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ABSTRACT. In this paper we present a new semilagrangian scheme for the nu-
merical solution of $he BGK model of rarefied gas dynamics, in & domain with
maoving boundaries, in view of applications to Micro Electro Mechanical Sys-
tems (MEMS). The source term is treated implicitly, which malkes the scheme
Asymptotic Preserving in the limit of small Knudsen number. Because of its
Lagrangian nature, no stability restriction is posed on the CFL number, which
is determined only by accuracy requirements. The method is tested on o one
dimensional piston problem. The solution for smali Knudsen number is com-
pared with the resuits abtained by the numerical solution of the Euler equation
of gas dynamics,

1. Introduction. Microscopic description of a gas, neglecting quantum effect,
couid be obtained by solving the equation of motion for a collection of a large num-
ber N, of molecules. For most cases of practical relevance, such a task would reguire
an enormous amount of computer power {(at standard condition of temperature and
pressure in a cubic millimeter there are about 3x 1019 molecules), furthermare, such
an amount of information, even if available, would be extraordinarily redundant.
Rarefied gas flow can be treated at a mesoscopic Jevel by a kinetic description,
in terms of a distribution function f(t,z,v} which gives the probability density
of finding a gas molecule with velocity v at position z at time . At this level,
when short-range binary collisions among the molecules are the dominant effect,
the evolution of the distribution function is governed by the Boltzmann equation,
o non linear integrodifferential equation [11]. This description is satisfying when
the number of molecules is large enough to justify a statistical approach. If the
mean free path of molecules is much smaller than the macroscopic typical size of
the system, then even a kinetic description is redundant, and one can safely obtain
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accurate predictions by using a continuum description of the gas, in terms of Euler
of Navier-Stokes equations.

Rarefled regimes may appenr when considering the motion of objects in the outer
atmosphere, where the mean free path may be comparable or even larger than man-
powered vehicles (at 100 Km the mean free path is about 1 m, and then it rapidly
increases with altitude {1]). For this reason the Boltzmann equation hes been widely
studied by aerospace engineers.

There are, however, other contexts in which rarefied gas dynamics has to be
used even at standard temperature and pressure; for example, when considering
Aow of gas in micro channels, the length of the characteristic size of the device may
be comparable with the mean free path. A very important case is represented by
rarefied gas flows in MEMS [21], Micro-Electro-Mechanical-Systems which are built
by photolitographic techniques similar to the integrated circuits of microelectronics.
A large class of devices, including accelerometers, micro puinps, micro engines, and
s0 on can be built with this technique. The advantages of MEMS with respect to
their larger traditional counterparts, is the small size, the reliability and robustness,
and the low cost for mass production.

Some MEMS, such as accelerometers, are composed by several elements, which
consist by a part, the “stator”, fixed to the substrate, and a suspended part, the
“shuttle”, which is free to oscillate at moderate frequency in a certain specified
direction. The oscillations induce a change in the capacitance of the element, which
can be detected, and used to measure the acceleration of the device in the direction
of the degree of freedom.

The behavior of MEMS involves several interacting physical effects, including
structural dynamics, electrical properties and gas dynamics, and full modeling is
really a mulii physics problem.

An important sspect of the dynamics is due to the interaction of the moving
part with the gas inside the device. Because of the small size of the channels, the
mean free path of the gas can be comparable to the width of the channel. Under
such conditions, Navier-Stokes equations are not adequate to model gas flow, and
one has to resort to a kinetic description.

In the work {20} the authors treat the gas flow in one element of an accelerometer
by means of the BGK madel or rarefied gas dynamics (see next section), which is
a relaxation time approximation of the Boltzmann equation, and provides a crude
description of the effect of the collisions. In spite of the simplification, they are able
to obtain results in very good agreement with experimenial measurements of the
damping effect of the gas.

In that paper, the authors use & quasi-static approximation: the flow Reld of the
gas is a steady state computation, in which the motion of the moving part is taken
into account by assigning suitable boundary conditions. For moderate accelerations
this approach is justified by the consideration that the speed of the moving element
is much smaller than thermal speed of the gas, and therefore in a very short time,
the gas approaches steady state, while the shutile barely moved.

When the speed of the element is not negligible with respect to thermal velocity,
then the motion of the shuitle, and consequently the time dependence of the domain
in which the Auid flows, has to be taken into account.

