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Abstract

This paper is first devoted to study an adaptive wavelet based estimator of the long memory parameter
for linear processes in a general semi-parametric frame. This is an extension of Bardet et al. (2008) which
only concerned Gaussian processes. Moreover, the definition of the long memory parameter estimator is
modified and asymptotic results are improved even in the Gaussian case. Finally an adaptive goodness-
of-fit test is also built and easy to be employed: it is a chi-square type test. Simulations confirm the
interesting properties of consistency and robustness of the adaptive estimator and test.

1 Introduction

The long-memory processes are now a subject area well studied and often applied (see for instance the book
edited by Doukhan et al, 2003). The most famous long-memory stationary time series are the fractional Gaus-
sian noises (fGn) with Hurst parameter H and FARIMA(p, d, q) processes. For both these time series, the
spectral density f in 0 follows a power law: f(λ) ∼ C λ−2d where H = d + 1/2 in the case of the fGn. This
behavior of the spectral density is generally a definition adopted for a stationary long memory (or long range
dependent) process even if this definition requires the existence of a second order moment.
There are a lot of statistical results relative to the estimation of the long memory parameter d. First and
main results in this direction were obtained for parametric models with the essential papers of Fox and Taqqu
(1986) and Dahlhaus (1989) for Gaussian time series, Giraitis and Surgailis (1990) for linear processes and
Giraitis and Taqqu (1999) for non linear functions of Gaussian processes.
However and especially for numerical applications, parametric estimators are not really robust and can in-
duce no consistent estimations. Thus, the research is now rather focused on semiparametric estimators of
the d. Different approaches were considered: the famous and seminal R/S statistic (see Hurst, 1951), the
log-periodogram estimator (see Moulines and Soulier, 2003), the local Whittle estimator (see Robinson, 1995)
or the wavelet based estimator (see Veitch et al, 2003, Moulines et al, 2007 or Bardet et al, 2008). All these
estimators require the choice of an auxiliary parameter (frequency bandwidth, scales,...) but adaptive versions
of original estimators are generally built for avoiding this choice. In a general semiparametric frame, Giraitis et
al (1997) obtained the asymptotic lower bound for the minimax risk of estimating d, expressed as a function of
the second order parameter of the spectral density expansion around 0. Thus, several adaptive semiparametric
are proved to follow an oracle property up to multiplicative logarithm term. But simulations (see for instance
Bardet et al, 2003 or 2008) show that the most accurate estimators are local Whittle, global log-periodogram
or wavelet based estimators.

The use of a wavelet based estimator for estimating d was first proposed in Abry et al. (1998) after pre-
liminary studies devoted to selfsimilar processes. Then Bardet et al. (2000) provided proofs of the consistency
of such an estimator in a Gaussian semiparametric frame. Moulines et al. (2007) improved these results,
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proved a central limit theorem for the estimator of d and showed that this estimator is rate optimal for the
minimax criterion. Finally, Roueff and Taqqu (2009a) established similar results in a semiparametric frame for
linear processes. All these papers were obtained using a wavelet analysis based on a discrete multi-resolution
wavelet transform, which notably allows to compute the wavelet coefficients with the fast Mallat’s algorithm.
However, there remains a gap in these papers: in a semiparametric frame the “optimal” scale used for the
wavelet analysis is depending on the second order expansion of the spectral density around 0 frequency and
these papers consider that the power of the second order expansion is known while this is unknown in practice.
Two papers proposed a method for automatically selecting this “optimal” scale in the Gaussian semiparametric
frame. Firstly, Veitch et al. (2003) using a kind of Chi-square test which provides convincing numerical results
but the consistency of this procedure is not established. Secondly, Bardet et al. (2008) proved the consistency
of a procedure for choosing optimal scales based on the detection of the “most linear part” of the log-variogram
graph. In this latter article, the “mother” wavelet is not necessary associated to a multi-resolution analysis:
the time consuming is clearly more important but a large choice of continuous wavelet transforms can be
chosen and the choice of scales is not restricted to be a power of 2.

The present article is devoted to an extension of the article Bardet et al. (2008). Three main improvements
are obtained:

1. The semiparametric Gaussian framework of Bardet et al. (2008) is extended to a semiparametric frame-
work for linear processes. The same automatic procedure of the selection of the optimal scale is also
applied and this leads to adaptive estimators.

