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Abstract. This paper presents a new automatic segmentation scheme
that combines active appearance (AAM) modeling and patch-based label
fusion into a segmentation framework. AAM, which uses eigen-decomposition
to analyze the statistical variation of image intensity and shape infor-
mation over the population, is used to capture the global shape char-
acteristics of the structure of interest with a generative model, while
patch-based label fusion, which uses a non-local means method to com-
pare the image local intensity properties, is applied to locally refine the
segmentation results along the structure boundary area to improve the
segmentation accuracy. The proposed segmentation scheme is used to
segment human medial temporal lobe structures, which have low inten-
sity contrast in MRI and complexity in shape. The experiments demon-
strate that this new segmentation scheme is computationally efficient
and robust. In a leave-one out validation with fifty-four normal young
subjects, the method yields a mean Dice κ of 0.87 for hippocampus, 0.81
for amygdala, 0.73 for para-hippocampal complex cortex, and 0.73 for
perirhinal cortex between manual and automatic labels.

1 Introduction

The medial temporal lobe, located in the inner side of each temporal lobe, is the
most important part of the limbic system, and includes the hippocampus (HC),
the amygdala (AG), and surrounding cortical areas (entorhinal (EC), perirhinal
(PRC), and parahippocampal (PHC) cortices). These structures play important
roles in learning, memory, and emotion. HC is the the most critical compo-
nent of the medial temporal lobe memory system, and plays an essential role in
memory and spatial navigation. AG is strongly involved in emotional and social
processing, particularly fear and worry. EC is the main interface between HC
and neocortex, and plays an important role in the formation and optimization of
spatial memories. PRC is involved in both visual perception and memory, and
PHC is involved in scene recognition and social context [1] [2]. Recently, me-
dial temporal lobe structures have received considerable attention due to their
importance in neurological diseases and disorders [3]. For example, many re-
searchers [4] [5] showed that HC volume changes were an important marker of
the early stage of Alzheimer’s disease and temporal lobe epilepsy. Because of
the importance of these structures in the neurodegeneration, there is significant
interest in developing accurate, robust, and reliable segmentation techniques to



automatically extract those structures from magnetic resonance (MR) imaging
for volume and shape analyses.

Manual segmentation is considered highly accurate, and treated as the gold
standard so far. However, manual segmentation is time consuming, requires
anatomical expertise, and may have important intra and inter-rater variabil-
ity. To overcome the disadvantages of manual segmentation, many automatic
segmentation techniques have been proposed. Most model-based segmentation
techniques can be grouped into the following three categories: deformable models
[6], appearance-based models [7] [8], and atlas-based techniques [9] [10].

To avoid the bias in the segmentation by using a single template, Heckemann
et al. [11], Shattuck et al. [12] and Aljabar et al. [13] proposed multi-atlas based
methods to improve the segmentation efficiency. Collins and Pruessner [14] in-
corporated the label fusion into the multi-atlas warping, and Wang et al. in [15]
used the multi-atlas technique with error correction to yield the best published
results for HC segmentation. Coupé et al. [16] used non-local means patch-based
approach to weight the expert manual segmentation in a library of templates
(see Table 1 for the segmentation method review). However, neither atlas-based
or patch-based methods explicitly incorporate the structure’s shape information
into the segmentation.

Table 1. Segmentation method review

Author Method summary Result in term of κ

HC AG PHC

Fischl 2002 [9] FreeSurfer 0.8 0.75∼0.78
Heckemann 2006 [11] Multi-atlas based 0.82 0.8 0.81*

Chupin 2007 [6] Seeding+region growing 0.84 0.76∼0.8
Powell 2008 [17] Machine learning 0.85
Lijn 2008 [18] Multi-atlas+graph cuts 0.86

Morey 2009 [19] FST/FIRST 0.79 0.73
Aljabar 2009 [13] Multi-atlas+template selection 0.84 0.78
Lotjonen 2010 [20] Multi-atlas+intensity modeling 0.82∼0.88 0.77
Collins 2010 [14] Multi-atlas+label fusion 0.89 0.83

Benavides 2010 [21] FreeSurfer 0.78
Sabuncu 2010 [22] Label fusion 0.82∼0.87 0.8∼0.82
Coupé 2011 [16] Non-local means 0.88

Patenaude 2011 [8] Bayesian appearance 0.81 0.74
Wang 2011 [15] Multi-atlas+error correction 0.89∼0.91
Bishop 2011 [23] FMASH 0.8∼0.82
Khan 2011 [24] Multi-atlas+spatially-local selection 0.83∼0.85

*parahippocampal + ambient gyri.

To integrate the shape constraint into the segmentation, we combine the ap-
pearance model and patch-based technique into a general segmentation frame-



work. The main contribution of this paper includes: 1) the proposed method
combines the appearance model and non-local means patch-based methods where
appearance models are used to capture the global shape variation, and the non-
local means method is used to locally refine the segmentation, 2) the proposed
method is applied to segment all medial temporal lobe structures. Compared
to HC and AG, the other medial temporal lobe structures, like PRC and PHC,
have much greater anatomical variability, and 3) nonlinear registration instead
of linear registration is applied to both training and testing data to improve the
alignment between subjects.

2 Method

2.1 Appearance-model based Global Segmentation

Appearance-model based global segmentation applies the eigen-decomposition
technique on gray MR images and shape data to capture the statistical variations
of the gray intensity and shape information of the training data. Based on the
eigenvectors derived from the training data, using the notation from [25] the
final shape and gray image can be given by,

φ = φ̄ + PφQsw̄
−1

s c

gt1 = ḡt1 + Pg,t1Qg,t1 c (1)

The segmentation is achieved by minimizing the difference between the test
image and the one synthesized from Eq. 1. The cost function in the least square
measure can be written as:

E =

Np∑

j=1

(It1,j − gt1,j)
2 (2)

where It1,j and gt1,j are the intensity of the j-th voxel of the T1 test MR image
and the synthesized T1 image respectively. Np is the total number of voxels in
each image. The detailed appearance-based segmentation method was described
in [25]. In this study, all data including the test and training volumes, are non-
linearly registered into an unbiased non-linear average template [26] to minimize
the size, orientation and position differences between subjects.

2.2 Non-local Means Patch-based Segmentation

The non-local means patch-based segmentation uses the local intensity distance
between patches to estimated the weighting of manual segmentations in the
training data, and the local label fusion is based on the weighted average of
manual segmentations. The method described here is the same as in [16]. In
particularly, for each voxel xi in the test image, the weighting of each patch
w(xi, xs,j) is calculated by non-local means filter as:

w(xi, xs,j) = e
−‖p(xi)−p(xs,j)‖2

2
h2 (3)



where p(xi) is the cubic patch centered at xi, p(xs,j) is the cubic patch centered
at xj in the s− th training subject and ||.||2 is the normalized intensity distance
between two patches. The final segmentation is the weighted labels of all labeled
samples inside the search volume vi of N training subjects.

v(xi) =

∑N

s=1

∑
j∈vi

w(xi, xs,j)ys,j

∑N

s=1

∑
j∈vi

w(xi, xs,j)
(4)

where ys,j is the manual segmentation at Voxel xj of the s− th training subject,
and w(xi, xs,j) is the weighting of the patch.

2.3 Combine Appearance Modeling and Non-local Means Patch in

Segmentation

Appearance-model based global segmentation is good at capturing the global
shape variation but not sensitive to the local shape change; while non-local
means patch-based segmentation is sensitive to the local geometry, but doesn’t
have global shape constraints since it only uses the local intensity property in
the segmentation. To take advantage of the global shape constraints and local
intensity information, we combine these two methods together to improve the
segmentation accuracy. For this purpose, we first apply appearance-model based
segmentation to the test subject and then use the result from the global segmen-
tation as input of the patch-based segmentation to locally refine the segmentation
along the structure boundary area. A summary of the proposed algorithm is as
follows.

– Do appearance-model based global segmentation and obtain the segmented
distance function φ.

– Define local refinement area Refring which are the voxels inside the distance
range [d1, d2] of φ.

– For each voxel xi inside Refring, re-calculate the patch-similarity function
of φ(xi) using non-local means patch-based method described in Sec 2.2.
Instead of using the manual labels in Eq.4, the signed Euclidean distance
functions of the manual labellings are integrated into the equation, i.e.

φ(xi) =

∑N

s=1

∑
j∈vi

w(xi, xs,j)φs,j

∑N

s=1

∑
j∈vi

w(xi, xs,j)
(5)

– The final segmentation is achieved by threshing φ.

3 Illustrative Experiments and Results

The proposed segmentation algorithm is applied to segment human medial tem-
poral lobe structures from real MR images. The validation uses the subset of
the International Consortium for Brain Mapping (ICBM) database. The medial



temporal lobe structures (HC, AG, EC, PRC, PHC) on T1w MRI data for 54
subjects from the ICBM database (Philips 1.5T gyroscan, TE=10ms, TR=30ms,
ang=30o, 1mm3 isotropic voxels) were manually segmented using the protocol
defined by Pruessner [27] [28]. The automatic segmentation results are compared
with the manual labels. The similarity of these two labellings are measured by
Dice kappa (κ) [29] [κ = 2 ∗ (V (M ∩ A))/(V (M) + V (A))].

3.1 Effects of Different Patch-size on Segmentation Performance

To study the impact of different patch size on segmentation accuracy, we seg-
mented HC, para-hippocampal complex cortex (PCC=EC+PHC), and PRC
using different patch sizes. The kappa results were presented in Fig. 1 which
demonstrates that the best median kappa values were obtained with a patch
size of 7 × 7 × 7 for all structures. These results indicated that too small patch
size might not be able to capture the local geometry, and too big patch size
might fail to find the best matched patches in the training data.

