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Abstract

This manuscript deals with the stabilization of a class of nonlinear discrete-time

systems under control saturations including time-varying parameter dependency.

The studied control law consists of the gain scheduled feedback of the measured

output and of the nonlinearity present in the dynamics of the controlled system.

Furthermore the saturations are taken into account by modeling the nonlinear satu-

rated system through a deadzone nonlinearity satisfying a modified sector condition.

Thus, as for precisely known systems, LMI stabilization conditions are proposed for

such a generic system. These conditions can be cast into convex programming prob-

lems for design purposes. An illustrative example stresses out the efficiency of the

main result.
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1 Introduction

The control design of systems subject to nonlinearities, including saturation,

has attracted considerable attention in control theory literature for many

years [1]. It has been motivated by the large variety of practical applications

and the occurrence in industrial processes. Besides the classical issue of sta-

bility analysis and stabilization of systems with saturated input [2–4], several

approaches have been proposed to cope with controller performances, like dis-

turbance attenuation [5–7] or using a representation as the feedback intercon-

nection of a linear system with a sector bounded nonlinearity. This last option

has been received attention with de proposal of new design tools [4,8–10] and,

in particular, by considering the control saturations (see for instance [11–16]).

The case of nonlinear systems subject to actuator amplitude limitations and

for which the dynamics can be decomposed into the feedback interconnection

described above, is treated in [17,14] for continuous and discrete-time pre-

cisely known systems, respectively. The framework of Time-Varying Param-

eter (TVP) dependent and nonlinear systems in discrete-time is considered

in [18], by assuming that the TVP was unknown. Then the provided approach

consists in considering a Parameter Dependent Lyapunov Function (PDLF)

associated with a parameter independent state feedback control law and of the

nonlinearity that models the nonlinear part of the open-loop system dynamics.

In practice, the current state is not usually available in its entirety and the

considered control law class should involve a measured output. The prob-

∗ Corresponding author.

Email addresses: marc.jungers@cran.uhp-nancy.fr (Marc Jungers),

eugenio@das.ufsc.br (Eugênio B. Castelan).

2



lem of the output feedback is a problem in automatic control which is still

widely open (see [19–21] and references therein). For the LTI systems, full

order dynamic output controllers could be designed via mainly two technics:

a judicious pyramidal change of variables [22] and the projection lemma [10].

They have been both applied for systems including saturations [6,23] and [24].

Nevertheless these techniques are not well adapted to systems including a

TVP. The matrices of the output dynamic should be independent of the TVP

(that is robust controller) or only quasi-TVP dependent (only some matri-

ces are TVP-dependent, see [6]). Such a framework is helpful and adapted

to continuous-time system governed via a network [25], by including non-

uniformaly sampling [26], quantification of the state and input saturation [27].

This framework also allows to cope with the fuzzy control problem of nonlin-

ear systems using Takagi-Sugeno fuzzy models [28] where, particularly, the

membership functions are the (known) TVPs.

In this paper, we propose to consider the class of control laws formulated as

gain-scheduled feedbacks of the measured output and of the nonlinearity. It is

assumed that the current TVP is available (by estimation or measurement).

Sufficient conditions are provided here by using a modified sector condition

for taking the saturation nonlinearity into acount, to design a Gain-Scheduled

control law. Thus Linear Matrix Inequalities (LMI) conditions for local stabi-

lization allow to cast this control design problem into a convex programming

problem. To cope with control law based on measured output, we add to LMIs

a set of Linear Matrix Equalities. Thus the obtained result will be less con-

servative than ones available in the literature, with a moderate increasing of

LMI dimensions.

This work is organized as follows: In section 2, the framework of the control
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design problem is presented. Section 3 provides some preliminary results and

definitions, which allow to obtain the main result, formalized as a convex

programming problem in Section 4. The paper ends with a numerical example,

issued from the litterature of network control systems and concluding remarks

respectively in Sections 5 and 6.

