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ABSTRACT 

This paper is concerned with estimating preference functionals for choice under risk from the 

choice behaviour of individuals.  We note that there is heterogeneity in behaviour between 

individuals and within individuals.  By ‘heterogeneity between individuals’ we mean that people are 

different, in terms of both their preference functionals and their parameters for these functionals.  

By ‘heterogeneity within individuals’ we mean that behaviour may be different even by the same 

individual for the same choice problem.  We propose methods of taking into account all forms of 

heterogeneity, concentrating particularly on using a Mixture Model to capture the heterogeneity of 

preference functionals. 
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Mixture Models of Choice under Risk 

Anna Conte, John D Hey and Peter G Moffatt 

1. Introduction

 As is clear from Starmer (2000), the past five decades have witnessed intensive theoretical 

and empirical research into finding a good descriptive theory of behaviour under risk.  Since the 

general acceptance of the criticisms of Expected Utility made by Allais (for example, in Allais 

1953) and others, theorists have been active in developing new theories to explain the deficiencies 

of Expected Utility theory.  Hey (1997) provides a list2 of the major theories at that time: Allais' 

1952 theory, Anticipated Utility theory, Cumulative Prospect theory, Disappointment theory, 

Disappointment Aversion theory, Implicit Expected (or linear) Utility theory, Implicit Rank Linear 

Utility theory, Implicit Weighed Utility theory, Lottery Dependent EU theory, Machina's 

Generalised EU theory, Perspective theory, Prospect theory, Prospective Reference theory, 

Quadratic Utility theory, Rank Dependent Expected (or Linear) Utility theory, Regret theory, SSB 

theory, Weighted EU theory, Yaari's Dual theory.  All these theories were motivated by the inability 

of Expected Utility theory to explain all observed behaviour.  This burst of theoretical activity took 

place in the last thirty years or so of the 20th century.  Since then, activity has been concentrated 

more on discovering which of these theories are empirically most plausible and robust – see, for 

example, Hey and Orme (1994).  This period of empirical work revealed clearly that there is 

considerable heterogeneity of behaviour both between individuals and within individuals.  By 

‘heterogeneity between individuals’ we mean that people are different, not only in terms of which 

type of preference functional that they have, but also in terms of their parameters for these 

functionals.  By ‘heterogeneity within individuals’ we mean that behaviour may be different even 

2 Full references can be found in Hey (1997). 



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

3

for the same choice problem.  Econometric investigation has to take these heterogeneities into 

account.

 Some of the empirical literature adopted the strategy of trying to find the best preference 

functional individual by individual; see, for example, Hey and Orme (1994) and Gonzales and Wu 

(1999).  Another part of the literature attempted to find the best preference functional across a group 

of individuals, by, in some way, pooling or aggregating the data; see, for example, Harless and 

Camerer (1994).  In fitting data subject by subject, the problem of heterogeneity within subjects 

becomes immediately apparent in two different ways.  First, when confronted with the same 

decision problem on different occasions, people respond differently.  Second, and perhaps more 

importantly, it was soon realised that none of the long list of preference functionals listed above 

fitted any (non-trivial) data exactly.  Economists responded in their usual fashion – by declaring that 

individuals were noisy in their behaviour, or that they made errors of some kind when taking 

decisions.  At this point, interest centred on ways of describing such noise and incorporating it into 

the econometric investigation.  A number of solutions were proposed: the constant-probability-of-

making-a-mistake model of Harless and Camerer (1994), the Fechner-error model adopted by Hey 

and Orme (1994), and the random-preference model of Loomes and Sugden (1998), implemented 

econometrically by Loomes at al. (2002).  In the first of these, subjects in experiments are thought 

of as implementing their choices with a constant error; in the second, subjects were perceived as 

measuring the value of each option with some error; in the third, subjects were thought of as not 

having precisely defined preferences, but preferences drawn randomly from some probability 

distribution.  The tremble model, analysed in Moffatt and Peters (2001), can be considered like the 

constant-probability model but perhaps appended to one of the other two types.  A useful discussion 

of the relative merits of these different models can be found in Ballinger and Wilcox (1997), which 

concludes that the constant-probability model on its own is dominated by the other two approaches.  

Further results can be found in Buschena and Zilberman (2000). 
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 Those economists who followed the measurement error story soon realised that the error 

might not be homoscedastic and could well depend on the nature of the choice problem (see, for 

example, Hey 1995).  Indeed, Blavatskyy (2007) argues that, with the appropriate heteroscedastic 

error specification, Expected Utility theory can explain the data at least as well as any of the 

generalisations (after allowing for degrees of freedom).  Not all would go as far as this, but the 

incorporation of some kind of error story has led to the demise of many of the theories noted in the 

list above.  Two remain pre-eminent: Expected Utility theory – henceforth EU, and Rank 

Dependent Expected Utility theory (Quiggin 1982) – henceforth RDEU.  Machina (1994) 

comments that the Rank Dependent model is “the most natural and useful modification of the 

classical expected utility formula”.  In certain contexts, for example the Cumulative Prospect theory 

of Tversky and Kahneman (1992), the theory is enriched with a context-dependent reference point.  

Nevertheless, the consensus seems to be that EU and RDEU remain the leading contenders for the 

description of behaviour under risk. 

 As we have already remarked, some of the investigations of the appropriate preference 

functional have taken each individual separately and have carried out econometric work individual 

by individual.  There are problems here with degrees of freedom and with possible over-fitting. 

Other investigations have proceeded with pooled data – from a set of individuals.  The problem 

with this latter approach, even though it saves on degrees of freedom, is that individuals are clearly 

different.  They are different, not only in terms of which type of preference functional that they 

have, but also in terms of their parameters for these functionals.  The latter can be taken care of by 

assuming a distribution of the relevant parameters over the individuals concerned and in estimating 

the parameters of this distribution.  This heterogeneity may depend on observable and observed 

(demographic) characteristics of the individuals or it may just be unobserved heterogeneity.  In 

either case, estimating the parameters of the distribution saves on degrees of freedom compared 

with estimating the underlying economic parameters for each individual.  Moreover, the resulting 
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estimates may be preferred if they are going to be used for predicting the behaviour of the same, or 

a similar, group of individuals.  Some economists are now taking into account such heterogeneity.  

The dangers of not so doing are well illustrated by Wilcox (2006), who shows that serious 

distortions in the econometric results may well be the consequence.  Similarly, the paper by Myung 

et al (2000) shows clearly the problems with fitting a single agent model to a heterogeneous 

population.

 Taking into account the fact that different individuals may have different preference 

functionals is more difficult.  In this paper we adopt a solution: that of using a Mixture Model – see 

McLachlan and Peel (2000). We emphasise that we are by no means the first to use such a solution 

in such a context – a very useful reference is Harrison and Rutstrom (2009), which includes a 

discussion of the previous use of mixture models in economics3.

 We restrict attention to EU and RDEU, and we proceed by assuming that a proportion (1-p) 

of the population from which the sample is drawn have EU preference functionals, and the 

remaining proportion have RDEU preference functionals.  The parameter p is known as the mixing

proportion and it is estimated along with the other parameters of the model.  Obviously the method 

can be extended to more than two functionals, but the purpose of this paper is to illustrate the power 

of the approach.  Moreover, within each model we shall assume heterogeneity of parameters.  Thus 

we take into account both types of heterogeneity between individuals, without sacrificing degrees of 

freedom, and without getting distorted results.  Finally, to take into account heterogeneity within 

subjects we shall incorporate both a Fechner-type error and a tremble. 

 We illustrate the approach with data from an experiment reported in Hey (2001).  The next 

section describes the experiment.  Section 3 details the specification of EU and RDEU, while 

3 We note that, while this paper and that of Harrison and Rutstrom (2009), are similar in many respects, there are 
differences, in particular that we include unobserved heterogeneity of parameter values across individuals. They, 
however, include demographic effects, which we do not. 
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Section 4 discusses econometric detail, including the application of the Mixture Model (with 

unobserved heterogeneity) in this context.  Section 5 discusses the results and Section 6 concludes. 

2. The experiment and the data 

 The data used in this study, previously analysed by Hey (2001) and more recently by 

Moffatt (2005), was obtained from 53 subjects, drawn from the student population of the University 

of York.  Each subject faced a set of 100 pairwise-choice problems between two different lotteries, 

repeated on five different days over a two-week period, so that the total number of problems faced 

by each subject is 500.  The ordering of the problems changed between days and also between 

subjects.  The probabilities defining the 100 problems are listed in Table A1 of the Appendix.  All 

100 problems involved three of the four outcomes £0, £50, £100 and £150.  The random lottery 

incentive system was applied: at the end of the final session, one of the subject’s 500 chosen 

lotteries was selected at random and played for real.  For each subject and for each pairwise-choice 

problem we know the lottery chosen by the subject.  The resulting matrix, of size 500 by 53, is our 

data.

3. The preference functionals under consideration4

 We denote the four outcomes in the experiment by xi ( i= 1, 2, 3, 4)5.  In both the EU 

formulation and the RDEU formulation, there is a utility function and we denote the corresponding 

utility values by ui (i = 1, 2, 3, 4).  We normalise6 so that u1 = 0 and u4 = 1.  Each choice problem 

involves two lotteries – the p-lottery and the q-lottery.  We denote the probabilities of the four 

outcomes in these two lotteries in pairwise-choice problem t (t = 1, …, 500) by p1t, p2t, p3t, p4t and 

q1t, q2t, q3t, q4t respectively. 

4 A glossary of notation can be found in Table A2. 
5 Respectively £0, £50, £100 and £150.
6 The utility function in both specifications is unique only up to a linear transformation.  
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The EU specification envisages subjects evaluating the expected utilities EU(pt) and EU(qt)

of the two lotteries in pairwise-choice problem t as in equation (1). 

7

t

t

2 2 3 3 4

2 2 3 3 4

( )
( )

t t

t t

EU p u p u p
EU q u q u q

t

t

p
q

(1)

In the absence of error, the EU specification envisages the subject choosing pt (qt) if and only if 

2 2 3 3 4 ( )0t t td u d u d (2)

where djt =pjt –qjt (j = 2, 3, 4).

To incorporate the fact that subjects are noisy in their choice behaviour, we add a (Fechnerian)

stochastic term to (2), implying that the subject chooses pt (qt) if and only if 

2 2 3 3 4 ( )0t t t td u d u d (3)

where we assume that each t is independently and normally distributed with mean 0 and standard 

deviation .  The magnitude of indicates the noisiness in the choices – the larger the value of this 

parameter, the greater the noise.  We estimate along with the other parameters.  Later we add a

tremble, and at the end of section 4 we note how our estimation procedure would need to be

modified for the random preferences story of randomness in behaviour. 

The RDEU specification looks similar to that of EU but the subjects are envisaged as

transforming the objective probabilities in a specific way.  As a consequence, under RDEU subjects 

evaluate the rank dependent expected utilities RDEU(pt) and RDEU(qt) of the two lotteries as in 

equation (4).

2 2 3 3 4

2 2 3 3 4

( )
( )

t t

t t

t

t

RDEU P u P u P
RDEU Q u Q u Q

t

t

p
q

(4)

where the P’s and Q’s are not the correct probabilities though they are derived from the correct 

probabilities in the manner specified in (5):

2 2 3 4 3 4

3 3 4 4

4 4

( ) ( )
( ) ( )
( )

t t t t t t

t t t t

t t

P w p p p w p p
P w p p w p
P w p

2 2 3 4 3 4

3 3 4 4

4 4

( ) ( )
( ) ( )
( )

t t t t t t

t t t t

t t

Q w q q q w q q
Q w q q w q
Q w q

 (5) 
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Here the function w(.) is a probability weighting function which is monotonically non-decreasing 

everywhere in the range [0,1] and for which w(0) = 0 and w(1) = 1. Note that if w(p) = p 

everywhere, RDEU reduces to EU. 

In the absence of error, the RDEU specification envisages the subject choosing pt (qt) if and 

only if 

2 2 3 3 4 ( )0t t tD u D u D (6)

where Djt = Pjt – Qjt (j = 2, 3, 4).  Once again, to incorporate the fact that subjects are noisy in their 

choice behaviour, we add a (Fechnerian) stochastic term to equation (6), implying that the subject 

chooses pt (qt) if and only if 

2 2 3 3 4 ( )0t t t tD u D u D (7)

To proceed to estimation, we now need to parameterise both the utility function and the 

weighting function.  For the former, there are two possibilities: (1) we could estimate u2 and u3; or 

(2) we could adopt a particular functional form and estimate the parameter(s) of that function.  As 

we want to have a parsimonious specification, and as we want to introduce unobserved 

heterogeneity, we follow the second route.  The most obvious contenders for the functional form are

Constant Absolute Risk Aversion (CARA) and Constant Relative Risk Aversion (CRRA).  In each

of these there is one parameter.  Given our normalisation, these forms can be written as in equations

(8) and (9).

1 exp( )CARA: ( ) ,0 0,
1 exp( 150 )

/150 0

rxu x r
r

x r
 (8) 

(9)CRRA: ( ) ( /150)ru x x

We will assume later that the parameter r in both formulations is distributed over the population 

(from which our subjects were recruited) and we will estimate the parameters of that distribution.

For the CARA function, the parameter r can take any value between -  and + , and r is positive

8
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for risk averters, 0 for risk-neutral agents (for whom the functions become linear), and negative for

risk-loving agents. For the CRRA function, the parameter r has to be positive7, and r is less than 1

for risk-averter agents, equal to 1 for risk-neutral agents, and greater than 1 for risk-loving agents.

For the weighting function we follow a similar route. The most parsimonious functions used 

in the literature are the Quiggin (1982) function and the Power function.  These can be written as in

equation (10), where we call  the weighting-function parameter.

1/Quiggin: ( ) *
( (1 ) )

Power: ( ) 0

pw p
p p

w p p
(10)

For those subjects who act in accordance with RDEU we will assume that the risk-aversion

parameter, r, and the weighting-function parameter, , are jointly distributed over the population 

from which our sample is drawn and we will estimate the parameters of that distribution.  For the 

Quiggin function, must be greater than * (otherwise w(.) is not monotonic)8, while for the Power

function, must be positive.  For both functions, RDEU reduces to EU when  = 1.  When  1,

the Power function is either completely above or completely below the 450-line.  In contrast, the 

Quiggin function does cross the 450-line, either with an S-shape or an inverted S-shape.  This is 

often seen as an advantage of the Quiggin function.

In what follows, we estimate all four combinations: CARA with Quiggin, CARA with 

Power, CRRA with Quiggin and CRRA with Power, so we can test for the robustness of our

results9.

4. The econometric specification

7 We note that in some formulations the parameter r can be negative (in which case a different functional form is
required). Wakker (2008) has an extended discussion of this case. However, we exclude this for a number of reasons,
not least that the utility of zero is minus infinity, which makes it impossible to apply our normalisation and renders
meaningless the interpretation of as a measure of the noisiness of the subjects’ responses.
8 * = 0.279095.

9
9 Here we use just four possible combinations. There are clearly other possibilities – as is discussed in Stott (2006).
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Let us use the binary indicator yt = 1 (-1) to indicate that the subject chose pt (qt) on 

problem t.  We start with the EU specification.  From the choice rule given by (3), we obtain the

likelihood contribution for a single subject’s choice in problem t:

2 2 3 3 4P( | , ) / 1, 1t t t t t ty r y d u d u d y  (11) 

where (.) is the unit normal cumulative distribution function.  Note that this depends on the risk 

aversion parameter r and the standard deviation of the error term .  We now introduce a tremble.

By this we mean that the individual implements the choice indicated by equation (3) with 

probability (1- ), and chooses at random between the two lotteries with probability . The 

parameter is called the “tremble probability”.  Introducing this parameter into (11), the likelihood 

contribution becomes:

2 2 3 3 4P( | , , ) (1 ) [ ( ) / ] / 2 1, 1t t t t ty r y d u d u d yt  (12) 

Following the same route for the RDEU specification, we obtain the likelihood contribution:

2 2 3 3 4P( | , , , ) (1 ) [ ( ) / ] / 2 1, 1t t t t t ty r y D u D u D y  (13) 

Note that the rank-dependent parameter  now enters the likelihood in (13), through the D variables 

defined in (5) and (6). 

We now assume that, for the population of EU individuals, the parameter r (ln(r) in the case 

of the CRRA specification) is distributed normally over the population with mean  and variance 2,

and we denote this normal density function as  f(r; , ).  For the population of RDEU individuals, 

we assume that the parameters r and   have a joint distribution, such that the two quantities r (ln(r)

in the case of the CRRA specification) and ln(  - min) have a bivariate normal distribution, where 

min is 0 in the Power case and * in the Quiggin case (see (10)). The parameters of this bivariate 

normal are specified for CARA in (14) and for CRRA in (15):

2

2
min

~ ,
ln

r S
N

M S S
(14)

10
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2
min

ln( )
~ ,

ln
r S

N
M S S

(15)

The joint density function of r and   will be denoted as g(r, ; , , M, S, ).  Note that this function

is not actually a bivariate normal density, since it is not the case that both arguments are normally

distributed; either one or both arguments are log-normally distributed.  Note that this formulation is

assuming that the distribution of the risk-aversion parameter for the EU subjects may be different

from that for the RDEU subjects. 

Finally we assume that a proportion p of the population is RDEU and a proportion (1-p) is

EU.  Hence, the contribution to the likelihood for any given subject is as given in (16).

min

500

2 2 3 3 4
1

500

2 2 3 3 4
1

, , , , , , , , ,

(1 ) 1 / / 2 ; ,

1 / / 2 , ; ,

t t t t
t

t t t t
t

L M S p

p y d u d u d f r dr

, , ,p y D u D u D g r M S d dr

 (16) 

The overall log-likelihood for all 53 subjects is just the sum of the log of L given by (16)

over all 53 subjects.  Estimation proceeds by maximum simulated likelihood10 (see Gourieroux and

Monfort, 2002, for the general principles) because of the computational problems with the double

integral in the likelihood function.  We estimate the parameters , , , , M, S, , , , and p.  The

program (written in GAUSS) is available on request.  We carry out estimation for all four 

combinations of the utility function and the weighting function. 

A final note before proceeding is in order.  It would be possible to modify our formulation to 

take into account the random preference model of Loomes and Sugden (1998) – where subjects are 

envisaged as taking a fresh drawing from his or her set of preferences on every problem – by re-

writing (16) as in (17).

11

10 Integration over the distribution of r in the EU model and over the joint distribution of r and in the RDEU model is 
performed by simulation. In particular we use 100 draws for each subject based on Halton sequences (Train 2003).
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, , ,
min

500

2 2 3 3 4
1

500

2 2 3 3 4
1

, , , , , , , , ,

(1 ) 1 / / 2 ; ,

1 / / 2 , ; ,

t t t t
t

t t t t
t

L M S p

p y d u d u d f r dr

p y D u D u D g r M S d dr

 (17) 

Note the difference: in formulation (16) it is as if the subject’s preferences are a random drawing 

from the set of all preferences, but these preferences then remain fixed for the duration of the 

experiment; while in (17) there is a fresh drawing on every choice problem, necessitating a reversal

of the product and integration operations in the formula.

5. Results 

The results for the CRRA/Quiggin specification are reported in Table 1. Those for the other 

three specifications are reported in Appendix Tables A3, A4 and A5 and Appendix Figure A1.  We 

conclude from these tables that the CRRA/Quiggin specification fits best, and so we will 

concentrate the discussion that follows on this specification.  Our justification for this can be found

in the following Table 2, which reports the maximised log-likelihoods for each of the specifications.

The column headed ‘EU only’ (‘RDEU only’) shows the maximised log-likelihoods when it is 

assumed that all the subjects are EU (RDEU); and that headed ‘Mixture Model’ shows the 

maximised log-likelihoods when our Mixture Model, as specified by equation (16), is fitted to the 

data. Whether we assume that all the subjects are EU or all are RDEU, the CRRA specification 

clearly emerges as the better utility function.  If we assume that all subjects are RDEU, then 

Quiggin is marginally better when combined with the CARA and marginally worse when combined

with CRRA.  However, the Vuong (1989) tests reported in Table 3, while showing that the

CRRA/Quiggin specification is superior to the other specifications, do not show it to be 

significantly better than the other specifications.
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However, and crucially for the purposes of this paper, the log-likelihoods in the table above show 

clearly that, for all specifications, the Mixture Model fits significantly better (at very small 

significance levels11) than either of the two preference functionals individually.

This is one of the crucial points of this paper, and we expand on it here – in relation to the 

CRRA/Quiggin specification. Table 1 shows that the Mixture Model fits the data significantly

better than either of the two preference functionals individually. Hence, it follows that assuming

that, in the population from which our subjects were drawn, agents are either all EU or all RDEU 

gives a distorted view of the truth. The mixing proportion, p, is estimated to be slightly above 0.8 – 

suggesting that 20% of the population are EU and 80% are RDEU.  Figures 1 and 2 show the log-

likelihood as a function of the mixing proportion and the peak is well-defined.  A 95% confidence 

interval for p is (0.692, 0.913).  We can use our results to calculate the posterior probabilities of 

each subject being either EU or RDEU, conditional on their 500 choices. Using Bayes rule we have

the following posterior probabilities:

min

1 500

500

2 2 3 3 4
1

1 500

500

2 2 3 3 4
1

( | )

(1 ) 1 / / 2 ; ,

( | )

1 / / 2 , ; ,

t t t t
t

t t t t
t

P subject is EU y y

p y d u d u d f r dr

L

P subject is RDEU y y

, , ,p y D u D u D g r M S d dr

L

 (18) 

where L is as given in equation (16). The resulting histogram of the posterior probabilities is shown 

in Figure 3.  Apart from one apparently very confused subject, that partition is close to perfect. 

11 The log-likelihood test-statistics for the Mixture Model v EU are 988, 874, 961 and 694 (for CRRA/Quiggin,
CRRA/Power, CARA/Quiggin and CARA/Power respectively; the critical value at 1% is 18.475 (7 degrees of
freedom). The log-likelihood test-statistics for the Mixture Model v RDEU are 287, 143, 399 and 139 (for
CRRA/Quiggin, CRRA/Power, CARA/Quiggin and CARA/Power respectively; the critical value at 1% is 13.277 (4
degrees of freedom).

13
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 In the Mixture Model (with the CRRA/Quiggin specification), the estimated parameters of 

the distribution of the log of the risk-aversion parameter show a mean and standard deviation of -

0.76438 and 0.32431 for the EU subjects and a mean and standard deviation of -0.95425 and 

0.53947 for the RDEU subjects. This implies a mean and standard deviation of the risk-aversion 

parameter, r, for the EU subjects of 0.491 and 0.027. It also implies a 95% confidence interval for 

the EU subjects for ln(r) given by (-1.400, -0.129) - implying a 95% confidence interval for r given

by (0.247, 0.839). To interpret these figures it may be useful to note that, for a subject with a CRRA 

parameter of 0.247 (0.839) his or her certainty equivalent for a 50-50 gamble between £0 and £150 

is £9.06 (£68.17). An equivalent calculation for the RDEU subjects shows a 95% confidence 

interval for r given by (0.134, 1.109) – with corresponding certainty equivalents for a 50-50 gamble 

between £0 and £150 given by (£0.85, £80.29). A small fraction of the RDEU subjects are risk-

loving.

 Again within the Mixture Model and the CRRA/Quiggin specification, our results show that 

the distribution of ln(  - *) has an estimated mean and standard deviation of -0.55465 and 0.24031 

respectively. This implies that approximately 95% of the values of in the population lie between 

0.637 and 1.199. The implied weighting functions at these two ‘extremes’ and the weighting 

function at the mean are plotted in Figure 4. It is interesting to note that this range of the possible 

weighting functions includes the (unique) function estimated by Tversky and Kahneman (1992). It 

can also be seen from Figure 1 that the RDEU estimates also include some subjects whose 

weighting function is close to that of the EU subjects (for whom w(p) = p). The proportion of the 

population who are therefore strictly RDEU is therefore somewhat less than the 80% implied by the 

estimate of the weighting parameter.  It is interesting to note that the correlation between ln(r) and 

ln(  - *) is estimated to be 0.33793 (and is significantly different from zero). This implies that in 

general, the more risk-loving is a subject, the higher the value of the weighting parameter. 
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 Finally we should comment on the within-subject errors. The estimates of (the standard 

deviation of the Fechnerian error) are 0.07438 and 0.03398 for the EU and RDEU subjects 

respectively. These have meaning with respect to the normalisation of the utility function – 

constrained to lie between 0 and 1 for the outcomes in the experiment. So, for example, a 50-50 

gamble between £0 and £150, which has an expected utility of 0.5, is valuated by subjects to have 

an expected utility with mean 0.5 and standard deviation 0.07438 (0.03398) by the EU (RDEU) 

subjects. So the EU [RDEU] subjects evaluate it with 95% probability in the range (0.354, 0.646) 

[(0.433, 0.567)]. This error appears in line with previous estimates. The tremble probability is 

estimated to be 0.01139 – indicating a tremble of just over 1%. 

 As we have already noted, the CRRA/Quiggin specification appears superior to the others. 

Appendix Tables A3, A4 and A5 rather obviously show variations in the estimates obtained, 

particularly in the estimates of the mixing parameter. But all specifications show clearly that the 

Mixture Model fits the data better than either of the two models (assuming subjects are either all EU 

or all RDEU). To demonstrate this result is one of the main purposes of this paper. 

6. Conclusions

 This paper started from the observation that there is considerable heterogeneity in the 

behaviour of subjects in experiments12. This heterogeneity is both within subjects and between 

subjects. If we want to use the data to estimate the underlying preference functionals of subjects, we 

need to take this heterogeneity into account. Heterogeneity within subjects can be incorporated by 

appending some kind of error story into our analysis. This is already a common feature of empirical 

work in this area. As for heterogeneity between subjects, if we wish to save on degrees of freedom 

by pooling our data in some way, we cannot ignore this heterogeneity. This heterogeneity can be 

taken into account by modelling the parameters as being distributed within the population from 

12 The same is true in data obtained from other sources. 
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which our subjects are drawn. This kind of heterogeneity has already been considered in the 

literature (see Botti et al, 2008). Heterogeneity of preference functionals across individuals is more 

difficult to take into account, and this we do by using a Mixture Model (like and Harrison and 

Rutstrom, 2009) - we assume that different agents in the population have different functionals and 

we estimate the proportion of each type. This is the main contribution of the paper. We show that 

such a Mixture Model adds significantly to the explanatory power of our estimates. We thus present 

a method of using the data to take into account all forms of heterogeneity.  

 We have applied the Mixture Model to the problem of estimating preference functionals 

from a sample of 53 subjects for each of whom we have 500 observations. Our results show that it 

is misleading to assume a representative agent model – not all agents are EU and not all agents are 

RDEU – there is a mixture in the population. Moreover, there is significant heterogeneity in both 

the risk-aversion parameter and the weighting function parameter. And, of course, there is 

considerably heterogeneity of behaviour within subjects.  Our estimations take all these forms of 

heterogeneity into account13.

Acknowledgements
The authors would like to thank two referees for extremely helpful suggestions which led to 
significant improvements in the paper. 

13 Clearly there is scope for further investigations. For example, one of the parameters that we have assumed the same 
for all members of the population, , might also be distributed over the population. 
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T
able 1: E

stim
ates for C

R
R

A
 Q

uiggin Specification 

Param
eter estim

ates. M
axim

um
 sim

ulated likelihood. 
C

R
R

A
 specification. Q

uiggin w
eighting function. 

(53 individuals, 500 observations each, standard errors in parentheses) 
m

ixture
m

odel

EU
only

RD
EU

only
EU

-type
RD

EU
-type

 (EU
) 

 (R
D

EU
) 

-1.15599
(0.07217)

-0.95338
(0.02332)

-0.76438
(0.09492)

-0.95425
(0.01996)

 (EU
)

 (R
D

EU
)

0.55348
(0.03040)

0.54652
(0.01755)

0.32431
(0.06369)

0.53947
(0.01500)

M
-

-0.49629
(0.02043)

-
-0.55465
(0.03041)

S
-

0.24676
(0.01965)

-
0.24031

(0.01820)

-
0.25563

(0.10011)
-

0.33793
(0.08296)

0.01375
(0.00173)

0.01534
(0.00184)

0.01139
(0.00157)

0.04823
(0.00089)

0.04134
(0.00089)

0.07438
(0.00297)

0.03398
(0.00081)

p
-

-
0.80266

(0.05623)

Log-likelihood
-7210.27887

-6860.18750
-6716.49907
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T
able 2: T

he M
axim

ised L
og-L

ikelihoods for the D
ifferent Specifications 

EU
 only 

R
D

EU
 only 

M
ixture M

odel 
C

R
R

A
/Q

uiggin
 

 
 

-7210.27887
-6860.18750

-6716.49907
C

R
R

A
/Pow

er
 

 
 

-7210.27887
-6845.15422

-6773.37108
C

A
R

A
/Q

uiggin
 

 
 

-7766.48390
-7485.00936

-7285.69205
C

A
R

A
/Pow

er
 

 
 

-7766.48390
-7488.98040

-7419.30892
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T
able 3: V

uong T
ests B

etw
een the V

arious Specifications 

V
uong Tests 

H
0: m

odel1 and m
odel2 are equally close to the true m

odel 
H

1: m
odel1 is closer to the true m

odel than m
odel2

m
odel1/m

odel2
V

oung_statistic
p-value

cara_quiggin / cara_pow
er 

0.16708
0.43365

crra_quiggin / crra_pow
er 

0.03012
0.48799

crra_quiggin / cara_quiggin 
0.28884

0.38635
crra_quiggin / cara_pow

er 
0.32326

0.37325
crra_pow

er / cara_quiggin 
0.19832

0.42140
crra_pow

er / cara_pow
er 

0.60596
0.27227

The Vuong-statistic is distributed N
(0,1) under the null hypothesis – O

ne-sided test 
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Figure 1: Log-likelihood function (CRRA Quiggin) 

Figure 2: Log-likelihood function (CRRA Quiggin) 

Figure 3: Posterior Probabilities (CRRA Quiggin) 
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Appendix

Table A1: The 100 choice problems14

t q1 q2 q3 q4 p1 p2 p3 p4   

1 .000 .000 .875 .125 .000 .125 .000 .875  
2    .000 .000 .875 .125 .000 .125 .000 .875  
3 .000 .000 .875 .125 .000 .125 .500 .375  
4 .000 .000 .875 .125 .000 .375 .000 .625  
5 .000 .000 .875 .125 .000 .375 .125 .500  
6 .000 .000 .875 .125 .000 .375 .250 .375  
7 .000 .000 .875 .125 .000 .625 .000 .375  
8 .000 .125 .500 .375 .000 .375 .000 .625  
9 .000 .125 .500 .375 .000 .375 .125 .500  
10 .000 .125 .875 .000 .000 .375 .000 .625  
11 .000 .125 .875 .000 .000 .375 .125 .500  
12 .000 .125 .875 .000 .000 .375 .250 .375  
13 .000 .125 .875 .000 .000 .375 .500 .125  
14 .000 .125 .875 .000 .000 .625 .000 .375  
15 .000 .125 .875 .000 .000 .875 .000 .125  
16 .000 .250 .750 .000 .000 .375 .000 .625  
17 .000 .250 .750 .000 .000 .375 .125 .500  
18 .000 .250 .750 .000 .000 .375 .250 .375  
19 .000 .250 .750 .000 .000 .375 .500 .125  
20 .000 .250 .750 .000 .000 .375 .500 .125  
21 .000 .250 .750 .000 .000 .625 .000 .375  
22 .000 .250 .750 .000 .000 .875 .000 .125  
23 .000 .375 .500 .125 .000 .625 .000 .375  
24 .000 .125 .875 .000 .000 .250 .750 .000  
25 .000 .375 .125 .500 .000 .375 .250 .375  
26 .000 .000 .500 .500 .125 .000 .250 .625  
27 .000 .000 .500 .500 .125 .000 .250 .625  
28 .000 .000 .875 .125 .125 .000 .250 .625  
29 .000 .000 .875 .125 .125 .000 .625 .250  
30 .000 .000 .875 .125 .375 .000 .375 .250  
31 .000 .000 .875 .125 .500 .000 .000 .500  
32 .000 .000 .875 .125 .750 .000 .000 .250  
33 .000 .000 1.000 .000 .125 .000 .250 .625  
34 .000 .000 1.000 .000 .125 .000 .625 .250  
35 .000 .000 1.000 .000 .375 .000 .375 .250  
36 .000 .000 1.000 .000 .500 .000 .000 .500  
37 .000 .000 1.000 .000 .750 .000 .000 .250  
38 .000 .000 1.000 .000 .750 .000 .000 .250  
39 .000 .000 1.000 .000 .750 .000 .125 .125  
40 .125 .000 .625 .250 .500 .000 .000 .500  
41 .250 .000 .750 .000 .375 .000 .375 .250  
42 .250 .000 .750 .000 .500 .000 .000 .500  
43 .250 .000 .750 .000 .750 .000 .000 .250  
44 .250 .000 .750 .000 .750 .000 .125 .125  
45 .375 .000 .375 .250 .500 .000 .000 .500  
46 .375 .000 .625 .000 .500 .000 .000 .500  
47 .375 .000 .625 .000 .750 .000 .000 .250  
48 .375 .000 .625 .000 .750 .000 .125 .125  
49 .250 .000 .750 .000 .375 .000 .625 .000  

14 Note that the questions were presented to the subjects in a random sequence with left and right randomly 
interchanged. 
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50 .750 .000 .000 .250 .750 .000 .125 .125  
51 .000 .750 .000 .250 .250 .375 .000 .375  
52 .000 .750 .000 .250 .375 .125 .000 .500  
53 .000 .750 .000 .250 .625 .000 .000 .375  
54 .000 .875 .000 .125 .250 .375 .000 .375  
55 .000 .875 .000 .125 .375 .125 .000 .500  
56 .000 .875 .000 .125 .500 .250 .000 .250  
57 .000 .875 .000 .125 .625 .000 .000 .375  
58 .000 .875 .000 .125 .625 .125 .000 .250  
59 .125 .750 .000 .125 .250 .375 .000 .375  
60 .125 .750 .000 .125 .375 .125 .000 .500  
61 .125 .750 .000 .125 .500 .250 .000 .250  
62 .125 .750 .000 .125 .625 .000 .000 .375  
63 .125 .750 .000 .125 .625 .125 .000 .250  
64 .125 .875 .000 .000 .250 .375 .000 .375  
65 .125 .875 .000 .000 .375 .125 .000 .500  
66 .125 .875 .000 .000 .500 .250 .000 .250  
67 .125 .875 .000 .000 .625 .000 .000 .375  
68 .125 .875 .000 .000 .625 .125 .000 .250  
69 .125 .875 .000 .000 .750 .125 .000 .125  
70 .125 .875 .000 .000 .875 .000 .000 .125  
71 .125 .875 .000 .000 .875 .000 .000 .125  
72 .250 .375 .000 .375 .375 .125 .000 .500  
73 .500 .250 .000 .250 .625 .000 .000 .375  
74 .500 .250 .000 .250 .625 .000 .000 .375  
75 .000 .750 .000 .250 .125 .750 .000 .125  
76 .000 .750 .250 .000 .125 .000 .875 .000  
77 .000 .750 .250 .000 .125 .375 .500 .000  
78 .000 .750 .250 .000 .375 .125 .500 .000  
79 .000 .750 .250 .000 .375 .250 .375 .000  
80 .000 .750 .250 .000 .500 .000 .500 .000  
81 .000 .750 .250 .000 .500 .125 .375 .000  
82 .000 1.000 .000 .000 .125 .000 .875 .000  
83 .000 1.000 .000 .000 .125 .375 .500 .000  
84 .000 1.000 .000 .000 .250 .625 .125 .000  
85 .000 1.000 .000 .000 .375 .125 .500 .000  
86 .000 1.000 .000 .000 .375 .250 .375 .000  
87 .000 1.000 .000 .000 .500 .000 .500 .000  
88 .000 1.000 .000 .000 .500 .000 .500 .000  
89 .000 1.000 .000 .000 .500 .125 .375 .000  
90 .000 1.000 .000 .000 .750 .125 .125 .000  
91 .250 .625 .125 .000 .375 .125 .500 .000  
92 .250 .625 .125 .000 .375 .250 .375 .000  
93 .250 .625 .125 .000 .500 .000 .500 .000  
94 .250 .625 .125 .000 .500 .125 .375 .000  
95 .375 .250 .375 .000 .500 .000 .500 .000  
96 .375 .250 .375 .000 .500 .000 .500 .000  
97 .375 .625 .000 .000 .500 .000 .500 .000  
98 .375 .625 .000 .000 .500 .125 .375 .000  
99 .375 .625 .000 .000 .750 .125 .125 .000  
100 .375 .125 .500 .000 .500 .125 .375 .000  
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Table A2: glossary of notation 

variables
xi i’th outcome 
ui utility of i’th outcome = u(xi)
pt P-lottery on problem t
qt Q- lottery on problem t

pit (qit) probability of outcome i in P- (Q-) lottery on problem number t
Pit (Qit) modified probability of outcome i in P- (Q-) lottery number on problem t (see (5)) 

dit pit - qit

Dit Pit - Qit

yt decision on lottery t (1: P-lottery; -1: Q-lottery) 
t measurement error on problem number t

r risk-aversion parameter 
weighting-function parameter 

functions
EU(.) Expected Utility function (see (1)) 

RDEU(.) Rank Dependent Expected Utility function (see (4)) 
u(.) utilitity function (see (8) and (9)) 
w(.) weighting function (see (10)) 

(.) unit normal cumulative density function 
f(.) probability density function of risk-aversion parameter (EU agents) 
g(.) joint probability density function of risk-aversion and (log of) weighting-function 

parameters (RDEU agents) 
L(.) likelihood function (see (16)) 

parameters
mean of the (marginal) distribution of the risk-aversion parameter (EU agents) 
mean of the (marginal) distribution of the risk-aversion parameter (RDEU agents) 
standard deviation of the (marginal) distribution of the risk-aversion parameter (EU 
agents)
standard deviation of the (marginal) distribution of the risk-aversion parameter 
(RDEU agents) 

M mean of the (marginal) distribution of the (transformation of the) weighting-function 
parameter (RDEU agents) 

S standard deviation of the (marginal) distribution of the (transformation of the) 
weighting-function parameter (RDEU agents) 
correlation between risk-aversion parameter and the (transformation of the) 
weighting-function parameter (RDEU agents) 
probability of a tremble 
standard deviation of the Fechnerian error 

p the mixing parameter (proportion of RDEU agents in population) 
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T
able A

3: E
stim

ates for C
R

R
A

 Pow
er Specification 

Param
eter estim

ates. M
axim

um
 sim

ulated likelihood. 
C

R
R

A
 specification. Pow

er w
eighting function.

(53 individuals, 500 observations each, standard errors in parentheses) 
m

ixture
m

odel

EU
only

RD
EU

only
EU

-type
RD

EU
-type

 (EU
) 

 (R
D

EU
) 

-1.15599
(0.07217)

-1.06849
(0.03109)

-0.94253
(0.07489)

-1.04301
(0.05346)

 (EU
)

 (R
D

EU
)

0.55348
(0.03040)

0.72066
(0.02313)

0.46515
(0.03238)

0.80237
 (0.04294) 

M
-

-0.02251
(0.02224)

-
-0.30098

 (0.03833) 

S
-

0.34156
(0.01314)

-
0.87514

(0.02717)

-
-0.21909
(0.05699)

-
-0.02117

 (0.02247) 

0.01375
 (0.00173) 

0.01235
 (0.00333) 

0.01288
(0.00168)

0.04823
(0.00089)

0.04309
(0.00089)

0.05522
(0.00178)

0.03049
(0.00125)

p
-

-
0.58638

(0.07542)

Log-likelihood
-7210.27887

-6845.15422
-6773.37108
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T
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4: E
stim

ates for C
A

R
A

 Q
uiggin Specification 

Param
eter estim

ates. M
axim

um
 sim

ulated likelihood. 
C

A
R

A
 specification. Q

uiggin w
eighting function. 

(53 individuals, 500 observations each, standard errors in parentheses) 
m

ixture
m

odel

EU
only

RD
EU

only
EU

-type
RD

EU
-type

 (EU
) 

 (R
D

EU
) 

0.02440
(0.00146)

0.02548
(0.00108)

0.03618
(0.00499)

0.01693
(0.00034)

 (EU
)

 (R
D

EU
)

0.01905
(0.00142)

0.01915
(0.00088)

0.02180
(0.02769)

0.01492
(0.00039)

M
-

-0.46542
(0.02492)

-
-0.10515
(0.01987)

S
-

0.31122
(0.02058)

-
0.59426

(0.01988)

-
-0.55347
(0.05475)

-
0.10194

(0.03750)

0.01272
 (0.00483) 

0.01172
(0.00177)

0.00724
(0.00146)

0.06142
(0.00110)

0.05609
(0.00109)

0.09635
(0.00326)

0.04778
(0.00099)

p
-

-
0.75248

(0.05998)

Log-likelihood
-7766.48390

-7485.00936
-7285.69205
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T
able A

5: E
stim

ates for C
A

R
A

 Pow
er Specification 

Param
eter estim

ates. M
axim

um
 sim

ulated likelihood. 
C

A
R

A
 specification. Pow

er w
eighting function.

(53 individuals, 500 observations each, standard errors in parentheses) 
m

ixture
m

odel

EU
only

RD
EU

only
EU

-type
RD

EU
-type

 (EU
) 

 (R
D

EU
) 

0.02440
(0.00146)

0.02998
(0.00092)

0.01873
(0.00240)

0.03760
(0.00114)

 (EU
)

 (R
D

EU
)

0.01905
(0.00142)

0.02347
(0.00088)

0.00853
(0.00141)

0.02406
(0.00094)

M
-

-0.17251
(0.03479)

-
-0.29090
(0.04924)

S
-

0.36198
(0.01542)

-
0.50443

(0.02153)

-
-0.25988
(0.08560)

-
-0.05176
(0.08508)

0.01272
(0.00483)

0.01033
(0.00007)

0.00873
(0.00146)

0.06142
(0.00110)

0.05183
(0.00122)

0.07657
(0.00268)

0.04257
(0.00170)

p
-

-
0.69953

(0.07494)

Log-likelihood
-7766.48390

-7488.98040
-7419.30892
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Figure A
1: T

he log-likelihoods and the posterior probabilities for the C
A

R
A

 and C
R

R
A

/Pow
er Specifications
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