto envi-
sioned with the Time-Machine concept [29].

While the visualization tools mentioned above focus on long
term history, Phosphor [5] proposes a lightweight visualiza-
tion of the recent interactions by showing an afterglow that
explains the transition made. Phosphor is close to Dwell-and-
Spring in that it can facilitate the manual undo of a recent ac-
tion. However, it does not propose interactive features to sup-
port these undo operations and provides support for only very
recent interactions. On the opposite, UIMarks [11] enables
users to explicitly leave some marks on the user interface that
facilitate going back to specific positions. Dwell-and-Spring
lies in-between those two approaches: it implicitly records
the start and end points of any press-drag-release with which
users can interact by using a dwell time to trigger a widget.
Using the time dimension during a drag-and-drop to avoid
having to rely on an additional modality (e.g., the keyboard)
is not new and is, for example, used in some systems to reveal
the content of a folder when dwelling over its icon. Another
example is Scriboli [19], that suggests the use dwelling after
a lasso selection to pop up a contextual menu.

Allowing users to interact during a press-drag-release in-
teraction can also be addressed with other approaches such
as crossing or gesture dynamics. For instance, Fold-and-
Drop [13] proposes to cross window borders to fold windows
during a drag-and-drop to facilitate navigation over windows.
The techniques presented in [16] rely on the use of a trailing
widget [17], which can be grabbed with a quick movement,
to access a menu. Boomerang [22] allows to suspend a drag-
and-drop by using a throwing gesture. Finally, while Dwell-
and-Spring facilitates interaction with previous states, Drag-
and-pop [4] accelerates interaction with the future by using
the direction of movement to predict and bring the potential
targets close to the dragged object.

9

CONCLUSION
In this paper we present Dwell-and-Spring, a novel approach
for undoing and canceling direct manipulation actions. The
key ideas consist in using dwell events, that do not interfere
with standard press-drag-release interactions, and a spring
widget that users can directly manipulate. Press-drag-release
interactions being ubiquitous in current interfaces, Dwell-
and-Spring can improve the usability of many applications,
as we demonstrated with actual implementations. Our em-
pirical evaluation showed that users adopt it and appreciate it
as soon as they discover it. We plan to run a field study that
will focus on the potential distractions Dwell-and-Spring can
cause. However we envision an implementation where the
more a user uses the spring, the more transparent it gets. The
analogy with a physical spring is especially useful in the dis-
covery phase of the technique, but it probably becomes less
so when the user actually knows how to use it and wants to
optimize time.

As a first step, we focused on cancel and undo operations.
An a priori straightforward generalization is the inclusion of
redo by making two springs pop up in case a redo makes
sense. However, it can be confusing to users, and alternatives
need to be designed and studied. We also plan to explore how
Dwell-and-Spring can provide users with the ability to undo
several steps at a reduced cost by refining the interaction with
the spring’s handle, which could for instance interpret some
specific gestures. Finally, implicit graphical objects such as
groups or selections are not handled by Dwell-and-Spring.
Implementing a clever history mechanism that makes these
objects explicit is an interesting challenge.

ACKNOWLEDGMENTS
This work has been partially funded by ANR (ANR-11-JS02-
004-01). We also thank David Bonnet, Wendy Mackay and
Michel Beaudouin-Lafon for fruitful discussions.

REFERENCES
1. Akers, D., Simpson, M., Jeffries, R., and Winograd, T. Undo and

erase events as indicators of usability problems. In Proc.
CHI ’09, ACM (2009), 659–668.

2. Alexander, J., Cockburn, A., Fitchett, S., Gutwin, C., and
Greenberg, S. Revisiting read wear: analysis, design, and
evaluation of a footprints scrollbar. In Proc. CHI ’09, ACM
(2009), 1665–1674.

3. Appert, C., and Beaudouin-Lafon, M. SwingStates: Adding state
machines to Java and the Swing toolkit. Software Pract. Exper.
38, 11 (2008), 1149–1182.

4. Baudisch, P., Cutrell, E., Robbins, D., and Czerwinski, M.
Drag-and-pop and drag-and-pick: Techniques for accessing
remote screen content on touch-and pen-operated systems. In
Proc. INTERACT ’03, IOS & IFIP (2003), 57–64.