Notations. Relative to a matrix A ∈ R
m×n, A′ denotes its transpose, and

A(i), i = 1, . . .m, denotes its ith row. If A = A′ ∈ R
n×n, then A < 0 (A ≤ 0)

means that A is negative (semi-)definite. The components of any vector x ∈ R
n

are denoted x(i), ∀i = 1, . . . n. Inequalities between vectors are component-

wise: x ≤ 0 means that x(i) ≤ 0 and x ≤ y means that x(i) − y(i) ≤ 0. In

denotes the n× n identity matrix. The symbol ⋆ stands for symmetric blocks

in matrices. For a symmetric and positive-definite matrix M ∈ R
n×n, the

ellipsoidal set E(M) associated with M is given by {x ∈ R
n;x′Mx ≤ 1}.

2 Problem presentation

Consider a nonlinear discrete-time TVP-dependent system represented by:

xk+1 =A (ξk)xk +G (ξk)ϕ (zk) +B (ξk) sat(uk), (1)

zk =L (ξk)xk, (2)

yk =Cxk. (3)

where xk ∈ R
n, uk ∈ R

m, zk ∈ R
p and yk ∈ R

q are at time k the state,

the input, the output of the system and the measured output, respectively.

ξk ∈ R
N is the unknown TVP at time k belonging to the unit simplex Ξ:

Ξ = {ξ ∈ R
N ;

N
∑

i=1

ξ(i) = 1 , ξ(i) ≥ 0 , i = 1, . . . , N}. (4)
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ξk can be viewed as a model uncertainty. The structure of the system matrices

are assumed to be a N -vertices polytope of the form:

[

A (ξk) B (ξk) G (ξk) L (ξk)

]

=
N

∑

i=1

ξk(i)

[

Ai Bi Gi Li

]

. (5)

The matrix C involved in (3) is assumed to be full row rank and independent

with respect to ξk. The nonlinearity ϕ(.) : R
p → R

p verifies the cone bounded

sector condition ϕ(.) ∈ [0p,Ω], [29,3], that is ϕ(0) = 0 and there exists a

symmetric positive definite matrix Ω = Ω′ ∈ R
p×p such that, ∀zk ∈ R

p, all

components of ϕ(l)(·) independently verify the cone bounded sector condition

ϕ(l)(zk)[ϕ(zk) − Ωzk](l) ≤ 0 , ∀l = 1, · · · , p. (6)

By summing these inequalities with weigthing them by p arbitrary positive

scalars (δl(ξk))
−1 > 0, we obtain

p
∑

l=1

(δl(ξk))
−1ϕ(l)(zk)[ϕ(zk) − Ωzk](l) = ϕ′(zk)(∆(ξk))

−1[ϕ(zk) − Ωzk] ≤ 0, (7)

where ∆(ξk)
△
= diag{δl(ξk)} ∈ R

p×p is diagonal and positive.

By definition (6), which is assumed in the sequel, the nonlinearity ϕ(·) globally

verifies the sector condition (7), for any diagonal and positive matrix ∆(ξk).

Thus, ∆(ξk) represents a degree-of-freedom and can be an optimization vari-

able. Notice, however, that in a more general case where there may exist

dependencies among different components of ϕ(·), it could be possible to con-

sider only the sector condition provided in [29,3]: ϕ′(zk)[ϕ(zk) − Ωzk] ≤ 0,

by restricting the degree-of-freedom ∆(ξk) to ∆(ξk) = δ(ξk)Ip. Ω, which is

independent on the parameter ξk, is given by the designer and assumed to be

known in the following.
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The control inputs are bounded in amplitude, and the standard saturation

function is considered:

sat(u(t))(l) = sat(u(l)(t)) = sign(u(l)(t)) min(ρ(l), |u(l)(t)|), (8)

∀l = 1, . . . ,m, where ρ(l) > 0 denotes the symmetric amplitude bound relative

to the l-th control.

Throughout this work, we assume that the vector ρ is fixed and predefined

and in addition that the current parameter vector, ξk, is available in real time

(measured or estimated). Thus, by extending the kind of control law provided

in [14,18], the following gain scheduled control law is considered:

uk = K(ξk)yk + Γ(ξk)ϕ(zk) = K(ξk)Cxk + Γ(ξk)ϕ(zk) (9)

where the m × q-matrix K(ξk) is a gain scheduled output feedback and the

m×p-matrix Γ(ξk) is a gain scheduled feedback associated to the nonlinearity

ϕ(.). Thus, with non trivial Γ(ξk), this feedback control law requires either

the knowledge of ϕ(.) or its availability as a signal [8]. The corresponding

closed-loop system reads:

xk+1 = A(ξk)xk +G(ξk)ϕ(zk) +B(ξk)sat (K(ξk)yk + Γ(ξk)ϕ(zk)) . (10)

In the sequel the following problem is considered:

Problem 1 (Robust stabilization under saturating actuators)

Determine gain scheduled feedback matrices K(ξk) and Γ(ξk) and a region

S0 ⊆ R
n, as large as possible, such that for any initial condition x0 ∈ S0

the origin of the corresponding TVP-dependent closed-loop system (10) is uni-

formly asymptotically stable for any ϕ(.) verifying the sector condition (7) and
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for any sequency {ξk}k∈N.

Before presenting the main result associated with Problem 1, some technical

lemmas and definitions are pointed out in the following section.

3 Preliminaries

Consider the generic dead-zone nonlinearity Ψ(uk) = uk − sat(uk). By consid-

ering uk given by (9), we can rewrite the closed-loop system (10) under the

form

xk+1 = Acl(ξk)xk +Gcl(ξk)ϕ(zk) −B(ξk)Ψ(uk),
(11)

where Acl(ξk) = A(ξk) +B(ξk)K(ξk)C and Gcl(ξk) = G(ξk) +B(ξk)Γ(ξk).

The following Lemma will be used to consider the dead-zone as a nonlinearity

belonging to a generalized sector condition. For given ξk-dependent matrices

H(·) ∈ R
m×n and F (·) ∈ R

m×p, consider the set S(H(·), F (·), ρ) defined by

{

x ∈ R
n | − ρ ≤

(

H(ξ)x− F (ξ)ϕ
(

L(ξ)xk

))

≤ ρ ; ∀ξ ∈ Ξ
}

. (12)

Lemma 2 Consider ξk-dependent m × q-matrix K(·), m × n-matrix E1(·)

and m × p-matrices Γ(·), E2(·) and note H(·) = K(·)C − E1(·) and F (·) =

Γ(·) − E2(·). If xk is an element of S(H(·), F (·), ρ), then by noting uk =

K(ξk)yk + Γ(ξk)ϕ(zk), the nonlinearity Ψ(uk) satisfies the following inequality

Ψ(uk)
′
(

T (ξk)
)−1[

Ψ(uk) − E1(ξk)xk − E2(ξk)ϕ(zk)
]

≤ 0 (13)

for any diagonal positive definite matrix T (ξk) ∈ R
m×m.

Proof: It follows the same lines as the one of Lemma 1 in [11] (see also [30]). 2
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Let us consider a Parameter Dependent Lyapunov Function (PDLF) defined

by

V :































R
n × Ξ −→ R

+,

(xk, ξk) 7−→ V (xk, ξk).

(14)

The Parameter Dependent Level Set (PDLS) associated to V is given by

LV
△
=

{

xk ∈ R
n | V (xk, ξk) ≤ 1 , ∀ξk ∈ Ξ

}

(15)

The notion of contractive sets is basic for determining regions of asymptotic

stability for the saturating closed-loop system (11). The following definition

of contractivity is adapted to consider both the parameter uncertainties and

the sector bounded characterization of nonlinearity ϕ(.).