This consideration motivates the research of effective ways to solve kinetic equa-
tions in a time dependent domain.
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The numerical solution of the Bolézmann equation constitutes a challenge, be-
cause of the high dimensionality of the problem, and because of the difficulty in
accurately and efficiently computing the quadratic collisional term. Several nu-
merical methods have been developed for this purpose. A review of the literature
on most commonly used deterministic and stochastic methods can be found, for
example, in the lecture notes [27].

Stochastic methods, such as Direct Simulation Monte Carlo (DSMC) [7], have
been widely used because of their efficiency, and their ability to deal with large
deviation from equilibrium. Such methods, however, are not suitable for low Mach
number flow, because of the inherent statistical noise, which tends to maslk small
deviation from thermodynamical equilibrium. Furthermore, DSMC is quite effective
for stationary problems, where time averages can be taken to accumulate statistics,
and reduce fluctuations. Here we are mainly interested in low Mach number, time
dependent problems.

In such conditions, deterministic methods are probably more effective. Although
there are relatively cfiicient and aceurate deterministic methods for the numeri-
cal approximation of the Bolizmann collisional operator, such as spectral methods
based on the Fourier representation (see [29, 18] for space homogeneous problems,
and [19] for spetially non homogeneous problems), here the main emphasis is on
the treatment of moving boundaries, therefore we shall use the simple BGK model,
which is able to capture some of the essential features of the flow. TFurthermaore,
thanks to the simple structure, it is possible to construct a numerical scheme that is
Asymptotic Preserving, i.e. that becomes a consistent scheme for the fuid dynamic
limit {see |14, 23] for AP schemes in the context of kinetic equations).

The plan of the paper is the following. In the next section we briefly recall
the BGK model, and relative fluid dynamic limit. In Section 3 we describe the
semi-implicit Lagrangian method for the BGK model. Section 4 is devoted to the
description of the boundary conditions for the piston problem. The last section
presents numerical tests for various values of the Knudsen number. A comparison
with the solution of the piston problem for the Euler equations of gas dynamics is
also performed. Finally, we draw conclusions and address future worl.

2. The BGK model. The BGK model was introduced by Bhatnagar, Gross
and Krook [6] as a simplification of the Boltzmann equation, where the colli-
sions are modeled by a relaxation of the distribution function f(¢,z,v) towards
the Maxwellian equilibrium. ¥ consists of the following initial boundary values
problem

of

1
¥ rvvar=toais- )
F0,z,v) = folz,v) t>0, zeR*= veR%.

In the equation (1) M[f] is the Maxwellian obtained by the moment of the
distribution function f,

MlfT= (sz;)dU/'z exp (_ IUQ;{;}d) ' 2

In this formulation d; and d,, denote the dimensions of the physical and velocity
space respectively, while p, u and T denote the macroscopic felds, namely: density,
velocity and temperature. R is the universal gas constant divided by the molecular
mass of the gas. Once the problem is solved, the distribution fanction is known

(1)
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and the macroscopic fields are obtained as moments of f. Let ¢(v) = (1,v,1/2|v|*)
denote the vector of the collision invariants. Then the moments are given by

(0, o, ) =< [(v) >= ]R P (k) do

The quantity E{z,t) is the total energy density and it is related to the the temper-
ature by the internal energy e{z,t)

e(x, ) = %’-RT(J:,t), pe=F— %pug.

9.1. Conservation laws. By the definition of moments of the distribution func-
tion, one obtains the following conservation laws for the mass density, momentum
density, and energy density

a—fa{—>+vm-<fv>=0,
(9%#+VI-<U®’UI>=D, (3)
0 < $vfAf >

o ~I~V;;-<é|fu|"’f-u>=(}.
Notice that the above system for the moments is in general not closed, because the
number of unknowns is larger than the number of equations.

Generally BGK models are implemented using d,, = 3, this means that the system
is & mono atomic gas with three translational degrees of freedom. Mathematical
models of gas with only dy = 2 or d, = 1 degrees of freedom are also possible.

In this paper we shall deal with the case d, = 1, which simplifies the numerical
computations, without alfecting the gualitative results. The same model has been
used in [14].

The collision frequency v = v~ for the BGK model may be a function of the
density p (generally linear) and temperature. Several models are discussed in [3].

All the computations in the present paper are performed by assuming that r is
constant. If we write the equation in non dimensionat form, then T becomes the
Knudsen number, i.e. the ratio between the collision time and the macroscopic time
scale typical of the system.

2.2, Fluid dynamic limit. In the fluid dynamic limit, i.e. as 7 — 0, the distri-
bution function will converge to a local Maxwellian, and the system (3) becomes a
closed system for the 2 +d, moments. The conserved quantities satisfy the classical
Fuler equations of gas dynamics for a mono atomic gas:

dx

dp dpu;
Bt * Z aCL'J' - D’
j=1
Opus &= g
N + Z —0?3 (pusuj -+ pdyz) = 0, {4)

AE & 9
§+§E—&—;{ui(E+P)) = 0.
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Eq. (1) constitutes a system of 2 + d equations in 3 + d, unknowns. The pressure
is related to the internal energy by the constitutive relation for a polytropic gas

= (v = B - goluP), %)

where the polytropic constant v == (d, + 2)/d, represents the ratio between specific
heat at constant pressure and at constant volume.

For small but non zero values of the Knudsen number, the evolution equation
for the moments can be derived by the so-called Chapman-Enskog procedure [13],
applied to the BGK equation. This approach, however, does not give the correct
value of the Prandtl number of the Navier-Stokes equations: because there is only
one fitting parameter {the relaxation time), one can only match either the thermal
conductivity or the fiuid viscosity. The proper value or the Prandtl number can
be restored by making use of the so called elliptic BGK-model (see, lor example,

3. Description of the method. We describe the numerical method in the simple
case of one dimension in space and velocity. First let us assume that the integration
domain in space is {0, L}, with a fixed L. The initial-boundary value problem can
be written as f f 1
o T Ve = M-
[t m,v) = fo{m, v)
where v € B, z € [0, L}, and t > 0. Ditferent boundary conditions can be prescribed
at = 0and z = L.

Suppose we want io integrate the equation up to a fixed time ¢ = ¢;. For
simplicity we agsume constant time step At = £; /N, and uniform grid in physical
and velocity space, with mesh spacing Az and Aw, respectively, and denote the grid
points by t, = nd, ; = (Ax, i = 0,..., Nz, v5 = jAv,j = —Ny,..., Ny, where
Nz+1 and 2N, + 1 are the number of grid nodes in space and velocity, respectively.
We assume that the distribution function is negligible for {v| > vpae = NpAw.
We denote by f;(¢,z) a numerical approximation of the function f(¢,2,v;). The
evolution equation for f;(t, ) elong the characteristics between time step n and
time step n + 1 is obtained by writing (6} in characteristic form for f;{t, 2}

U5 - aay10 -
a':L 7
.y, (7

:E(tﬂ) = E‘-v f_,’(tﬂ) = H(T)! t E [tn’tn"}-l]v

Here A;(t, 2} denotes the local Maxwellian with the same moments of the function
fltz,) eva]uated ab velocity v;.

LeL "% denote the approximation of the solution f(t,,x;,v;) of the problem (6)
at time tn in each spatial and velocity node, and assume that it is given.

A first order scheme is obtained by discretizing Eq.(7} in time. Since we are
interested in a scheme which is stable even for small relaxation time, we discretize
Eq. (7) by implicit Euler scheme

(6)

J«ﬂ+1 — fU (Iu'n-i-l fn-l-])
Q!iv—wﬂiij-i-’UJAt, i=0,...,Nz, j=-~Ny, ...,Ny.

(8)



238 GIOVANNI RUSS0O AND FRANCIS FILBET

The scheme is illustrated in Figure 1.

Y

n+1
if

FI1GuRE 1. Space-time grid for the computation of

The value of the [funciion f,‘} is reconstructed af position £ = x; — v;At by

a suitable high order reconstruction. In particular, here we use a piecewise cubic

polynomial, which is obtained by Hermite interpolation in each interval [zy, ziyq].

The first derivatives of the function at location z;, (#f;/0%)z,, are computed by
second order ceniral difference (see Figure 2},

95\ S —finng
bz /., 2AT ’

; 1 Slope determined
by centered finite difference

Hermite cubics

FIGURE 2. Piecewise Hermite interpolation for the reconstruction
of the distribution function off the grid

The reconstruction is linear, withoui limiters. This guarantees that the scheme
is conservative [17].

Other reconstructions are possible. For example, Carrillo and Vecil [1D] use
WENO reconstruction, when applying semilagrangian schemes to Vlasov-like equa-
tions, while Santagati used high order pointwise WENO [49], and high order Runge-
Kutta schemes, to obtain high order accuracy in time [11].

Remark 1. We observe that if Az = AvAt then &4; = 2;—v; Al = 1y—JAT = 3;_j,
therefore the foot of the characteristics is a grid point, and no reconstruction is
required. In such a case, the scheme becomes a lattice Boltzmann methed (LBM,
see, for example, [13]), although LBM are in general used to model fluid dynamic
eflect using a limited number of velocities, rather than as a numerical tool for kinetic
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equations, as we do here. LBM have been widely used because they can be efficiently
coded, are easily parallelizable, and allow treatment of complex geometries. If the
foot of the characteristics is not & grid point, then the schemes are sometimes
referred to as off-laftice Boltzmann schemes [3].

Other characteristic-based methods have been used in the literature for the nu-
merical solution of the BGK model. For example, in [3], the authors use a charac-
teristic method based on the approach used in [32]. Their scheme, however does not
use high order reconstruction, and suffers from stability restriction of CFL type.

3.1. Implicit caleulation. The implicit term can be explicitly computed making
use of the following observation. By definition, the Maxwellian A*! and the

function f7** have the same conservative moments pP*!, (pu)?*+, E”“"1 TUnder
the assumption that the distribution function is smooth, and that the energy outside
the computational domain in velocity is negligible, the moments are approximated
with spectral accuracy by replacing the integral in velocity by summation.

Let us multiply Eq. (%) by 1,v, jv|* and sum over the velocities. Because M"“‘l

and f7*! have the same moments, one obtains

n+l Zf:_;: Pu' R-H Zvj ijr PIT]+1 Z[ J! fu (9)

Once the moments have been comput;ed, the Maxwellian can be calculated from the
moments, and the density function can be explicitly computed as

TIR A ALMEH
T+ Al

Notice that as 7 — 0 the distribution function f"'“ is projected onto the Maxwellian.
Furthermore, in this limit the whole scheme becomeb a relaxation scheme for the
Euler equations. We say that the scheme is Asymptotic Preserving. This term was
introduced by Shi Jin in the context of numerical method for kinetic equations that
are able to capture the fluid dynamic limit [23], and by Axel Klar [24}, in the con-
text of kinetic equations close to the low Mach number limit, although the concept
was already present in the paper by Coren and Perthame [14].

In the confext of numerical methods for systems of ordinary differential equa-
tions, the property of being AP is essentially the capability of a method, applied to
a stiff system, to become a consistent discretization of the underlying limit system
of differential-algebraic equations, and it is strongly related to L-stability prop-
erty of the method. A vast literature is available for numerical methods with such
a property. In the context of hyperbolic equations with relaxation, high order
Implicit-Explicit schemes that are Asymptotic Preserving have been derived {see,
for example, [27]). A new methodology has recently been introduced for the devel-
opment of Asymptotic Preserving schemes in several contexts, which is based on
the relormulation of the singularly perturbed problem into an equivalent problem,
in which the singularity has been removed. See for example the paper [15] for an
applicailon to the Euler-Poisson equation near the quasi-neutral limit.

AR (10)

Remark 2. We remark here that the moments computed by the discrete surnimation
in Fi.(9) are not exactly equal to the moments computed integrating the continuous
Gaussian (2). This may Jead to a small inconsistency of the method. To overcome
this problem, Mieussens introduced a discrete Maxwellian that depends also on thres
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parameters, related to the moments [25]; the determination of such parameters
requires the solution of a non linear system. However, if the solution is regular,
the discrepancy between the moments computed by the standard Gaussian and
the discrete distribution used by Mieussens is very small, because of the spectral
accuracy of the quadrature formulas. Some comparison obtained by using the two
approaches is shown in the paper by Pieraccini and Puppo [30].