5. Baudisch, P., Tan, D., Collomb, M., Robbins, D., Hinckley, K.,
Agrawala, M., Zhao, S., and Ramos, G. Phosphor: explaining
transitions in the user interface using afterglow effects. In Proc.
UIST ’06, ACM (2006), 169–178.

6. Beaudouin-Lafon, M. Novel interaction techniques for
overlapping windows. In Proc. UIST ’01, ACM (2001),
153–154.

7. Berlage, T. A selective undo mechanism for graphical user
interfaces based on command objects. ACM ToCHI 1, 3 (1994),
269–294.

8. Buxton, W. A three-state model of graphical input. In Proc.
INTERACT ’90, North-Holland (1990), 449–456.

9. Chapuis, O., and Roussel, N. Metisse is not a 3D desktop! In
Proc. UIST ’05, ACM (2005), 13–22.

10. Chapuis, O., and Roussel, N. Copy-and-paste between
overlapping windows. In Proc. CHI’07, ACM (2007), 201–210.

11. Chapuis, O., and Roussel, N. UIMarks: quick graphical
interaction with specific targets. In Proc. UIST ’10, ACM
(2010), 173–182.

12. Dix, A., Mancini, R., and Levialdi, S. Alas i am
undone-reducing the risk of interaction. In HCI ’96 Adjunct
Proceedings, London Imperial College (1996), 51–56.

13. Dragicevic, P. Combining crossing-based and paper-based
interaction paradigms for dragging and dropping between
overlapping windows. In Proc. UIST’04, ACM (2004), 193–196.

14. Edwards, W. K., Igarashi, T., LaMarca, A., and Mynatt, E. D. A
temporal model for multi-level undo and redo. In Proc. UIST
’00, ACM (2000), 31–40.

15. Edwards, W. K., and Mynatt, E. D. Timewarp: techniques for
autonomous collaboration. In Proc. CHI ’97, ACM (1997),
218–225.

16. Faure, G., Chapuis, O., and Roussel, N. Power tools for copying
and moving: useful stuff for your desktop. In Proc. CHI ’09,
ACM (2009), 1675–1678.

17. Forlines, C., Vogel, D., and Balakrishnan, R. Hybridpointing:
fluid switching between absolute and relative pointing with a
direct input device. In Proc. UIST’06, ACM (2006), 211–220.

18. Grossman, T., Matejka, J., and Fitzmaurice, G. Chronicle:
capture, exploration, and playback of document workflow
histories. In Proc. UIST ’10, ACM (2010), 143–152.

19. Hinckley, K., Baudisch, P., Ramos, G., and Guimbretiere, F.
Design and analysis of delimiters for selection-action pen
gesture phrases in scriboli. In Proc. CHI’05, ACM (2005),
451–460.

20. Johnson, J., Roberts, T. L., Verplank, W., Smith, D. C., Irby,
C. H., Beard, M., and Mackey, K. The Xerox Star: A
retrospective. Computer 22 (1989), 11–26, 28–29.

21. Kawasaki, Y., and Igarashi, T. Regional undo for spreadsheets.
UIST ’05 Demonstration abstract, 2004.

22. Kobayashi, M., and Igarashi, T. Boomerang: suspendable
drag-and-drop interactions based on a throw-and-catch
metaphor. In Proc. UIST ’07, ACM (2007), 187–190.

23. Kurlander, D., and Feiner, S. A history-based macro by example
system. In Proc. UIST ’92, ACM (1992), 99–106.

24. Kurtenbach, G., and Buxton, W. User learning and performance
with marking menus. In Proc. CHI ’94, ACM (1994), 258–264.

25. Landsberger, H. Hawthorne Revisited. Cornell University,
Ithaca, 1958.

26. Nakamura, T., and Igarashi, T. An application-independent
system for visualizing user operation history. In Proc. UIST ’08,
ACM (2008), 23–32.

27. Prakash, A., and Knister, M. J. A framework for undoing actions
in collaborative systems. ACM ToCHI 1, 4 (1994), 295–330.

