
HAL Id: hal-00573640
https://hal.science/hal-00573640

Submitted on 5 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic cellular automata, invariant measures, and
perfect sampling

Ana Bušić, Jean Mairesse, Irène Marcovici

To cite this version:
Ana Bušić, Jean Mairesse, Irène Marcovici. Probabilistic cellular automata, invariant measures, and
perfect sampling. Symposium on Theoretical Aspects of Computer Science (STACS2011), Mar 2011,
Dortmund, Germany. pp.296-307. �hal-00573640�

https://hal.science/hal-00573640
https://hal.archives-ouvertes.fr


Probabilistic cellular automata, invariant

measures, and perfect sampling

Ana Bušić1, Jean Mairesse2, and Irène Marcovici2,3

1 INRIA/ENS

23, avenue d’Italie, CS 81321, 75214 Paris Cedex 13, France

Ana.Busic@inria.fr

2 LIAFA, CNRS and Université Paris Diderot - Paris 7

Case 7014, 75205 Paris Cedex 13, France

(Jean.Mairesse,Irene.Marcovici)@liafa.jussieu.fr

3 ENS Lyon, Département de Mathématiques

Abstract

In a probabilistic cellular automaton (PCA), the cells are updated synchronously and indepen-

dently, according to a distribution depending on a finite neighborhood. A PCA can be viewed as

a Markov chain whose ergodicity is investigated. A classical cellular automaton (CA) is a partic-

ular case of PCA. For a 1-dimensional CA, we prove that ergodicity is equivalent to nilpotency,

and is therefore undecidable. We then propose an efficient perfect sampling algorithm for the

invariant measure of an ergodic PCA. Our algorithm does not assume any monotonicity property

of the local rule. It is based on a bounding process which is shown to be also a PCA.

1998 ACM Subject Classification G.3; F.1.2
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1 Introduction

Cellular automata (CA) are dynamical systems in which space and time are discrete. A

cellular automaton consists of a lattice (e.g. Z
d or Z/nZ) divided in regular cells, each cell

containing a letter of a finite alphabet. The cells evolve synchronously, each one evolving in

function of a finite number of cells in its neighborhood, according to a local rule.

To take into account randomness, one is led to consider probabilistic cellular automata

(PCA) [17]. For PCA, time is dicrete and the cells evolve synchronously as for CA, but the

difference is that for each cell, the new content is randomly chosen, independently of the

others, according to a distribution depending only on a finite neighborhood of the cell.

Let us mention a couple of motivations. First, the investigation of fault-tolerant com-

putational models was the motivation for the russian school to study PCA [17, 6]. Second,

PCA appear in combinatorial problems related to the enumeration of directed animals [11].

Third, in the context of the classication of CA (Wolfram’s program), robustness to random

errors can be used as a discriminating criterion [5, 14].

We focus our study on the equilibrium behavior of PCA. Observe that a PCA may be

viewed as a Markov chain over the state space AE , where A is the alphabet and E is the

set of cells. The equilibrium is studied via the invariant measures of the Markov chain. A

PCA is ergodic if it has a unique and attractive invariant measure. Finding conditions to

ensure ergodicity is a difficult problem which has been thoroughly investigated [17, 6]. When

a PCA is ergodic, it is usually impossible to determine the invariant measure explicitly, and
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simulation becomes the alternative. Simulating PCA is known to be a challenging task,

costly both in time and space. Also, configurations cannot be tracked down one by one

(there is an infinite number of them when E is infinite) and may only be observed through

some measured parameters. The point is to have guarantees upon the results obtained from

simulations.

In this context, our contributions are as follows. First, we prove that the ergodicity of a

CA on Z is undecidable. This was mentioned as Unsolved Problem 4.5 in [16]. Since a CA is

a special case of a PCA, it also provides a new proof of the undecidability of the ergodicity

of a PCA (Kurdyumov, see [17, Chap. 14], and Toom [15]). Second, we propose an efficient

perfect sampling algorithm for ergodic PCA. Recall that a perfect sampling procedure is

a random algorithm which returns a configuration distributed according to the invariant

measure. By applying the procedure repeatedly, we can estimate the invariant measure with

arbitrary precision. We propose such an algorithm for PCA by adapting the coupling from

the past method of Propp & Wilson [12]. When the set of cells is finite, a PCA is a finite state

space Markov chain. Therefore, coupling from the past from all possible initial configurations

provides a basic perfect sampling procedure, but a very inefficient one since the number of

configurations is exponential in the number of cells. Here, the contribution consists in an

important simplification of the procedure. We define a new PCA on an extended alphabet,

called the envelope PCA (EPCA). We obtain a perfect sampling procedure for the original