4. The piston problem. In view of the application to MEMS, in this section we
consider a simple problem in a domain with maoving boundary. The system consists
in a gas inside o one dimensional slab, which is driven by a moving piston (see
Figure 3). On the left boundary of the domain there is a fixed wall (the origin
of our coordinate system), at the right end there is a piston, whose position is an
assigned function of time z, : t € B — x,(f) € [0,L]. We assume that the gas
inside the slab is governed by the BGK equation. The system is discretized on a
uniform grid in the computational domain [0, L] by N -+1 grid points of coordinates
z; =1h,i=0,..., Nz, h = L/N;. As the piston moves, the domain occupied by the
gas changes, while the position of the grid points remains fixed. As a consequence,
only a certain number Ny (2) of grid points is actually used (active points) while
other points lie outside of the domain (ghost points).

The number of equations to be solved changes with time. We choose the time
step in such a way that the piston can move by at most one grid point in one step,
ie.

, Dsmé};! lup(t)} Az < Af,
where u,(t) = &,(t) is the assigned piston velocity. Let us define by Ny, = Ni(tn)
the number of active grid points at time step n.

There are only three possibilities: 1) Npq1 = Ny, i) Naga = Ny + 1, i) Npgy =
N, — 1. Figure 4 illustrates the [irst two cases.

At each time step, the number of unknowns to be determined is given by {Np -
1)(2N, +1).

Different boundary conditions may be assigned to the boundary. Here we con-
sider two extreme conditions, namely specular reflection and diffusive boundary
conditions. Tt is clear that a convex combination of these two conditions is possible
(Maxwell boundary conditions) at either boundary (piston or wall).

4.1. Specular reflection. The conditions [or specular reflection are she [ollowing.
At the wall, at. each time ¢, the distribution function, for positive velocities, is given
by
f(f, 0, U) = f(tl Dr _'U)'

This condition is equivalent to replace the wall by & gas with a specularly symmetric
distribution for ¢ < 0. With this in mind, we can easily convert the boundary
conditions into initial value conditions for the ghest points. For example, this is
obtained by defining the ghost velues of fi; for i < 0 and v; > 0, as

ffi‘jwf;:—jw 7:S0,J>0,
keeping in mind that v; = jAv. In this way the problem on the left boundary is
converied into an initial value problem, and the same procedure used for the points
weil inside the domain can be used for the points near the boundary. The number

of ghost points that needs to be set is given by Ngi = |VinexAl/Az] + 1, where [}
denotes the integer part.
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A similar condition can be used to treat reflecting boundary conditions near the

piston:
[t ap,v) = f{tzp,v"), v =2u,—9.

As in the case of the wall, this condition is not of immediate application, because it
requires the knowledge of the function at the piston, for arbitrary time ¢ € {t,, tn41]-
We convert the condition into an initial value for the ghosi point using the following
argument. We approximate the motion of the piston by a piecewise linear function
of time, i.e. we assume that in time interval [¢,,¢,41] the velocity of the piston
is unchanged. Then the value of the density function f(in,Z3;,v;), at the foot
of the characteristics corresponding to the velocity v; < up, is set to f*(z*,v*),
where xy; + 2 = 22,(t,) and v; + v* = 2u,(t,) (see Figure 5). The simplest
way to Implement such condition is to precompute the values of the distribution
function at ghost points z; > 2p(tn), for v; < up, as fM(zi,v;) = fR(z*,v*), with
T+t = 2ap(ly) and vy 4+ v* = 2u,{t,), and then use the standerd piecewise
Hermite interpolation from grid points (active or ghost) at time level ¢,,. In general
point {z*,v*) is not on a grid in phase space, therefore interpolation in & and v has
to be used. In some cases, point (2*,v”) is in a cell whose values of the function
is known at the vertices, and bilinear interpolation can be used. In other cases,
the function at the vertices is itself not known, and an iterative procedure has to
be used. This procedure is illustrated in Figure 6. Note that the use of bilinear
interpolation degrades the accuracy near the boundary.

Maving piston X(t)
o

(Ghust poin@ (hnun

FIGURE 3. Setup of the piston problem. The equations are solved
for the values of the distribution function in the active grid points.
The values outside of the computational domain (ghost poinis) are
computed by making use of the boundary conditions

Fioure 4. The number of active grid points depends on time. Left:
Nm(tr1+1) = N, (t,); right: Nr(tn-H} = Nz(tn) +1
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x4t

FIGURE 5. Definition of the specular boundary conditions at the
wall (lefi) and at the piston (right)

-G G

Xug X %)

FIGURE 6. Definition of the ghost values. Left: z, < (xyjs1 -+
zx}/2. Interpolation is possible without iteration; right: z, >
(zy+1 +zn}/2. lteration is required to interpolate

4.2, Diffusive boundary conditions. Diffusive boundary conditions are imple-
mented as follows. Let us assume that the velocity of the piston is plecewise constant
in time. There are three cases, according to whether Ny = Np, Ny = Ny + 1,
and Np41 = N, — 1. Since all three cases will be treated in a similar way, in Figure
T we illustrate jusl the first one.

Let us denote by the subseript “p" the quantities ihat refer to the piston. The
density function at {he piston, at time n+1 will be computed as follows: for velocities
vj > 1 it is computed from the evolution equation. For velocities v; < up it is a
Maxwellian, with average velocily equal to the piston velocity, and with a density
such that the net mass flux across the piston is zero.

For velocities smaller than the piston velocity (i.e. for characteristic entering the
domain}, one has

a
B — Up )~
AJ;:J_-!-I - _g.g...._exp (—M) , vj < tp

A/ ZWRTP 2RTp

where T denotes the piston temperature. The density p, is determined by imposing
that

ST M oy — ) + ST ey —up) = 0.

u; <ty vy,
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A

xp(t n+1 )

trer ——e o —*
ty |
o & 5 o g
xl ij xl"l Xp(tn)

Y

Ftgure 7. Diffusive boundary conditions at the piston. The value
of the function at point (¢n41,Tp(fne1)) for v; > wu, is computed
from the evolution equation. The density p,’}"’l of the Maxwellian
emitting from the wall at the same point is computed by imposing
conservation of mass. The value of the function for characteristic
entering the domain (dashed line) are computed hy linear interpo-
lation.

The Maxwellian AJ;;T’“:[, for v; > wup is computed using the evolution eguation for f.
We trace the characteristics v; > up, and, for those, we have the equation

7 n At n
Lt = Lo+ — (M = D, Yy g, (11)
Then we multiply by the collision invariants, and obtain
S M = Y il (12)
J 3J

Observing that

IRt = M Yoy <,

equality (12} is valid also if we sum only over v; > u,, therelore we obtain

2 oM = 3 il = 3 il

v Up U > Up Ui > Uy

Once the three parameters that identify the fraction of Maxwellian for v; > u, are
determined, the distribution function can be computed from (11).

Once the distribution funetion is known at 2,(t,) and ,(£,41), one can compute
any needed value at the intersection between the characteristic corresponding to
velocity v; < u, ending at location &; < ap for £ == £, (ses dashed line in Figure
7) by linear interpolation. I a characteristic reaching point 2; starts in the interval
[z, 2p(tn)], then one can use linear interpolation between such points.

The use of linear interpolation near the boundary will decrease the accuracy of
the schemne to first order near the boundary. Higher order approximation will be
subject of future investigation.

Remark 3. The procedure just deseribed is not exactly conservative, because the
density corresponding to the ingoing Maxwellian particles are computed at the
end points (£, 2,(6,)) and {{ngs, Tp(fns1)), and linear interpolation is used for
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the characteristics entering the domain. Exact conservation could be restored by
imposing that the (exact) total discrete next flux across the piston is zero.

5. Numerical tests. For our numerical tests we consider a slab of total length

L = 20. The piston is located at the left boundary of the domain, while on the

right edge there is a fixed wall. In all our tests we choose specular reflection both at

the wall and at the piston. In this way, we shall be able Lo compare the solution of

the BGK model with the numerical solution of the Euler equation of gas dynamics.
We solve the following problem

?){ f : ~(M[f]= ), z€@p(t)LhveRt=0,
f(t,mp(ﬁ), )—- f(i,ﬂrp( ),TJ*), velR (13)

f(t1L?U) =f(tvLy"'U)1 veER

with v + v = 2up{t).

We have computed a numerical solution for different Knudsen numbers, from
rarefied regime up to the fluid limit. The solution in the hydrodynamic limit is also
compared with the numerical solution of Euler system computed in Lagrangian
coordinates using a large number of points, as described later in this section.