28. Ramos, G., Robertson, G., Czerwinski, M., Tan, D., Baudisch,
P., Hinckley, K., and Agrawala, M. Tumble! splat! helping users
access and manipulate occluded content in 2d drawings. In Proc.
AVI ’06, ACM (2006), 428–435.

29. Rekimoto, J. Time-machine computing: a time-centric approach
for the information environment. In Proc. UIST ’99, ACM
(1999), 45–54.

30. Rhyne, J. R., and Wolf, C. G. Tools for supporting the
collaborative process. In Proc. UIST ’92, ACM (1992), 161–170.

10

http://doi.acm.org/10.1145/1518701.1518804
http://doi.acm.org/10.1145/1518701.1518804
http://doi.acm.org/10.1145/1518701.1518957
http://doi.acm.org/10.1145/1518701.1518957
http://dx.doi.org/10.1002/spe.v38:11
http://dx.doi.org/10.1002/spe.v38:11
http://doi.acm.org/10.1145/1166253.1166280
http://doi.acm.org/10.1145/1166253.1166280
http://doi.acm.org/10.1145/502348.502371
http://doi.acm.org/10.1145/502348.502371
http://doi.acm.org/10.1145/196699.196721
http://doi.acm.org/10.1145/196699.196721
http://portal.acm.org/citation.cfm?id=647402.725582
http://doi.acm.org/10.1145/1095034.1095038
http://dx.doi.org/10.1145/1240624.1240657
http://dx.doi.org/10.1145/1240624.1240657
http://doi.acm.org/10.1145/1866029.1866057
http://doi.acm.org/10.1145/1866029.1866057
http://doi.acm.org/10.1145/1029632.1029667
http://doi.acm.org/10.1145/1029632.1029667
http://doi.acm.org/10.1145/1029632.1029667
http://doi.acm.org/10.1145/354401.354409
http://doi.acm.org/10.1145/354401.354409
http://doi.acm.org/10.1145/258549.258710
http://doi.acm.org/10.1145/258549.258710
http://dx.doi.org/10.1145/1240624.1240657
http://dx.doi.org/10.1145/1240624.1240657
http://doi.acm.org/10.1145/1166253.1166286
http://doi.acm.org/10.1145/1166253.1166286
http://doi.acm.org/10.1145/1166253.1166286
http://doi.acm.org/10.1145/1866029.1866054
http://doi.acm.org/10.1145/1866029.1866054
http://doi.acm.org/10.1145/1866029.1866054
http://doi.acm.org/10.1145/1054972.1055035
http://doi.acm.org/10.1145/1054972.1055035
http://dx.doi.org/10.1109/2.35211
http://dx.doi.org/10.1109/2.35211
http://doi.acm.org/10.1145/1294211.1294243
http://doi.acm.org/10.1145/1294211.1294243
http://doi.acm.org/10.1145/1294211.1294243
http://doi.acm.org/10.1145/142621.142633
http://doi.acm.org/10.1145/142621.142633
http://doi.acm.org/10.1145/191666.191759
http://doi.acm.org/10.1145/191666.191759
http://doi.acm.org/10.1145/1449715.1449721
http://doi.acm.org/10.1145/1449715.1449721
http://doi.acm.org/10.1145/198425.198427
http://doi.acm.org/10.1145/198425.198427
http://doi.acm.org/10.1145/1133265.1133351
http://doi.acm.org/10.1145/1133265.1133351
http://doi.acm.org/10.1145/320719.322582
http://doi.acm.org/10.1145/320719.322582
http://doi.acm.org/10.1145/142621.142645
http://doi.acm.org/10.1145/142621.142645

	Introduction
	Dwell-and-Spring
	Implementation

	Experiment
	Participants & Apparatus
	Capturing Users' Habits
	Discovery and Use: Experiment Design
	Discovering Techniques
	Dragging Case
	Dropped Case

	Using Techniques
	Frequency of Use & Qualitative Results
	Errors
	Movement Time & Precision

	Summary

	Applications
	Manipulating Widgets
	Manipulating Objects and Navigating Spaces
	Text Selection
	Window Management & Buttons

	Related Work
	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES

