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Abstract

This paper presents an endovascular navigation of a ferromagnetic microdevice using MRI-based predictive

control. The concept was studied for future development of microrobot designed to perform minimally invasive

interventions in remote sites accessible through the human cardiovascular system. A system software architec-

ture is presented illustrating the different software modules to allow 3D navigation of a microdevice in blood

vessels, namely: (i) vessel path extraction, (ii) magnetic gradient steering, (iii) tracking and (iv) closed-loop

navigation control. First, the navigation path of the microrobot into the blood vessel is extracted using Fast

Marching Method from the pre-operation images (3D MRI imaging) to guide the microrobot from the injection

point to the tumor area through the anarchic vessel network. Based on the pre-computed path, a Model Predic-

tive Controller is proposed for robust time-multiplexed navigation along a 3D path in presence of pulsative flow.

The simulation results suggest the validation of the proposed image processing and control algorithms.

keywords: Microrobot, gradient controlled motion, endovascular navigation

1 INTRODUCTION

Microrobots designed to perform targeted therapy by navigating in the cardiovascular system are a prolific re-

search area for minimally invasive surgeries [1][2] and treatments efficiency through early diagnosis of diseases

[3]. When microrobots are propelled in the body fluids, especially in the blood circulatory system, a very large

number of remote locations in the human body become accessible. Because the method of propulsion should al-

low such a microrobot to navigate through the cardiovascular system, the use of the normal blood flow itself must

be considered only as a complementary means of propulsion when the travel path is along the direction of the

blood flow. These untethered microrobots have been mainly developed according to three different designs: mag-

netic bead pulling [2], biomimetic flagellated robot [4] and magnetotactic bacteria [5]. Furthermore, navigation

requires observation of the scene in order either to plan the trajectory by off-line mapping, or to correct on-line the

microrobot’s pose error between the planned and the observed trajectory. Recently, magnetic resonance imaging

(MRI)-based medical microrobotic platforms are investigated to reach locations deep in the human body while

enhancing targeting efficacy using real-time navigational and trajectory control [6]. For the position recognition

of the microrobot in the blood vessels, from the pre-operation images, 3D path planning and route optimization



solutions have been proposed. The authors in [7] proposed an endovascular path-planning method based on 3D

potential fields and enhanced breath-first search algorithms based on MR-imaging. Based on these path-planning

techniques, only explorative 2D control strategies have been adopted so far using simple proportional-integral-

derivative (PID) controller [8]. However, stability and robustness are not ensured against important perturbations.

First, pulsatile flow should be taken into account since variations in waveform, amplitude, and frequency exists

from vessels. Second, variation of time-multiplexed sequence parameters (duty cycle of the propulsion gradients,

and repetition time of the tracking sequence) produce important trajectory errors during real-time navigation.

Finally, random imaging signal noise degrades the localization of the microrobot during tracking.

The main objective of this paper is to propose an automated technique based on image processing and control

algorithms for path finding, reconstruction and navigation control of a ferromagnetic microrobot using the MRI

system. The MRI-based control of a ferromagnetic microcapsule presented here is dedicated to macroscale

navigation, which focuses in conveying a microsphere radius of 300 µm in vessels, such as arteries and arterioles

(eg, around 10 to 0.5 mm), as close as possible to the tumor area. Based on slice images provided by an MRI

system, relevant information related to detection of blood vessels is extracted using robust Frangi vesselness

filtering from the pre-operation images. Then, a set of minimal path is predefined, using Fast Marching Method

(FMM), to guide the ferromagnetic microrobot from the injection point to a targeted area through the anarchic

vessel network. Based on the precomputed path, a Model Predictive Controller (MPC) is designed. Hence, we

proposed a control strategy for robust time-multiplexed navigation along a 3D path even in presence of pulsative

flow. The simulation results suggest the validation of the proposed image processing and control algorithms

against perturbations.

2 MRI-based NAVIGATION SYSTEM

2.1 System Overview

The Magnetic Resonant Imaging (MRI)-based microrobotic system is used here for propulsion and navigation

of the microdevice. The propulsion of the ferromagnetic microcapsule in the cardiovascular system is realized

through the induction of force from magnetic gradients provided by the MRI. This MRI system will guide the mi-

crocapsule in vivo through vascular networks to a targeted area. The overview of the software system architecture

is given in Fig. 1.

(i) The graphical user interface module, which comprises input command prompt, 3D-visualization, and

process supervision tools. (ii) The control module, which comprises (a) the high-level controller responsible for

the microcapsule navigation tasks and for the generation of the magnetic field gradients and (b) the low-level

controller (manufacturer MRI controller) responsible for the generation of the desired field gradients and for

the image acquisition tasks. Then, (iii) the controlled hardware, which comprises (a) the MRI hardware and

software systems and (b) the microcapsules that have been injected within the vasculature and are steered by

the magnetic gradients. Finally, (iv) the image processing module, which comprises the MRI data rendering,

the navigation path extraction, and the microdevice recognition/tracking algorithm. In particular, the tracking



procedure, presented in [9], allows to estimate the position and accumulation of the microdevices within the

vasculature, the tissues, and the organs of the human. However as MR-imaging is too slow to gather position of

the microrobot and special MR-tracking algorithm, such as MR-SET, must considered to ensure real time control.

2.2 Navigation in blood vessels

In our context, the problem of navigation in blood vessels within the MRI data can be formulated as finding

the correct way through the data that follows the vessel of interest between its start and end points. Finding a

navigation path within the endovascular network is then an essential, primary, and important step that must be

addressed prior to the control procedure. The problem of vessels extraction has received considerable attention in

the computer vision and medical imaging communities [10]. Hence, several class of methods have been proposed

to find a path from a set of medical imaging, such as using tracking methods [11] [6] [12], path extraction methods

[13][14][15], and so on. Most works based on in vivo MR-tracking methods usually need many user-defined way

points as the input of a controller module for the navigation computation. A major drawback in general remains

when the user must define many points (e.g. way or fiducial points) manually. Hence, for a complex structure

(e.g. colon, small vessels. . . ) the required interactivity can be very tedious. The path extraction is useful for a

range of application domains including medical image analysis, robot navigation, and artificial intelligence. The

path extraction technique needs a very simple initialisation and leads to global minimum of a snake-like energy,

thus avoiding local minima. Moreover, it is fast and accurate. This path finding problem has been studied for

ages by mathematicians, and has been solved numerically using graph theory or dynamic programming. Cohen

and Kimmel [16] solved the minimal path problem in 2D with a front propagation equation between the two

fixed end points, using the Eikonal equation (that physically models wave-light propagation), with a given initial

front. Wink et al.[14] explored different methods to determine the minimum cost path through a pre-defined cost

image, for extraction of vessel centrelines from medical image data. Among them are Dijikstra’s algorithm, the

A⋆ algorithm, which makes use of additional heuristics to steer the search process, and wave front propagation

analysis [15]. Early, Sethian [17] explored the use of Fast Marching Method (FMM) to extract minimal paths.

This method relies on the fact that the gradient of the FMM arrival function has only one local minimum, which

is guaranteed to be global minimum [13]. Therefore, the minimal path can be extracted by back-propagating

from given seeds (e.g. the end point of the desired path) to the starting point implicitly embedded in the arrival

function.

In this work the FMM is adopted to design a set of paths to guide the microdevice from the injection point

to the tumor area through the vessel network. Our aim is to focus on the automation of the path construction,

reducing the need of interaction and improving performance, in a robust way.



3 MRI-BASED PREDICTIVE CONTROL

3.1 Problem formulation

Navigation in blood vessel requires observation of the scene in order either to plan the path by offline mapping,

or to correct online the microrobot pose error between the planned and the observed path. To insure a smooth

conveyance of the microcapsule to destination, collisions and the risk to be trapped by the endothelium, optimal

navigation performance will be affected by external perturbations and MRI technological constraints:

• Nonnegligible pulsatile flow, whose variations in waveform, amplitude, and frequency exist from one vessel

to another (such as arteries and arterioles).

• Magnetic gradients are used both for observation and control purposes in a time-multiplexed sequence. It

requires different trade-offs in terms of refresh rate, duty cycle of the propulsion gradients, and repetition

time of the tracking sequence.

• MRI overheating avoidance leading to limitations on the MRI duty cycle, tends to increase the dispropor-

tional scaling between magnetic forces used for control purpose and perturbation forces (drag forces and

net buoyancy forces).

• Limitations on the magnetic gradient amplitude in available MRI devices.

• Proper delay in the image processing algorithms that renders the navigation control unstable.

3.2 Real-Time Sequence Design

The overall concept of the in-vivo MRI-tracking system is based on the fact that both tracking and propulsion is

possible with the gradient coils of the MRI system. Software based upgrading of a clinical MRI system is the least

expensive approach to convert a platform that is used for imaging to an effective interventional platform. At any

instant only one of the functions could be applied (i.e. either tracking or propulsion), but both will be executed

over the same MRI interface. The MRI interface has therefore to be shared and a time-division-multiple-access

scheme for it has to be developed. Fig. 2 shows an overview of the real-time sequence with time-multiplexed

positioning and propulsion phases introduced by Martel et al. [6]. The main aspect relevant to the controller’s

performance is (i) the duty cycle TProp/Ts that stands for the ratio between the propulsion time and the time be-

tween two successive position requests, and (ii) the synchronization event delay TSync that stands for the minimum

time allowed for image processing and real-time control feedback. First, the duty cycle should be adapted to apply

sufficient magnetic propulsion gradients during a predefined propulsion time TProp to prevent the microrobot from

drifting away from the path. Second, a large time delay TSync produces oscillations as the microrobot approaches

the reference path w leading to position instabilities. Such limitations have been pointed out by Mathieu et al.

[8] when implementing simple proportional-integral-derivative (PID) controller. We proposed a Model Predictive

Controller (MPC) including microrobot’s motion and dynamics with estimation of the pulsative blood flow and

time-multiplexed positioning. A predictive path-tracking control consider a prediction window (cf. Fig. 2). The



propulsion phase starts during TProp seconds at the same initial condition as the prediction phase, recording the

performance of the system according to a prediction horizon. After this phase the system ends after a imaging-

propulsion sequence at a final position Y which is set as the new initial condition of the next prediction output Ŷ .

The proposed navigation based predictive controller offers stability by design and allows the designer to trade-

off performance for (computation) speed, stability margins according to the MRI application and technological

requirements outlined in section 3.1.

3.3 Model description

The linear model used in this work is derived from the nonlinear model developed in a previous study [18]. The

authors used this model to combine the backstepping controller and high-gain observer in order to control the

path of the microrobot inside a vessel using the MRI gradients.

The different forces acting on the microrobot are (see Fig. 3): drag force
−→
Fd , apparent weight

−→
Wa and mag-

netic force
−→
Fm. The application of Newton’s third law and the projection on the (−→x ,−→y ,−→z ) axes leads to:





mẍ =
−→
F dx +

−→
F mx

mÿ =
−→
F dy +

−→
F my

mz̈ =
−→
F dz +

−→
F mz +

−→
Wa

(1)

where m is the mass of the microrobot modeled by a ferromagnetic sphere with a high saturation magnetization.

Let
−→
v = (v fx ,v fy ,v fz) denotes the blood flow velocity, and (x,y,z) the robot location in the blood vessel wrt.

to a given frame F (O,−→x ,−→y ,−→z ). Taking the drag coefficient Cd =
24
Re

, the linear model can be written as follow:




ẍ = α1

(
ẋ− v fx

)
+α2ux

ÿ = β1

(
ẏ− v fy

)
+β2uy

z̈ = γ1

(
ż− v fz

)
+ γ2uz

(2)

with the following parameters αi, βi and γi, and the magnetic gradients considered as control inputs ux, uy and uz,

that is: 



α1 = −4.5 η cosϕ cosθ

r2ρ
, ux =

∥∥∥
−→
∇ Bx

∥∥∥

β1 = −4.5 η cosϕ sinθ

r2ρ
, uy =

∥∥∥
−→
∇ By

∥∥∥

γ1 = −4.5 η sinϕ

r2ρ
, uz =

∥∥∥
−→
∇ Bz

∥∥∥

α1 = β2 = γ2 =
m
ρ

(3)

where ρ is the density of the fluid; η is the fluid viscosity; r is the spherical radius of the microrobot; and

B = (Bx,By,Bz)
T is the magnetic field generated by the MRI system.

Finally, the state-space representation is deduced from (2):

(S)





ẋ = vx

v̇x = α1vx −α1v fx +α2ux



 (Sx)

ẏ = vy

v̇y = β1vy −β1v fy +β2uy



 (Sy)

ż = vz

v̇z = γ1vz −β1v fz + γ2uz



 (Sz)

(4)



where (vx,vy,vz)
T denotes the robot velocity along −→x -axis, −→y -axis and −→z -axis. Assuming that the microrobot

location (x,y,z) can be measured thanks to the MRI system, we denote by Y = (x,y,z)T the process measure. We

can notice that system (S) can be divided into three subsystems (Sx), (Sy) and (Sz), which allow us to define three

independents MPC schemes to track the reference path w in 3D MRI data.

In this paper, we aim to use the system model defined in (4) in a high level MPC scheme in order to follow

efficiently a pre-planed path extracted with the method proposed in section 2.2. The proposed MPC controller

is intended to embed the low level robust controller designed in [18][19] (see Fig. 4). Let us notice that the

low level controller provides1 robustness performances against MRI system constraints (as pulsatile flow, limited

gradient amplitude, and image noise) while the MPC controller is designed to tradeoff time-multiplexed sequence

constraints in terms of refresh-rate, duty cycle of the propulsion gradients, and repetition time of the tracking

sequence.

3.4 Predictive Control

Model Predictive Control (MPC) has become an area of significant research interest over the last past twenty

years. This interest has been powered by a stream of successful industrial applications [21]. When focusing on

linear (and unconstrained) discrete time transfer function models and quadratic cost functions, some of the best

known approaches include the Generalized Predictive Control (GPC) introduced by Clarck et al.[22], and the

inner loop stabilizing Stable Predictive Control [23].

MPC refers to a class of computer control algorithms which use an explicit process model to predict the future

response of the system. One way to design MPC is to use an extended state-space representation, which is given

by: 



Ẋk+1 = AXk +B∆uk

Yk = CXk

(5)

where ∆uk = uk−uk−1 is the discrete difference operator. The predicted state vector at time k+ i is then computed

from [24]:

X̂k+i|k = AiXk|k−1 +
i−1

∑
j=0

A jBuk− j−1 (6)

Then, the future outputs Yk+ j|k can be computed based on the plant for future times starting at time k using a

recursion procedure, defined by:

Ŷk+i|k =C

(
AiXk +

i

∑
j=1

Ai− j−1Buk+i− j|k

)
(7)

Design criterion is defined for certain interval of predictions (several steps to future). It includes the part of

control error, in which the model of system is covered (insertion of equations of prediction (7)) and the part of

control actions, where the input energy (control actions) is weighted. This part redistributes control errors to

individual steps of predictions and provides coupling within intervals of predictions. Usual form of the criterion

1The interested reader is invited to refer to [18][19][20].



for predictive design is written as follows:

Jk =
N2

∑
j=N1+1

[
Yk+ jW

T
k+ jQYYk+ jWk+ j

]
+

Nu

∑
j=1

[
uT

k+ j−1Quuk+ j−1

]
(8)

The criterion is expressed in step k. N = N2 −N1 is a horizon of prediction, Nu is the control horizon. QY and Qu

are output and input penalizations. Yk+ j and uk+ j−1 are output and input (full or incremental) values.

Finally, let us note how to construct real control actions at incremental algorithm: after computing a vector

for whole horizon, only first control uk is used; then to obtain the full control actions the second line of equation

(5) is applied.

When using MPC in the state-space formulation, and generally at the use of whichever stat-space control, it

is necessary to solve the question of availability of the state of the system (state vector). If it is not available,

and only system output from the measurement are known, then some state-space estimation has to be considered.

Suitable well-known solution of such estimation is the state-space observer based on Kalman filter.

4 Results

4.1 Navigation Path Extraction

The FMM algorithm, introduced by Sethian [17] is applied here to extract a targeted navigation path within the

vessel network. From the set of 3D MRI data, a speed map is computed (ie. a weighting image map) in order to

enhance the relevant intravascular network. Choosing an appropriate and efficient image cost function is the most

difficult part of the entire process.

We describe in the sequel presented in Fig. 5, the process used to extract the navigation path. First, we

need a relevant cost function which allow to enhance vessel in the image. To this aim, we used some a priori

knowledge about vessel shape and intensity in MRI data (cf. Fig. 5). Vessels are expected to appear as bright

tubular structures in a darker environment. One way to account for the varying size of vessels is by multiscale

analysis. It allows us to detect structures of different sizes according to the scale at which they give maximal

response. In this context, a typical speed image is produced by using a Frangi vesselness filter [25] which uses

the eigenvectors of the Hessian matrix at each voxel of the image to compute the likeliness of an image region to

vessels. This mapping is selected in such a way that vessels regions will have higher speed (high level in speed

image, see Fig. 5). Once the speed map is generated, the user has to select a start and end points (ie. seed points)

in the viewer of the input original image. The FFM will then propagate a front from the start seed and traveling to

the targeted area, thanks to the speed map. Thus, this approach allow to find a minimal navigation path between

the start and targeted seed (cf. Fig. 5).

4.2 Microdevice Navigation using Predictive Control

Simulations conducted here are performed within the scope of actual commonly spread MRI system abilities.

Actually, MRI systems are able to generate magnetic gradients with an intensity of some tens of mT.m−1. Let

us note that this limitation is additionally affected by the gradient coils duty-cycle and by the time-multiplexing



sequence (TProp/Ts ) needed both for controlling and observing sequences. In order to make sure that the am-

plitude of the control inputs remains bounded by physical actuators limits ui,max, and to protect the system, we

applied a simple time-scaling factor defined by ui

k(t) , with k(t) =max
{

1, ui
ui,max

}
. The following set of simulations

corresponds to a microcapsule radius of r = 300 µm and a time scaling settled at k(t) = 0.55. Different situations

are considered to illustrate and to validate the performance of the proposed MRI-based predictive controller.

We validated the proposed control strategy on a 3D endovascular navigation path w extracted from MRI-data

with the previously presented method without any disturbance. Then, to evaluate the efficiency of the proposed

MRI-based predictive controller, we performed some tests with a white Gaussian noise on the system output

measure Y . The noise is about 10 % of the measured signal which is motivated by the common precision of

clinical MRI devices.

Fig. 6 describes the navigation path followed by the microrobot, and Fig. 7 presents the relative error norm

between the current position Y and the reference w, for a time horizon N = 5. As shown, the system output Y

follows perfectly the reference path w. In particular, the microdevice is able to reach quickly the navigation path,

in spite of a gap between the initial position Y and the reference w. Let us notice that the 3D tracking is not too

much affected by the Gaussian noise since position standard deviation (STD) and root mean square (RMS) error

are quite satisfactory.

Fig. 8 simulates the impact of the time horizon N on the system tracking error for optimized time horizon

values between 3 ≤N≤ 10. Comparing the error statistics, the nature of anticipation of the MPC scheme is well

illustrated - important values of N improve greatly the anticipation nature of the path behavior but increases at the

same time the path tracking error-. Hence, a great value of N does not necessarily guarantee good performances,

and classically increase the complexity of the scheme.

To evaluate the robustness of our control strategies, we have also applied an external disturbance which

represent the pulsatile blood flow behavior.

Hence, we have modeled the blow flow as a time-sinusoidal profile with spatial parabolic form σflow(t). In

case of an artery, to model the action of flow (positive) and reflux of blood (negative) σflow(t) were shifted up,

leading to:

σflow(t) = 0.025
(

1+1.15sin
(

2πt +
π

8

))
(9)

where amplitude of 0.025 is representative of maximum blood flow speed. In the following, the performance

and stability of the predictive controller with respect to physiological parameters variations are demonstrated in

Fig. 9. It appears that the system is robust to uncertain physiological parameters (disturbance applied at t = 13

seconds) since the 3D position tracking error norm is bounded to 0.2 %.

Finally, we have evaluated the robustness of our controller for different duty cycle values: 25 %, 50 % and

75 %, respectively. The error curves and statistics for the three scenario are illustrated on Fig. 10. As one can

see for a duty cycle of 50 %, that is the MRI system propels during the first half-period, and acquires 3D images

on the other half-period, the path tracking is quite satisfactory. It corresponds to the real-time navigational and

trajectory control constraints reported in [8]. Nevertheless for a duty cycle of 25 % (ie. the MRI propels during

1/4 period, and image during 3/4 period) the microrobot can not properly track the reference path w leading



to great tracking error. The time-multiplexing duty cycle is optimized for a value around 40 %. In the optimal

case, the simulated predictive behavior of the MPC controller suggests better tracking results compared to those

obtained by [8] that should be confirmed by experimentation.

5 CONCLUSIONS

The proposed MRI-based ferromagnetic microcapsule steering and navigation strategy has been developed at milli

and microscale, where endovascular navigation path extraction and predictive controller have been designed. The

main drawback of MRI-based navigation stems from the strong limitations on the magnetic gradient amplitude

of available MRI devices. As magnetic forces used for propelling are volumetric, whereas the drag force is at

best dependent on the microcapsule’s area, the smaller the capsule, the higher the required control forces with

respect to hydrodynamic perturbations. Consequently, this approach is well conditioned for beads whose radius

is up to a few dozen micrometers with actual MRI devices. Targeting aims at focusing these microcarriers and

stopping them through embolization at the arterioles entry close to the occluded blood vessels. Possible releasing

mechanisms could rely on biodegradable polymer and techniques used in hyperthermia where aggregates of

nanocapsules can be heated to melt polymer. Such a solution is actually under experimentation for validation of

the proposed minimally invasive MRI-based microrobotic system.
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Figure 1: Overall system overview.

Figure 2: Timeline of acquisition and control prediction.



Figure 3: Forces applied on microrobot navigating in blood vessel.

Figure 4: MRI-based Predictive Control strategy.

Figure 5: 3D Navigation path extraction processing: a) Original MRI data; b) Computed cost function using

Frangi filter (here displayed in red volume); c) Extracted navigation path between the start and end seeds using FFM.



Figure 6: 3D MRI-based microrobot endovascular navigation (N = 5, in mm).

(a) Without noise (b) With white noise

Figure 7: 3D tracking error: ‖Y −w‖ for N = 5.



Figure 8: Tracking error statistics for different time horizons N.

(a) Blood flow disturbance σflow(t).
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Figure 9: MRI-based navigation with blood flow disturbance.
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Figure 10: Tracking error with different values of duty cycle.