2. As in Bardet et al. (2008), the “mother” wavelet is not restricted to be associated to a discrete multi-
resolution transform. Moreover we modified a little the definition of the sample variance of wavelet
coefficients (variogram). The result of both these positions is a multidimensional central limit theorem
satisfied by the logarithms of variograms with an extremely simple asymptotic covariance matrix (see (9))
only depending on d and the Fourier transform of the wavelet function. Hence it is easy to compute an
adaptive pseudo-generalized least square estimator (PGLSE) of d which is proved to satisfy a CLT with
with an asymptotic variance smaller than the one of the adaptive (respectively non-adaptive) ordinary
least square estimator of d respectively considered in Bardet et al. (2008) and Roueff and Taqqu (2009).
Simulations confirm confirm the good performance of this PGLSE.

3. Finally, an adaptive goodness-of-fit test can be built from this PGLSE. It consists in a normalized sum
of the squared PGLS-distance between between the PGLS-regression line and the points. We prove that
this test statistic converges in distribution to a chi-square distribution. Thus it is a very simple test to
be computed since the asymptotic covariance matrix is easy to be approximated. When d > 0 this test
is a long memory test. Moreover, simulations show that this test provides good properties of consistency
under H0 and reasonable properties of robustness under H1.

For all these reasons, we can say that this paper is an achievement of the article Bardet et al. (2008). Moreover,
the adaptive PGLS estimator and test represent an interesting extension of the paper Roueff and Taqqu (2009).

We organized the paper as follows. Section 2 contains the assumptions, definitions and a first multidimensional
central limit theorem, while Section 3 is devoted to the construction and consistency of the adaptive PGLS
estimator and goodness-of-fit test. In Section 4 we illustrate with Monte-Carlo simulations the convergence
of the adaptive estimator and we compare these results to those obtained with other efficient semiparametric
estimators; moreover we study the consistency and robustness properties of the adaptive goodness-of-fit test.
The proofs are provided in Section 5.

2 A central limit theorem for the sample variance of wavelet coef-

ficients

For d < 1/2 and d′ > 0, this paper deals with the following semi-parametric framework:

Assumption A(d, d′): X = (Xt)t∈Z is a zero mean stationary linear process, i.e.

Xt =
∑

s∈Z

α(t− s)ξs, t ∈ Z, where
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• (ξs)s∈Z is a sequence of independent identically distributed random variables such that the distribution
of ξ0 is symmetric, i.e. Pr(ξ0 > M) = Pr(ξ0 < −M) for any M ∈ R, and E|ξ0|4 < ∞ with Eξ0 = 0,
Var ξ0 = 1 and µ4 := Eξ40 ;

• (α(t))t∈Z is a sequence of real numbers such that there exist cd > 0 and cd′ ∈ R satisfying

|α̂(λ)|2 =
1

λ2d
(
cd + cd′λ

d′(1 + ε(λ))
)

for any λ ∈ [−π, π], (1)

where α̂(λ) := 1
2π

∑
k∈Z

α(k)e−ikλ, with ε(λ) → 0 (λ→ 0).

As a consequence, the spectral density f of X is such that

f(λ) = 2π |α̂(λ)|2 (2)

and satisfies the same kind of expansion than (1). Thus, if d ∈ (0, 1/2) the process X is a long-memory process,
and if d ≤ 0 a short memory process (see Doukhan et al., 2003).

Now define ψ : R → R the wavelet function. Let k ∈ N
∗. We consider the following assumption on ψ:

Assumption Ψ(k): ψ : R → R is such that

1. the support of ψ is included in (0, 1);

2.

∫ 1

0

ψ(t) dt = 0;

3. ψ ∈ Ck(R).
Straightforward implications of these assumptions are ψ(j)(0) = ψ(j)(1) = 0 for any 0 ≤ j ≤ k and ψ̂(u) ∼ C uk

(u→ 0) with C a real number not depending on u.

Define also the Fourier transform of ψ, i.e. ψ̂(u) :=
∫ 1

0 ψ(t) e
−iutdt. Assumption Assumption Ψ(k) also implies

that ψ̂ has a fast decay at infinity.