In a frst set of tests we consider a piston that sets in motion with zero velocity.
The initial data is given by (p,u,T) = (1,0,1) for 5(0) < 5 £ L and is a Maxwellian
distribution in velocity, where the piston has an initial position z,(0) = 1 and a
velocity u,(t) = 0.25 sin(t). All computations have been performed with vpax = 16.

In Fig. 8, 9 we plot the results obtained in the rarefied regime (r=10°%, 1077)
using the semi-Lagrangian scheme. The scheme is used with 301 pomta in z and
the size of the velocity grid is 301 points with a time step At = 1073,

We nlso give the result of the compulations close to the Buler limit with + = 1073
using 601 space and velocity cells for the semi-Lagrangian method and the time step
is At =102 (Fig. 10).

The small amplitude sinusoidal piston motion induces a wave that propagates
into the domain. As the relaxation time is decreased, the singularity in the profile
becomes sharper.

For the same test problem, we compute the evolution of the pressure at the
piston and at the wall, for a time larger than the travel time of the wave in the
slab. The results of the computation is reported in Figure 11, where a comparison
is performed with an accurate solution of the Fuler equations of gas dynamics,
obtained with 1600 grid points. The detail about the gas dynamics calculations are
explained in the next subsections. The agreement between the pressure profiles is
quite remarkable.

As a second test, we consider & problem in which the piston starts with a finite
velocity. The initial condition for the gas is the same as in the previous case, with
zp{0) = L.5, and up( ) = cos(t).

A shock wave is created by the motion of the piston and propagates inside the
gas. The profiles of density, gas velocity, and temperature are illustrated in Figure
12, at time ¢ = 5, before the perturbation hits the wall. The continuous line
represents the solution of the BGK model with reflecting BC, obtained with the
method illusérated above, while the dashed line represents the solution of the Euler
equation for a polytropic gas with v = 3, obtained with 2000 space grid points. The
agreement between the two solutions is remarkable, if we consider that they have
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been obtained by solving different probiems with completely different approaches.
The discrepancy is mainly attributed to the finite relaxation time T = 0.001, and
to the low space resolution in the solution of the BGK equation, for which we used
a number of points that varies from a minimum of 263 to & maximum of 293, and
a number of 2V, + 1 = 301 grid points in velocity space.

5.1. Piston problem for the Euler equations in Lagrangian form. A simple
way to treat the one dimensicnal piston problem for the Euler equations is to write
them in Lagrangian coordinates. Since the piston is a material point, the problem
is defined in a fixed domain.

By introducing the Lagrangian coordinate £ given by

5=f;p(z,t)dz,

the Buler equations (4), writien in one space dimension in Lagrangian form are
g“ﬂ@z %_{.@:0 .D_(":_;.B(u)
Do T Dt Bt YDt e

where the time derivative is the Lagrangian derivative

D/Dt = 9/0i+4ud/dx

and the new field variables are the specific volume V(£,t) = 1/p, the gas velocity
u, energy density per unit mass, £ = E/p, and the equation of state (5) becomes

= -n(e-3e)w o

Note that the total mass

mO,

zp(t)
Emax = f olz,t)dz
a

is constant. The inverse transformation of coordinates is given by

r= /:V(:,t,) d. (15)

The interval 0 < £ < Emax will be our “computational demain” in which we have
a fixed uniform grid with & = {j — 1/2)A¢, j = 1,2,...,J, denoting the center of
j-th cell, and Af = Emax/J.

Boundary conditions. We would like to spend a few words about the boundary
conditions at the edges of the computational domain, since they are not standard
for moving boundary [18].

At the left edge, we use standard boundary conditions for a wall, namely
op dp
dr 0. ar 0 (16)
where u,, denotes the wall velocity {in our case u, = 0).

The condition on the velocity is obvious, since at the wall the gas has the same
velocity of the boundary. The other two conditions can be deduced by a symme-
try argument, by considering that a wall is equivalent to having a symmetric gas
configuration on the other side of it.

This symmetry consideration no longer applies on the moving boundary, if the
speed of the piston is not constant. In this case one has to resort to other condi-
tions. QOn the moving boundary, the velocity of the gas is equal to piston velocity.