PCA by running the EPCA on a single initial configuration. When the set of cells is infinite,

a PCA is a Markov chain on an uncountable state space. So there is no basic perfect sampling

procedure anymore. We prove the following: If the PCA is ergodic, then the EPCA may or

may not be ergodic. If it is ergodic, then we can use the EPCA to design an efficient perfect

sampling procedure (the result of the algorithm is the finite restriction of a configuration

with the right invariant distribution). The EPCA can be viewed as a systematic treatment

of ideas already used by Toom for percolation PCA (see for instance [16, Section 2]).

The perfect sampling procedure can also be run on a PCA whose ergodicity is unknown,

with the purpose of testing it. We illustrate this approach on Majority, prototype of a PCA

whose equilibrium behavior is not well understood.

2 Probabilistic cellular automata

Let A be a finite set called the alphabet, and let E be a countable or finite set of cells. We

denote by X the set AE of configurations.

We assume that E is equipped with a commutative semigroup structure, whose law is

denoted by +. In examples, we consider mostly the cases E = Z or E = Z/nZ. Given K ⊂ E

and V ⊂ E, we define V + K =
{

v + k | v ∈ V, k ∈ K}.

A cylinder is a subset of X having the form {x ∈ X | ∀k ∈ K, xk = yk} for a given finite

subset K of E and a given element (yk)k∈K ∈ AK . When there is no possible confusion, we

shall denote briefly by yK the cylinder {x ∈ X | ∀k ∈ K, xk = yk}. For a given finite subset

K, we denote by C(K) the set of all cylinders of base K.

Let us equip X = AE with the product topology, which can be described as the topology

generated by cylinders. We denote by M(A) the set of probability measures on A and by

M(X) the set of probability measures on X for the σ-algebra generated by all cylinder sets,

which corresponds to the Borelian σ-algebra. For x ∈ X, denote by δx the Dirac measure

concentrated on the configuration x.

◮ Definition 2.1. Given a finite set V ⊂ E, a transition function of neighborhood V is a

function f : AV → M(A). The probabilistic cellular automaton (PCA) P of transition
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function f is the application P : M(X) → M(X), µ 7→ µP, defined on cylinders by:

µP (yK) =
∑

xV +K∈C(V +K)

µ(xV +K)
∏

k∈K

f((xk+v)v∈V )(yk) .

Let us look at how P acts on a Dirac measure δz. The content zk of the k-th cell

is changed into the letter a ∈ A with probability f((zk+v)v∈V )(a), independently of the

evolution of the other cells. The real number f((zk+v)v∈V )(a) ∈ [0, 1] is thus to be thought

as the conditional probability that, after application of P , the k-th cell will be in the state a

if, before its application, the neighborhood of k was in the state (zk+v)v∈V .

Let u be the uniform measure on [0, 1]. We define the product measure τ =
⊗

i∈E u on

[0, 1]E .

◮ Definition 2.2. An update function of the probabilistic cellular automaton P is a deter-

ministic function φ : AE × [0, 1]E → AE (the function φ takes as argument a configuration

and a sample in [0, 1]E , and returns a new configuration), satisfying for each x ∈ AE , and

each cylinder yK ,

τ({r ∈ [0, 1]E ; φ(x, r) ∈ yK}) =
∏

k∈K

f((xk+v)v∈V )(yk).

In practice, it is always possible to define an update function φ for which the value

of φ(x, r)k only depends on (xk+v)v∈V and on rk. For example, if the alphabet is A =

{a1, . . . , an}, one can set

φ(x, r)k =



















a1 if 0 ≤ rk < f((xk+v)v∈V )(a1)

a2 if f((xk+v)v∈V )(a1) ≤ rk < f((xk+v)v∈V )({a1, a2})
...

an if f((xk+v)v∈V ({a1, a2, . . . , an−1}) ≤ rk ≤ 1.