If Y = (Yt)t∈R is a continuous-time process, for (a, b) ∈ R
∗
+ × R, the ”classical” wavelet coefficient d(a, b)

of the process Y for the scale a and the shift b is d(a, b) := 1√
a

∫
R
ψ( t−ba )Yt dt. However, a process X satisfying

Assumption A(d, d′) is a discrete-time process, and from a path (X1, . . . , XN ) we define the wavelet coefficients
of X by

eN(a, b) :=
1√
a

N∑

t=1

Xtψ(
t− b

a
) =

1√
a

N∑

t=1

∑

s∈Z

α(t− s)ψ(
t− b

a
)ξs (3)

for (a, b) ∈ N
∗
+ × Z. Then,

Property 1. Under Assumption A(d, d′) with d < 1/2 and d′ > 0, and if ψ satisfies Assumption Ψ(k) with
k > d′, then (e(a, k))b∈{1,...,N−a} is a zero mean stationary linear process and

E(e2(a, 0)) = 2π cd

(
K(ψ,2d) a

2d +
cd′

cd
K(ψ,2d−d′) a

2d−d′
)
+ o

(
a2d−d

′)
when a→ ∞, (4)

with K(ψ,D) such that

K(ψ,α) :=

∫ ∞

−∞
|ψ̂(u)|2 |u|−αdu > 0 for all α < 1. (5)

The proof of this property, like all the other proofs, is provided in Section 5.
Let (X1, . . . , XN ) be a sampled path of X satisfying Assumption A(d, d′). Property allows an estimation of
2d from a log-log regression, as soon as a consistent estimator of E(e2(a, 0)) is provided. For this and with
1 ≤ a < N , consider the sample variance of the wavelet coefficients,

TN(a) :=
1

N − a

N−a∑

k=1

e2(a, k). (6)
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Remark 1. In Bardet et al. (2000), (2008) or in Moulines et al. (2007) or Roueff and Taqqu (2009), the
considered sample variance of wavelet coefficients is

VN (a) :=
1

[N/a]

[N/a]∑

k=1

e2(a, ak) (7)

(with a = 2j in case of multiresolution analysis). The definition (6) has a drawback and two advantages with
respect to this usual definition (7): it is not adapted to the fast Mallat’s algorithm and therefore more time
consuming, but it leads to more a simple expression of the asymptotic variance and simulations exhibit that
this asymptotic variance is smaller that the one obtained with (7).

The following proposition specifies a central limit theorem satisfied by log T̃N (a), which provides the first
step for obtaining the asymptotic properties of the estimator by log-log regression. More generally, the following
multidimensional central limit theorem for a vector (log T̃N (ai))i can be established,

Proposition 1. Under Assumption A(d, d′), d < 1/2 and d′ > 0, and if ψ satisfies Assumption Ψ(k) with
k ≥ 2. Define ℓ ∈ N \ {0, 1} and (r1, · · · , rℓ) ∈ (N∗)ℓ. Let (an)n∈N be such that N/aN −→

N→∞
∞ and

aN N
−1/(1+2d′) −→

N→∞
∞. Then,

√
N

aN

(
logTN(riaN )− 2d log(riaN )− log

( cd
2π
K(ψ,2d)

))
1≤i≤ℓ

d−→
N→∞

Nℓ

(
0 ; Γ(r1, · · · , rℓ, ψ, d)

)
, (8)

with Γ(r1, · · · , rℓ, ψ, d) = (γij)1≤i,j≤ℓ the covariance matrix such that

γij = 4π
(rir

′
j)

1−2d

K2
(ψ,2d)

∫ ∞

−∞

∣∣ψ̂(riλ)
∣∣2|ψ̂(rjλ)

∣∣2

λ4d
dλ. (9)

3 An adaptive estimator of the memory parameter and an adaptive

goodness-of-fit test

The CLT of Proposition 1 is very interesting because it has several consequences. We will see that the
(quite) simple expression of the asymptotic covariance matrix is an important advantage compared to the
complicated expression of the asymptotic covariance obtained in the case of a multiresolution analysis (see

Roueff and Taqqu, 2009a). First it allows to obtain an estimator d̂N of d by using an ordinary least square
estimation. Hence, define

d̂N (aN ) :=
(
0
1

2

)
(Z ′

aN ZaN )
−1Z ′

aN

(
logTN (riaN )

)
1≤i≤ℓ with ZaN =




1 log(aN )
1 log(2aN )
...

...
1 log(ℓaN )


 . (10)

Remark 2. From Proposition 1, it is not possible to chose (r1, . . . , rℓ) for minimizing the asymptotic covariance
matrix Γ(r1, · · · , rℓ, ψ, d) without knowing the value of d. Hence, in the sequel we will only consider the choice
(r1, r2, · · · , rℓ) = (1, 2, . . . , ℓ).

Then, it is clear from Proposition 1 that d̂N (aN ) converges to d following a central limit theorem with conver-

gence rate
√

N
aN

when aN satisfies the condition aN N
−1/(1+2d′) −→

N→∞
∞.