U = Uy,
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Direct compatibility of the boundary condition on the velocity with momentum
conservation law, which is
Du dp 0
Dt gg
gives
op d*zp(t)
B SR . 17
e dt? (17)
The condition on the density can be obtained by assuming that, the entropy at
the piston is flat, i.e. 85/8x = 0. Note that if such condition is satisfied by the

initial condition, it will be maintained by the equations for smooth solutions. This
condition, expressed in Eulerian coordinates, becomes

o _ 1o
or  c2dz’

where ¢ = (Op/dp)s is the square of the sound speed. In Lagrangian coordinates,
this relation reads
o) 9% (18)
Vig 86 0O
where —(dp/0V)g = vp/V is the square of the sound speed in Lagrangian coordi-
nates.

The numerical solution to the gas dynamics equations are obtained by using the
secord order Nessyaht-Tadmer fnite volume central scheme [26] for the system
written in Lagrangian coordinates. The boundary conditions for the velocity are
obtained imposing that the arithmetic mean of the ghost cell and specularly reflected
grid velocity is egual to the piston velocity, while the conditions for pressure and
density are obtained from second order discretization of conditions (17-18).

Note that if one discretizes conditions (16) in place of the more accurate {17-18)

for the moving boundary, the numerical scheme would still be consistent, but its
accuracy would degrade to first order.
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T1GURE 12. Comparison between kinetic and fluid dynamic solu-
tions to the piston problem. Profiles of the density, velocity and
temperature at time ¢ = 5 for the test problem. The piston is
Jocated on the left boundary, and the wail on the right one. Con-
tinuous line: BGK solution; dashed line: Euler solution

Conclusions and perspectives. In this paper we introduce a technique for the
numerical solution of the BGI equation of rarefied gas dynamics in a domain with
moving boundary. The numerical solution is computed on a fixed Cartesian grid,
which is a great advantage in terms of simplicity and efficiency. Specular boundary
conditions are treated by the use of ghost cells, while diffusive boundary conditions
are treated by a more or less standard technique, suitably adapted to the moving
boundary. The BGK model has been chosen as a prototype model for the devel-
opment of the technique, because of its simplicity, and the possibility of capturing
the Aluid dynamic limit. A comparison with the solution of the Buler equation of
gas dynamics for the piston problem shows a very good agreement for the profile
of the lelds, and for the time dependence of the pressure at the piston and at the
wall. The advantages of the present method are the following

i) because of its Lagrangian nature it allows the use of large CFL numbers,
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if) the domain can be discretized by a simple Cartesian fixed grid,
iii) the implicit treatment of the source allows to capture the fluid dynamic limit.

The present scheme is only first order accurate in time, and third order accurate in
space. High order in time can achieved by using the high order Runge-Kutta along
the characteristics, as illustrated in [31].

The present work is only a first step in the development of a scheme [or the
efficient computation of rarefied flows in domains with moving boundaries. The next
step is to implement the scheme for two dimensional flows, with three dimensions
in velecity, which allows more realistic simulation. A stendard approach would
require the solution of a distribution function f(t,z,v), with x € B? and v € 3,
Computer time can be saved by adopting the technique used in [2], where the
problem is reduced to the solution of two coupled equations for two functions of
{t,z,v), with {z,v) € B2*2,

Another natural extension is to consider more realistic Boltzmann collision terms,
such as variable hard sphere molecules. Fourier-spectral schemes [29, 18, 19] seem
very promising in this direction, for their high aceuracy and moderate cost, com-
pared with other deterministic methods. Such methods will be suitable for situa-
tions not teo far from global equilibrium, where a uniform discretization in velocity
will be able to represent the distribution function in the whaole domain, and for
Knudsen number not too small, where the stiffness in the relaxation is not an is-
sue. In such conditions, high order accuracy in time could be obtained by using
Runge-I{utta schemes along characteristics [31].

A convenient way to describe a two-dimensional Hoating object in a fluid is
through the use of level set functions: the boundary of the object is given by the
zero level set of a function ¢(f,s), z € R%., If the motion of the object is known a
priord, then the function ¢ is known, and a variant of the method illustrated in this
paper can be adopted. If, on the other hand, the motion of the object is not known,
and its evolution depends on the interaction with the gas, then the treatment of
the problem in the same framework requires some investigation.
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