(1)

For a given initial configuration x0 ∈ AE , and samples (rt)t∈N, rt ∈ [0, 1]E , let (xt)t∈N ∈

(AE)N be the sequence defined recursively by xt+1 = φ(xt, rt). Such a sequence is called a

space-time diagram. It can be viewed as a realization of the Markov chain. Examples of

space-time diagrams appear in Figures 1 and 2.

Classical cellular automata are a specialization of PCA.

◮ Definition 2.3. A deterministic cellular automaton (DCA) is a PCA such that for each

sequence (xv)v∈V ∈ AV , the measure f((xv)v∈V ) is concentrated on a single letter of the

alphabet. A DCA can thus be seen as a deterministic function F : AE → AE .

In the literature, the term cellular automaton denotes what we call here a DCA. Deter-

ministic cellular automata have been widely studied, in particular on the set of cells E = Z,

see Section 3. For a DCA, any initial configuration defines a unique space-time diagram.

◮ Example 2.4. Let A = {0, 1}, E = Z, and V = {0, 1}. Consider 0 < ε < 1 and the

local function f(x, y) = (1 − ε) δx+y mod 2 + ε δx+y+1 mod 2 . This defines a PCA that can

be considered as a perturbation of the DCA F : AE → AE defined by F (x)i = xi + xi+1

mod 2, with errors occuring in each cell independently with probability ε.

◮ Example 2.5. Let A = {0, 1}, E = Z
d, and let V be a finite subset of E. Consider 0 < α < 1

and the local function: f((xv)v∈V ) = α δmax(xv, v∈V ) + (1 − α) δ0 . The corresponding PCA is

called the percolation PCA associated with V and α. The particular case of the space E = Z

and the neighborhood V = {0, 1} is called the Stavskaya PCA. In Figure 1, we represent two

portions of diagrams of the percolation PCA for E = Z and V = {−1, 0, 1}.
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Time

(a) α = 0.5 (b) α = 0.6

Figure 1 Space-time diagrams of the PCA of Example 2.5, for V = {−1, 0, 1}.

2.1 Invariant measures and ergodicity

A PCA can be seen as a Markov chain on the state space AE . We use the classical terminology

for Markov chains that we now recall.

◮ Definition 2.6. A probability measure π ∈ M(X) is said to be an invariant measure of

the PCA P if πP = π. The PCA is ergodic if it has exactly one invariant measure π which

is attractive, that is, for any measure µ ∈ M(X), the sequence µP n converges weakly to π

(i.e. for any cylinder C, limn→+∞ µP n(C) = π(C)).

A PCA has at least one invariant measure, and the set of invariant measures is convex and

compact. This is a standard fact, based on the observation that the set M(X) of measures

on X is compact for the weak topology, see for instance [17]. Therefore, there are three

possible situations for a PCA:

(i) several invariant measures; (ii) a unique invariant measure which is not attractive;

(iii) a unique invariant measure which is attractive (ergodic case).

◮ Example 2.7. Consider the PCA of Example 2.4. Using the results in [17, Chapters 16

and 17], one can prove that the PCA is ergodic and that its unique invariant measure is the

uniform mesure, i.e. the product of Bernoulli measures of parameter 1/2.

◮ Example 2.8. Consider the percolation PCA of Example 2.5. Observe that the Dirac

measure δ0E is an invariant measure. Using a coupling with a percolation model, one can

prove the following, see for instance [16, Section 2]. There exists α∗ ∈ (0, 1) such that:

α < α∗ =⇒ (iii) : ergodicity, α > α∗ =⇒ (i) : several invariant measures.

The exact value of α∗ is not known but it satisfies 1/|V | ≤ α∗ ≤ 53/54.

The existence of a PCA corresponding to situation (ii) had been a long standing conjecture,

but an example has recently been presented in [3]. The PCA of Example 2.5 exhibits a phase

transition between the situations (i) and (iii). In Section 5, we study a PCA that may have

a phase transition between the situations (ii) and (iii). It would provide the first example of

this type.

3 Ergodicity of DCA

DCA form the simplest class of PCA, it is therefore natural to study the ergodicity of DCA.

In this section, we prove the undecidability of ergodicity for DCA (Theorem 3.4).

Remark. In the context of DCA, the terminology of Definition 2.6 might be confusing.

Indeed a DCA P can be viewed in two different ways: (i) a (degenerated) Markov chain;
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300 Probabilistic cellular automata, invariant measures, and perfect sampling

(ii) a symbolic dynamical system. In the dynamical system terminology, P is uniquely

ergodic if: [∃!µ, µP = µ]. In the Markov chain terminology (that we adopt), P is ergodic if:

[∃!µ, µP = µ] and [∀ν, νP n w
−→ µ], where

w
−→ stands for the weak convergence. Knowing if

the unique ergodicity (of symbolic dynamics) implies the ergodicity (of the Markov theory)

is an open question for DCA.

The limit set of P is defined by LS =
⋂

n∈N
P n(AE). In words, a configuration belongs to

LS if it may occur after an arbitrarily long evolution of the cellular automaton. Observe that

LS is non-empty since it is the decreasing limit of non-empty closed sets. A constructive way

to show that LS is non-empty is as follows. The image by P of a monochromatic configuration

xE is monochromatic: xE → yE . In particular, there exists a monochromatic periodic orbit

for P , and we have: xE
0 → xE

1 → · · · → xE
k−1 → xE

0 =⇒ {xE
0 , xE

1 , . . . , xE
k−1} ⊂ LS.

Recall that δu denotes the probability measure concentrated on the configuration u. The

periodic orbit (xE
0 , . . . , xE

k−1) provides an invariant measure given by (δxE
0

+ . . . + δxE
k−1

)/k.

More generally, the support of any invariant measure is included in the limit set.

◮ Definition 3.1. A DCA is nilpotent if its limit set is a singleton.

Clearly, a DCA is nilpotent iff LS = {xE} for some x ∈ A. The following stronger

statement is proved in [4], using a compactness argument:

[ P nilpotent ] ⇐⇒ [ ∃x ∈ A, ∃N ∈ N, P N (AE) = {xE} ] .

In that case, for any probability measure µ on AE , we have µP N = δxE , so that P is ergodic

with unique invariant measure δxE . This proves the following proposition.

◮ Proposition 3.2. Consider a DCA P . We have: [ P nilpotent ] =⇒ [ P ergodic ].

If we restrict ourselves to DCA on Z, we get the converse statement.

◮ Theorem 3.3. Consider a DCA P on the set of cells Z. We have:

[ P nilpotent ] ⇐⇒ [ P ergodic ] .

Proof. Let P be an ergodic DCA. Assume that there exists a monochromatic periodic orbit

(xZ
0 , . . . , xZ

k−1) with k ≥ 2. Then µ = (δxZ

0
+ · · · + δxZ

k−1
)/k is the unique invariant measure.

The sequence δxZ

0
P n does not converge weakly to µ, which is a contradiction. Therefore, there

exists a monochromatic fixed point: P (xZ) = xZ, and δxZ is the unique invariant measure.

Define the cylinder C = {v ∈ AZ | ∀i ∈ K, vi = x}, where K is some finite subset of Z. For

any initial configuration u ∈ AZ, using the ergodicity of P , we have: δuP n(C) −→ δxZ(C) = 1.

But δuP n is a Dirac measure, so δuP n(C) is equal to 0 or 1. Consequently, we have

δuP n(C) = 1 for n large enough, that is, ∃N ∈ N, ∀n ≥ N, ∀i ∈ K, P n(u)i = x.

In words, in any space-time diagram of P , any column becomes eventually equal to

xxx · · · . Using the terminology of Guillon & Richard [8], the DCA P has a weakly nilpotent

trace. It is proved in [8] that the weak nilpotency of the trace implies the nilpotency of the

DCA. (The result is proved for cellular automata on Z and left open in larger dimensions.)

This completes the proof. ◭

Kari proved in [10] that the nilpotency of a DCA on Z is undecidable. (For DCA on Z
d,

d ≥ 2, the proof appears in [4].) By coupling Kari’s result with Theorem 3.3, we get:

◮ Corollary 3.4. Consider a DCA P on the set of cells Z. The ergodicity of P in undecidable.
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The undecidability of the ergodicity of a PCA was a known result, proved by Kurdyumov,

see [17], see also Toom [15]. But the undecidability of the ergodicity of a DCA, which is a

stronger result, was in fact mentioned as Unsolved Problem 4.5 in [16].

Corollary 3.4 can also be obtained without Theorem 3.3, by directly adapting Kari’s proof

to show the undecidability of the ergodicity of the DCA associated with a NW-deterministic

tile set.

4 Sampling the invariant measure of an ergodic PCA

Generally, the invariant measure(s) of a PCA cannot be described explicitly. Numerical

simulations are consequently very useful to get an idea of the behavior of a PCA. Given

an ergodic PCA, we propose a perfect sampling algorithm which generates configurations

exactly according to the invariant measure.

A perfect sampling procedure for finite Markov chains has been proposed by Propp

& Wilson [12] using a coupling from the past scheme. Perfect sampling procedures have

been developed since in various contexts. Let us mention some related works. For more

information see the annotated bibliography: Perfectly Random Sampling with Markov Chains,

http://dimacs.rutgers.edu/~dbwilson/exact.html/.

The complexity of the algorithm depends on the number of all possible initial conditions,

which is prohibitive for PCA. A first crucial observation already appears in [12]: for a

monotone Markov chain, one has to consider only extremal initial conditions. To cope with

more general situations, Huber [9] introduced the idea of a bounding chain for determining

when coupling has occurred. The construction of these bounding chains is model-dependent

and in general not straightforward. In the case of a Markov chain on a lattice, Bušić et al.

[2] proposed an algorithm to construct the bounding chains.

Our contribution is to show that the bounding chain ideas can be given in a particularly

simple and convenient form in the context of PCA via the introduction of the envelope PCA.

4.1 Basic coupling from the past for PCA

We present first the algorithm for a PCA on a finite set of cells, and then for an infinite set

of cells.

Finite set of cells. Consider an ergodic

PCA P on the alphabet A and on a finite set

of cells E (for example Zm = Z/mZ). Let

π be the invariant measure on X = AE . A

perfect sampling procedure is a random al-

gorithm which returns a state x ∈ X with

probability π(x). Algorithm 1 is a presenta-

tion of the Propp & Wilson, or coupling from

the past (CFTP), perfect sampling procedure,

written here in the context of PCA.

◮ Proposition 4.1 ([12]). If Algorithm 1

stops almost surely, then the PCA is ergodic

and the output is distributed according to the

invariant measure.

Algorithm 1: Basic CFTP algorithm for

a finite set of cells

Data: Update function φ : X × [0, 1]E → X of

a PCA. Family (r−n
k )(k,n)∈E×N of i.i.d.

r.v. uniform on [0, 1].

begin
t = 1 ;

repeat
R−t = X ;

for j = −t to −1 do

Rj+1 = {φ(x, (rj

i )i∈E) ; x ∈ Rj}

t = t + 1
until |R0| = 1 ;

return the unique element of R0

end

STACS’11
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The proof is based on the following idea: if we had run the Markov chain from time −∞

up to 0, then the result would obviously be equal to the output of the algorithm. But if we

start from time −∞, the Markov chain has reached equilibrium by time 0.

Infinite set of cells. Assume that the set of cells E is infinite. Then a PCA defines a

Markov chain on the infinite state space X = AE , so the above procedure is not effective

anymore. However, it is possible to use the locality of the updating rule of a PCA to still

define a perfect sampling procedure. (This observation already appears in [1].)

Let P be an ergodic PCA P and denote by π its invariant distribution. In this context, a

perfect sampling procedure is a random algorithm taking as input a finite subset K of E and

returning a cylinder xK ∈ C(K) with probability π(xK).

To get such a procedure, we use the fol-

lowing fact: if the PCA is run from time −k

onwards, then to compute the content of the

cells in K at time 0, it is enough to consider

the cells in the finite dependence cone of K.

This is illustrated here for the set of cells

E = Z and the neighborhood V = {−1, 0, 1},

with the choice K = {0}.

-3

-2

-1

t E = Z

-4

0

More formally, let V be the neighborhood of the PCA. Given a subset K of E, the

dependence cone of K is the family (V−t(K))t∈N of subsets of E defined recursively by

V0(K) = K and V−t(K) = V + V−t+1(K). Let φ : X × [0, 1]E → X be an update

function, for instance the one defined in (1). For a given subset K of E, we denote

φ−t : AV
−t(K) × [0, 1]V−t(K) → AV

−t+1(K) the corresponding restriction of φ. With these

notations, the algorithm now consists in setting at each step R−t = AV
−t(K) and computing

Rj+1 = {φj(x, (rj
i )i∈Vj(K)) ; x ∈ Rj} ⊂ AVj+1(K) for j = −t to −1. This is done until we get

|R0| = 1.

Next proposition is an easy extension of Proposition 4.1.

◮ Proposition 4.2. If the procedure stops almost surely, then the PCA is ergodic and the

output is distributed according to the marginal of the invariant measure.

4.2 Envelope probabilistic cellular automata (EPCA)

The CFTP algorithm is inefficient when the state space is large. This is the case for PCA:

when E is finite, the set AE is very large, and when E is infinite, it is the dependence cone

described above which is very large. We cope with this difficulty by introducing the envelope

PCA.

For simplicity, we assume that P is a PCA on the alphabet A = {0, 1} (as previously,

the set of cells is denoted by E, the neighborhood by V ⊂ E and the local function by f).

Most of the results can be easily extended to the case of a general alphabet.

Definition of the EPCA. Let us introduce a new alphabet: B = {0, 1, ?}. A word on

B is to be thought as a word on A in which the letters corresponding to some positions are

not known, and are thus replaced by the symbol “?”. Formally we identify B with 2A − ∅

as follows: 0 = {0}, 1 = {1}, and ? = {0, 1}. So each letter of B is a set of possible letters

of A. With this interpretation, we view a word on B as a set of words on A. For instance,

?1? = {010, 011, 110, 111}.
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We will associate to the PCA P a new PCA on the alphabet B, that we call the envelope

probabilistic cellular automaton of P .

◮ Definition 4.3. The envelope probabilistic cellular automaton (EPCA) of P , is the PCA

env(P ) of alphabet B, defined on the set of cells E, with the same neighborhood V as for P ,

and a local function env(f) : BV → M(B) defined for each y ∈ BV by

env(f)(y)(0) = min
x∈AV , x∈y

f(x)(0), env(f)(y)(1) = min
x∈AV , x∈y

f(x)(1)

env(f)(y)(?) = 1 − min
x∈AV , x∈y

f(x)(0) − min
x∈AV , x∈y

f(x)(1).

Observe that env(P ) acts like P on configurations which do not contain the letter “?”.

More precisely,

∀y ∈ AV , env(f)(y)(0) = f(y)(0), env(f)(y)(1) = f(y)(1), env(f)(y)(?) = 0 . (2)

It implies next proposition. The converse statement is not true, see the counter-examples

in Section 4.3.3.

◮ Proposition 4.4. If the EPCA env(P ) is ergodic then the PCA P is ergodic.

Construction of an update function for the EPCA. Let us define the update

function φ̃ : BE × [0, 1]E → BE of the PCA env(P ), by:

φ̃(y, r)k =







0 if 0 ≤ rk < env(f)((yk+v)v∈V )(0)

1 if 1 − env(f)((yk+v)v∈V )(1) ≤ rk ≤ 1

? otherwise.

(3)

The value of φ̃(y, r)k in function of rk can be represented as follows:

0

min
x∈AV , x∈(yk+v)v∈V

f(x)(0) min
x∈AV , x∈(yk+v)v∈V

f(x)(1)

1 rk

0 ? 1

Let φ be the natural update function for the PCA P defined in (1). Observe that φ̃

coincides with φ on configurations which do not contain the letter “?”. Furthermore, we have:

∀r ∈ [0, 1]E , ∀x ∈ AE , ∀y ∈ BE , x ∈ y =⇒ φ(x, r) ∈ φ̃(y, r) . (4)

4.3 Perfect sampling using EPCA

We propose two perfect sampling algorithms, for a finite and for an infinite number of cells.

We show that in both cases, the algorithm stops almost surely if and only if the EPCA is

ergodic. The ergodicity of the EPCA implies the ergodicity of the PCA but the converse is

not true: we provide a counterexample for each case, finite and infinite.