Definition 3 The PDLS LV is robustly absolutely contractive with respect

to the trajectories of system (11), if ∀xk ∈ LV , ∀ξk ∈ Ξ and ∀ϕ(.) ∈ [0p,Ω],

V (xk+1, ξk+1) − V (xk, ξk) < 0. (16)

To provide the desired (local) stabilization conditions, we consider in the sequel

the class of PDLF of the form

V (xk, ξk) = x′kQ
−1(ξk)xk, with Q(ξk) =

N
∑

i=1

ξk(i)Qi, Qi = Q′
i > 0. (17)

It is noteworthy that the PDLF is not linear with respect to the uncertainty

ξk as usual in dedicated literature.

Lemma 4 The PDLS LV (15), associated with the considered PDLF class
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(17), verifies:

LV =
⋂

ξk∈Ξ

E(Q−1(ξk)) =
⋂

i∈{1,··· ,N}

E(Q−1
i ) (18)

Proof: x ∈ LV ⇔ ∀ξ ∈ Ξ, V (x, ξ) < 1 ⇔ x ∈ ⋂

ξk∈Ξ
E(Q−1(ξk)). In addi-

tion,
⋂

ξk∈Ξ
E(Q−1(ξk)) ⊂ ⋂

i∈{1,··· ,N}
E(Q−1

i ). On the other hand, to prove that

⋂

i∈{1,··· ,N}
E(Q−1

i ) ⊂ ⋂

ξk∈Ξ
E(Q−1(ξk)), consider x ∈ ⋂

i∈{1,··· ,N}
E(Q−1

i ), then ∀i =

1, · · · , N , x′Q−1
i x < 1, which is equivalent by Schur complement to

















1 x′

x Qi

















>

0. Thus ∀ξ ∈ Ξ,

















1 x′

x Q(ξ)

















> 0. This implies that x ∈ E(Q−1(ξ)), ∀ξ ∈ Ξ, or

x ∈ ⋂

ξ∈Ξ
E(Q−1(ξ)). 2

The problem and the definitions of the used tools being set, two technical

lemmas allowing to obtain the main theorem in Section 4, are presented.

Lemma 5 Consider, for i = 1, · · · , N , the existence of symmetric positive

definite matrices Qi ∈ R
n×n, positive diagonal matrices ∆i ∈ R

p×p and Ti ∈

R
m×m, matrices Ui ∈ R

n×n, Y1,i ∈ R
m×q, Z1,i ∈ R

m×n, Wi ∈ R
q×q and

Y2,i, Z2,i ∈ R
m×p such that ∀i, j = 1, · · · , N , in one hand:

Mij =









































−Qi M1
jj M2

jj −BjTj

⋆ M3
j U ′

jL
′
jΩ Z ′

1,j

⋆ ⋆ −2∆j Z ′
2,j

⋆ ⋆ ⋆ −2Tj









































< 0 (19)
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and ∀i = 1, · · · , N , ∀j = 1, · · · , N − 1 and ∀h = j + 1, · · · , N

Mijh =









































−2Qi M1
jh + M1

hj M2
jh + M2

hj −BjTh −BhTj

⋆ M3
j + M3

h (U ′
jL

′
h + U ′

hL
′
j)Ω Z ′

1,j + Z ′
1,h

⋆ ⋆ −2(∆j + ∆h) Z ′
2,j + Z ′

2,h

⋆ ⋆ ⋆ −2(Tj + Th)









































< 0, (20)

where M1
jh = AjUh+BjY1,hC; M2

jh = Gj∆h+BjY2,h and M3
j = Qj−Uj−U ′

j.