(a) HC (b) PCC (c) PRC

Fig. 1. Impact of patch size on segmentation performance. κ values of 14 test subjects
under different patch sizes. (a) Segmentation for HC (b) Segmentation for PCC, and
(c) Segmentation for PRC.

3.2 Effects of Different Search-size on Segmentation Performance

The impact of different search window size on segmentation accuracy was also
analyzed by HC, PCC, and PRC. The κ values of 14 test subjects were shown in
Fig. 2. From Fig. 2, we could see that the best median kappa values were obtained
with a search window size of 5 × 5 × 5 or 7 × 7 × 7. Compared to the results in
[16], the optimal search window size was a litter bit smaller. However, the data
in [16] were aligned by linear registration and the data in this experiment were
aligned by non-linear registration. Thus, this result suggested that the better
alignment among subjects could reduce the search size.



(a) HC (b) PCC (c) PRC

Fig. 2. Impact of search window size on segmentation performance. κ values of 14 test
subjects under different search window sizes. (a) Segmentation for HC (b) Segmentation
for PCC, and (c) Segmentation for PRC.

3.3 Validation of Segmentation Accuracy on MTL Structures

The proposed method was applied to segment both left and right of HC, AG,
PCC, PRC, and temporopolar cortex (TPC) from 54 MRI volumes using leave-
one out method. The segmentation performance in terms of κ values based on the
appearance-model based method with and without local correction was shown
in Table 2. From these experiments, we can see: 1) for all structures, the individ-
ual κ value from the Appearance-based segmentation with local correction was
always higher than that without local correction, and 2) the non-local means
patch-based local correction increased the mean κ by 1.5% ∼ 3.5%, and those
improvements were statistically significant (p ≤ 0.001). The improvement of
the patch-based refinement on segmentation accuracy could also be visually ob-
served in Fig. 3 which showed segmentation examples of all structures for three
test subjects. The experiments also showed that the proposed method was able to
quickly segment a new subject (less than 30 seconds for appearance-based global
segmentation, and 1.5 minutes for patch-based refinement) on a 1.5GHz Linux
PC once data was aligned (6 minutes per subject for nonlinear registration).

4 Discussion and Conclusions

In this paper, we present a novel segmentation algorithm which combines the ap-
pearance modeling and non-local means patch-based segmentation into a general
segmentation framework, and applied it to the cortical structures of the medial
temporal lobe. During segmentation, appearance modeling is used to capture the
global shape variation, and non-local means patch-based method is used to im-
prove the local fitting of the segmentation result. The experimental results have
demonstrated feasibility, good performance, and robustness of this algorithm in
3D image segmentation.



Table 2. κ statistical result of segmentation

Appearance-based segmentation Appearance-based segmentation Matched-pairs t-test
without local correction with local correction (p-value)
Left Right Left Right Left Right

HC 0.851 (0.028) 0.862 (0.02) 0.867 (0.025) 0.873 (0.019) < 0.001 < 0.001
AG 0.80 (0.048) 0.792 (0.055) 0.812 (0.043) 0.803 (0.053) < 0.001 < 0.001
PCC 0.711 (0.068) 0.697 (0.083) 0.735 (0.066) 0.714 (0.082) < 0.001 < 0.001
PRC 0.696 (0.067) 0.707 (0.060) 0.730 (0.048) 0.739 (0.047) < 0.001 < 0.001
TPC 0.684 (0.065) 0.675 (0.048) 0.712 (0.057) 0.703 (0.047) < 0.001 < 0.001

Values in columns 2-5 are mean κ and the standard deviations are in parentheses.

(a) (b) (c)

Fig. 3. Visualization of segmentation results in 2D of three median test subjects: each
row represents one test subject, and columns shows the segmentation results from (a)
Manual labeling, (b) Appearance-based segmentation without local refinement, and (c)
Appearance-based segmentation with local refinement. Note that the segmented labels
of different structures are at the top of corresponding T1 test MR image, and presented
by different colors: purple for HC, blue for AG, sky blue for PCC, white for PRC, and
green for TPC.



In the experiments, we tested the proposed method using the ICBM data set
with 54 young healthy subjects. The leave-one out validation experiments of 54
subjects in 3D volumes demonstrated the segmentation accuracy (the mean κ
of 0.87 for HC, 0.81 for AG, 0.73 for EPC, 0.73 for PRC, and 0.71 for TPC).
The direct comparison between our technique and others in the literature is
difficult because of the different anatomic definitions of the structures, different
types of input data, and different qualities of manual segmentations. However,
taking these caveats into consideration, our results are among the best results
of previous publications in HC and AG (Detail see Table. 1). For other medial
temporal lobe structures, there is no published result available except for PHC
[11]. Those promising initial results provide the impetus for future studies where
the procedure will be applied to MR data from patients with temporal lobe
epilepsy or Alzheimer’s disease.
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