We also give sufficient conditions of ergodicity of the EPCA.

4.3.1 Algorithms

The algorithm for a finite set of cells is given in Algorithm 2. For an infinite set of cells, we

consider the dependence cone of a finite set of cells K (see Section 4.1).
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Finite set of cells. The idea is to con-

sider only one trajectory of the EPCA - the

one that starts from the initial configuration

?E (coding the set of all configurations of the

PCA). The algorithm stops when at time 0,

this trajectory hits the set AE .

Infinite set of cells. Once again, we

consider only one trajectory of the EPCA: at

each step , we set c = ?V
−t(K) and compute

c = φ̃j(c, (rj
i )i∈Vj(K)) ∈ BVj+1(K) for j = −t

to −1. This is done until we get c ∈ AK .

Algorithm 2: Perfect sampling using

the EPCA for a finite set of cells

Data: Update function φ̃. Family

(r−n
k )(k,n)∈E×N of i.i.d. r.v.

uniform on [0, 1].

begin
t = 1 ;

repeat

c = ?E ;

for j = −t to −1 do

c = φ̃(c, (rj

i )i∈E)

t = t + 1
until c ∈ AE ;

return c
end

◮ Proposition 4.5. The algorithms above (finite and infinite cases) stop almost surely if and

only if the EPCA is ergodic. In that case, the output of the algorithm is distributed according

to the unique invariant measure of the PCA.

Proof. The argument is the same in the finite and infinite cases. We give it for the finite

case. Assume first that Algorithm 2 stops almost surely. By construction, it implies that

for all µ0, the measure µ0 env(P )n is asymptotically supported by AE . Therefore, we can

strengthen the result in Proposition 4.4: the invariant measures of env(P ) coincide with

the invariant measures of P . In that case, env(P ) is ergodic iff P is ergodic. Now recall

that the update functions of P and env(P ) satisfy (4). Thus, Algorithm 1 also stops almost

surely. Furthermore, if we use the same samples (r−n
k )(k,n)∈E×N, Algorithms 1 and 2 will

have the same output. According to Proposition 4.1, this output is distributed according to

the unique invariant measure of P . In particular, P is ergodic. So env(P ) is ergodic.

Assume now that the EPCA is ergodic. The unique invariant measure π of env(P ) has to

be supported by AE . Also, by ergodicity, we have δ?E env(P )n w
−→ π. This means precisely

that Algorithm 2 stops a.s. ◭

4.3.2 Criteria of ergodicity for the EPCA

◮ Proposition 4.6. Let the set of cells be finite. The EPCA env(P ) is ergodic if and only if

we have env(f)(?V )(?) < 1. This condition can also be written as:

min
x∈AV

f(x)(0) + min
x∈AV

f(x)(1) > 0 . (5)

In particular, on a finite set of cells, if the PCA has positive rates (i.e. ∀u ∈ AV , ∀a ∈

A, f(u)(a) > 0), then Algorithm 2 stops a.s.

For an infinite set of cells the situation is more complex. Condition (5) is not sufficient to

ensure the ergodicity of the EPCA. A counter-example is given in Section 4.3.3. First, we

propose a rough sufficient condition of ergodicity

◮ Proposition 4.7. Let α∗ ∈ (0, 1) be the critical probability of the percolation PCA with

neighborhood V , see Examples 2.5 and 2.8. The EPCA env(P ) is ergodic if

env(f)(?V )(?) < α∗ (6)
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and non-ergodic if

min
x∈BV −AV

env(f)(x)(?) > α∗. (7)

4.3.3 Counter-examples

Recall Proposition 4.4: [EPCA ergodic] =⇒ [PCA ergodic]. We now show that the converse

is not true.

Let us consider the PCA Majority defined at the beginning of Section 5. For n odd, the

PCA is ergodic on the set of cells Zn = Z/nZ, by Proposition 5.1. However the associated

EPCA satisfies env(f)(???) = δ?. According to Proposition 4.6, the EPCA is not ergodic.

Consider the PCA of Example 2.4. This PCA has positive rates, in particular, it satisfies

(5). So the EPCA is ergodic on a finite set of cells. Now let the set of cells be Z.