And, in the other hand:

WiC = CUi, ∀i = 1, · · · , N. (21)

Furthermore, by assuming that xk is such that (7) and (13) are both verified,

then the gain scheduled output control ( a priori not linear with respect to ξk)

uk = K(ξk)yk+Γ(ξk)ϕ(zk) = Y1(ξk)(W (ξk))
−1yk+Y2(ξk)(∆(ξk))

−1ϕ(zk), (22)

with

[

Y1 (ξk) Y2 (ξk) U (ξk) ∆ (ξk) Z1 (ξk) Z2 (ξk) W (ξk)

]

=
N

∑

i=1

ξk(i)

[

Y1,i Y2,i Ui ∆i Z1,i Zi,2 Wi

]

(23)

implies the inequality (16).

Proof: As C is full row rank and Qi positive definite, it follows from (21) that

Wi is full rank for all i = 1, · · · , N . This yields

B(ξk)Y (ξk)C = B(ξk)Y (ξk)W
−1(ξk)CU(ξk) = B(ξk)K(ξk)CU(ξk).
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By summing

M(ξk, ξk+1) =
N

∑

i,j=1

ξk+1,(i)ξ
2
k,(j)Mij +

N
∑

i=1

N−1
∑

j=1

N
∑

h=j+1

ξk+1,(i)ξk,(j)ξk,(h)Mijh, (24)

by using definitions (23), and by introducing K(ξk) and Γ(ξk) as defined by

(22) and the changes of variables of gain-scheduled matrices

E1(ξk) = Z1(ξk)(U(ξk))
−1; E2(ξk) = Z2(ξk)(∆(ξk))

−1, (25)

we obtain

M(ξk, ξk+1) =









































−Q(ξk+1) Acl(ξk)U(ξk) Gcl(ξk)∆(ξk) −B(ξk)T (ξk)

⋆ Q(ξk) − U(ξk) − U ′(ξk) U
′(ξk)L

′(ξk)Ω Z ′
1(ξk)

⋆ ⋆ −2∆(ξk) Z ′
2(ξk)

⋆ ⋆ ⋆ −2T (ξk)









































< 0.

(26)

From this last inequality, following [31], we deduce that

U ′(ξk)Q
−1(ξk)U(ξk) ≥ U(ξk) + U ′(ξk) −Q(ξk). (27)

Using Inequality (27) and the change of basis diag[I;U−1(ξk); ∆
−1(ξk);T

−1(ξk)]

leads to a matrix inequality which can reformulated by Schur complement by





























A′
cl(ξk)

G′
cl(ξk)

−B′(ξk)





























Q−1(ξk+1)





























A′
cl(ξk)

G′
cl(ξk)

−B′(ξk)





























′

−





























Q−1(ξk) L
′(ξk)Ω∆−1(ξk) E

′
1(ξk)T

−1(ξk)

⋆ −2∆−1(ξk) E ′
2(ξk)T

−1(ξk)

⋆ ⋆ −2T−1(ξk)





























< 0.

(28)

By multiplying this last inequality at left by [x′k ϕ
′(zk) ψ

′(uk)
] and at right
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by its transpose, one has

V (xk+1, ξk+1) − V (xk; ξk) − 2ϕ′(zk)(∆(ξk))
−1[ϕ(zk) − Ωzk]

− 2Ψ(uk)
′
(

T (ξk)
)−1[

Ψ(uk) − E1(ξk)xk − E2(ξk)ϕ(xk)
]

< 0. (29)

The assumption (13) and the sector condition (7) imply the relation (16). 2

Lemma 6 Consider, for i = 1, · · · , N , that there exists symmetric positive

definite matrices Qi ∈ R
n×n, positive diagonal matrices ∆i ∈ R

p×p, matrices

Ui ∈ R
n×n, Y1,i ∈ R

m×q, Wi ∈ R
q×q, Z1,i ∈ R

m×n and Y2,i, Z2,i ∈ R
m×psuch

that ∀i = 1, · · · , N and ∀l = 1, · · · ,m equalities (21) hold and inequalities:

Ni,l =





























−Qi + Ui + U ′
i ⋆ ⋆

−ΩLiUi 2∆i ⋆

(Y1,iC − Z1,i)(l) (Y2,i − Z2,i)(l) ρ
2
(l)





























> 0 (30)

and ∀i = 1, · · · , N − 1, ∀j = i+ 1, · · ·N and ∀l = 1, · · · ,m:

Nij,l =





























−Qi −Qj + Ui + Uj + U ′
i + U ′

j ⋆ ⋆

−Ω(LiUj + LjUi) 2(∆i + ∆j) ⋆

(Y1,iC − Z1,i + Y1,jC − Z1,j)(l) (Y2,i − Z2,i + Y2,j − Z2,j)(l) 2ρ2
(l)





























> 0.

(31)

Then

LV ⊂ S(H(·), F (·), ρ), (32)

where H(ξ) = K(ξ)C − E1(ξ) and F (ξ) = Γ(ξ) − E2(ξ) with definitions (22)

and (25).
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Proof: By summing

Nl(ξk) =
N

∑

i=1

ξ2
k,(i)Ni,l +

N−1
∑

i=1

N
∑

i=p+1

ξk,(i)ξk,(p)Nip,l, (33)

and due to inequality (27), the change of base diag[U−1(ξk); ∆
−1(ξk); 1] leads

to a matrix inequality, which writes by Schur complement

















−Q−1(ξk) ⋆

−∆−1(ξk)ΩL(ξk) 2∆−1(ξk)

















− 1

ρ2
(l)

















H ′
(l)(ξk)

F ′
(l)(ξk)





















H(l)(ξk) F(l)(ξk)



 > 0.

(34)

By multiplying this last inequality at left by [x′k ϕ
′(zk)

] and at right by its

transpose, one has

V (xk, ξk) + 2ϕ′(zk)(∆(ξk))
−1[ϕ(zk) − ΩL(ξk)xk]

− 1

ρ2
(l)

∥

∥

∥H(l)(ξk)xk − F(l)(ξk)ϕ(zk)
∥

∥

∥

2 ≥ 0. (35)

Hence, by considering the sector condition (7), it follows that:

V (xk, ξk) ≥
1

ρ2
(l)

∥

∥

∥H(l)(ξk)xk − F(l)(ξk)ϕ(zk)
∥

∥

∥

2
. (36)

For all xk ∈ LV , V (xk, ξk) < 1, which implies that xk ∈ S(H(·), F (·), ρ). We

obtain the relation (32). 2

The PDLS LV is then the set S0 of initial condition x0 of uncertain closed-

loop system which is uniformly asymptotically stable for any non-linearity ϕ(·)

verifying the sector condition (7). This set LV is convex, because this is the

intersection of convex sets. However, contrary as mentioned in [16], LV cannot

be formulated in the general case as a convex hull of different ellipsoidal sets.

13



4 Control design via convex programming

The optimization problem consists in determining a control defined by (22),

with the largest set LV = S0, under the constraints (19), (20), (30) and

(31). For obtaining the largest set LV , we consider a
√
α-radius ball included

into LV :

E
(

1

α
I
)

= {x ∈ R
n;x′x ≤ α} ⊂ LV = S0. (37)

This inclusion is equivalent to E
(

1
α
I
)

⊂ E(Q−1
i ), ∀i = 1, · · · , N , or (by noting

µ =
1

α
; see [10]) to:

















µIn In

In Qi

















> 0, ∀i = 1, · · · , N. (38)

Thus, the following convex programming problem is proposed in the main

Theorem:

Theorem 7 By considering symmetric positive definite matrices Qi ∈ R
n×n,

positive diagonal matrices ∆i ∈ R
p×p, matrices Ui ∈ R

n×n, Y1,i ∈ R
m×q,

Wi ∈ R
q×q, Z1,i ∈ R

m×n and Y2,i, Z2,i ∈ R
m×p, for i = 1, · · · , N and a scalar

µ ∈ R, the convex optimization problem

min
Wi,Qi,Ui,∆i,Ti,Z1,i,Z2,i,Y1,i,Y2,i

µ

subject to LMIs (19), (20), (30), (31) and (38) and to equalities (21).

leads to a gain-scheduled control law represented by (22), solution of Problem 1.