The PCA is ergodic for ε ∈ (0, 1), see Example 2.7. Consider now the associated EPCA

env(P ). Assume for instance that ε ∈ (0, 1/2). We have

env(f)(u) =

{

f(u) if u ∈ {0, 1}V

εδ0 + εδ1 + (1 − 2ε)δ? otherwise .

By applying Proposition 4.7, env(P ) is non-ergodic if 1 − 2ε > α∗.

5 The majority PCA: a case study

The Majority PCA is one of the simplest examples of PCA whose behaviour is not well

understood. Therefore, it provides a good case study for our sampling algorithms.

Given 0 < α < 1, the PCA Majority(α), or simply Majority, is the PCA on the alphabet

A = {0, 1}, with set of cells E = Z (or Zn = Z/nZ), neighborhood V = {−1, 0, 1}, and

transition function

f(x, y, z) = α δmaj(x,y,z) + (1 − α) δ1−y ,

where maj : A3 → A is the majority function: the value of maj(x, y, z) is 0, resp. 1, if there

are two or three 0’s, resp 1’s, in the sequence x, y, z. This PCA thus consists in choosing

independently for each cell to apply rule 232 (with probability α) or to flip the value.

◮ Proposition 5.1. Consider the Markov chain on the state space {0, 1}Zn which is induced

by the Majority PCA on set of cells Zn. The Markov chain has a unique invariant measure

ν. If n is even then ν = (δ(01)n/2 + δ(10)n/2)/2; if n is odd then ν is supported by {0, 1}Zn .

Let us consider now the PCA Majority on Z. Let x = (01)Z ∈ {0, 1}Z be the configuration

defined by: ∀n ∈ Z, x2n = 0, x2n+1 = 1. The configuration (10)Z is defined similarly. The

probability measure µ = (δ(01)Z + δ(10)Z)/2 is clearly an invariant measure for the PCA

Majority. It can be viewed as the “limit” over n of the invariant measures of the PCA on

Z2n. What about the “limits” of the invariant measures of the PCA on Z2n+1? Do they

define other invariant measures for the PCA on Z?

◮ Conjecture 5.2. There exists αc ∈ (0, 1) such that Majority(α) has a unique invariant

measure for α < αc, and several invariant measures for α > αc.

We propose a partial result relying on ideas of Regnault [13].
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(a) The value of cn as a function of n, for different α.

(b) α = 0.5

(c) α = 0.3

Figure 2 Experimental study of Majority(α) (the configurations at odd times only are represented

on the space-time diagrams).

◮ Proposition 5.3. Let pc be the percolation threshold of directed bond-percolation in N
2. If

α ≥ 3
√

1 − (1 − pc)4, then Majority(α) has several invariant measures. It is in particular the

case if α ≥ 0.996.

We also tried to come up with some numerical evidence. To study the PCA Majority

experimentally, a first idea would be to consider the same PCA on the set of cells Zn, n odd,

but this does not work well. First, computing exactly the invariant measure is impossible

except for small n. Second the efficient perfect sampling is not available since the EPCA is

not ergodic.

Instead, we used approximations of the PCA by a (non-homogeneous) PCA on the set of

cells Dn = {−n, . . . , n}, with random boundary conditions : at each step, the contents of

cells −n and n are updated using values of the cells −(n + 1) and n + 1 chosen uniformly at

random in {0, 1}. Again, computing exactly the invariant measure is impossible except for

very small windows. But now, the EPCA is ergodic, and the perfect sampling algorithms

become effective.

Let µn be the unique invariant measure for the set of cells Dn. Define

cn = µn{x ∈ X | x0 = x1 = 0} + µn{x ∈ X | x0 = x1 = 1} .

One can prove that if lim supn cn > 0, then there exists a non-trivial invariant measure for

the PCA Majority on Z (this relies on the compactness of M(X)).

The experimental results appear in Figure 2, with a logarithmic scale. We ran the

sampling algorithms 10000 times, up to a window size of n = 1024. We show on the figure

the confidence intervals calculated with Wilson score test at 95%.

It is reasonable to believe that the top two curves do not converge to 0 while the bottom

three converge to 0. This is consistent with the visual impression of space-time diagrams. It

reinforces Conjecture 5.2 with a possible phase transition between 0.4 and 0.45.
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