Proof: The proof is straightforward by using Lemmas 5 and 6 and Inclu-

sion (37), with µ =
1

α
. 2

14



Notice that a gain scheduled m × n state-feedback K(ξk) is recovered in (9)

by considering q = n and C = In, i.e. yk = xk. This implies that Wi = Ui,

due to equalities (21) and thus that equalities (21) and variables Wi cannot

be considered in Theorem 7.

Remark 8 The framework proposed to find a solution to the stabilization

problem can be extended in different ways to cope with other control prob-

lems, as for instance ones related to L2-gain and λ-contractivity [7]. Notice

also that, at least conceptually, it can be possible to develop a similar gain

scheduling solution to the stabilization problem by using the polytopic repre-

sentation of the saturation nonlinearity [1,6]. This potential solution would

imply more complex conditions, numerically or even for implementation [17].

5 Numerical example

Consider the following data for system (2)-(7), with N = 2:

A1 =

















−1.1 0.4

−0.2 1.1

















, A2 =

















−0.2 0.7

0.6 1.3

















, B1 =

















0

1.2

















, B2 =

















0

1.3

















,

G1 =

















0.6

0

















, G2 =

















1.6

0

















, L1 =





0 1.1



 , L2 =





0 0.9



 , ρ = 1
2
.

The nonlinearity ϕ verifying the sector condition with Ω = 0.7 is given by

ϕ(z) = 0.3z(1 + sin(z)). Both cases C = [1 1] and C = I2 are considered and

we obtain respectively µ = 2.60 and µ = 1.60.

In Figure 1, the sets E(Q−1
1 ) and E(Q−1

2 ) corresponding to the above syn-
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Fig. 1. Sets E(Q−1
1 ) and E(Q−1

2 ) obtained from the optimization problem, and largest

sphere included in LV for C = [2 3] (left) and C = I2 (right).

thesis result are plotted with symbol ’+’. The solid lines denotes several sets

E(Q−1(ξ)), for several parameters ξ ∈ Ξ, uniformely distributed. Finally the

solid sphere denotes the largest sphere E(µI), included in the intersection of

E(Q−1
1 ) and E(Q−1

2 ). The set S0 = LV is depicted by the intersection of both

ellipsoids E(Q−1
1 ) and E(Q−1

2 ).

For the case C = [1 1], we consider an initial state belonging to LV /E(µI2). The

obtained trajectory is plotted with the control uk and its saturation sat(uk)

on Figure 2, with respect to the discrete time, for an arbitrary sequence of

TVP ξk. The saturation sat(uk) is emphasized at the first sampled times.

Finally, in order to emphasize the efficient improvement of our method with

respect to the literature, the conservative method provided in [18] leads to
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Fig. 2. A particular trajectory: a) state components (x1 with ’+’; x2 with ’×’); b)

control uk with ’+’ and saturated control sat(uk) with ’×’.

µ = 2.09, that is 30% greater than µ obtained using our proposed approach

for C = I2.

6 Conclusion

This paper provides a gain-scheduled output control design for systems cop-

ing with nonlinear time-varying parameter dependent systems subject to sat-

urated actuators. The nonlinearity is taken into account by a cone bounded

sector. The proposed LMI conditions are based on the use of a parameter de-

pendent Lyapunov function and a modified sector condition for representing

the saturation nonlinearity. The control design problem is formulated as an

optimization problem under LMI conditions and Linear Matrix Equalities. Its

resolution leads to a solution less conservative than the ones available in the

literature.
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