However, in practice, d′ is unknown. In Bardet et al. (2008), an automatic procedure for choosing an “opti-
mal” scale aN has been proposed. We are going to apply again this procedure after recalling its principle: for
α ∈ (0, 1), define

QN (α, c, d) =
(
YN (α) − ZNα

( c
2d

))′
·
(
YN (α)− ZNα

( c
2d

))
, with YN (α) =

(
logTN (iNα)

)
1≤i≤ℓ.
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QN (α, c, d) corresponds to a squared distance between the ℓ points
(
log(iNα) , logTN(iN

α)
)
i
and a line. It

can be minimized first by defining for α ∈ (0, 1)

Q̂N(α) = QN (α, ĉ(Nα), 2d̂(Nα)) with
( ĉ(Nα)

2d̂(Nα)

)
=

(
Z ′
NαZNα

)−1
Z ′
NαYN (α);

and then define α̂N by:

Q̂N (α̂N ) = min
α∈AN

Q̂N(α) where AN =
{ 2

logN
,

3

logN
, . . . ,

log[N/ℓ]

logN

}
.

Remark 3. As it was also claimed in Bardet et al. (2008), in the definition of the set AN , logN can be
replaced by any sequence negligible with respect to any power law of N . Hence, in numerical applications we
will use 10 logN which significantly increases the precision of α̂N .

Under the assumptions of Proposition 1, one obtains (see the proof in Bardet et al., 2008),

α̂N =
log âN
logN

P−→
N→∞

α∗ =
1

1 + 2d′
.

Then define:

̂̂
dN := d̂(N α̂N ) and Γ̂N := Γ(1, · · · , ℓ, ̂̂dN , ψ). (11)

It is clear that
̂̂
dN

P−→
N→∞

d (a convergence rate can also be found in Bardet et al., 2008) and therefore, from

the expression of Γ in (9) and its smoothness with respect to the variable d, Γ̂N
P−→

N→∞
Γ(1, · · · , ℓ, d, ψ). Thus

it is possible to define a (pseudo)-generalized least square estimator (PGLSE) of d. Before this, define

α̃N := α̂N +
6α̂N

(ℓ− 2)(1− α̂N )

log logN

logN
.

For technical reasons (i.e. Pr(α̃N ≤ α∗) −→
N→∞

0), which is not satisfied by α̂N , see Bardet et al., 2008), in the

sequel we prefer to consider α̃N rather than α̂N . Finally, using the usual expression of PGLSE, the adaptive
estimators of c and d can be defined as follows:

( c̃N
2d̃N

)
:=

(
Z ′
N α̃N

Γ̂−1
N ZN α̃N

)−1
Z ′
N α̃N

Γ̂−1
N YN (α̃N ). (12)

The following theorem provides the asymptotic behavior of the estimator d̃N ,

Theorem 1. Under assumptions of Proposition 1, with σ2
d(ℓ) :=

(
0
1

2

)(
Z ′
1

(
Γ(1, · · · , ℓ, d, ψ)

)−1
Z1

)−1(
0
1

2

)′
,

√
N

N α̃N

(
d̃N − d

) d−→
N→∞

N (0 ; σ2
d(ℓ)) and ∀ρ > 2(1 + 3d′)

(ℓ− 2)d′
,

N
d′

1+2d′

(logN)ρ
·
∣∣d̃N − d

∣∣ P−→
N→∞

0. (13)

Remark 4. 1. From Gauss-Markov Theorem it is clear that the asymptotic variance of d̃N is smaller or

equal to the one of
̂̂
dN . Moreover d̃N satisfies the CLT (13) which provides confidence intervals that are

simple to calculate.

2. In the Gaussian case, the adaptive estimator d̃N converge to d with a rate of convergence rate equal

to the minimax rate of convergence N
d′

1+2d′ up to a logarithm factor (see Giraitis et al., 1997). Thus,
this estimator can be compared to adaptive log-periodogram or local Whittle estimators (see respectively
Moulines and Soulier, 2003, and Robinson, 1995).

3. Under additive assumptions on ψ (ψ is supposed to have its first m vanishing moments), the estimator

d̃N can also be applied to a process X with an additive polynomial trend of degree ≤ m−1. Then the tend
is “vanished” by the wavelet function and the value of d̃N is the same than without this additive trend.
Such robustness property is not possible with an adaptive log-periodogram or local Whittle estimator.
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Finally it is easy to deduce from the previous pseudo-generalized least square regression an adaptive goodness-
of-fit test. It consists on a sum of the PGLS squared distances between the PGLS regression line and the
points. More precisely consider the statistic:

T̃N =
N

N α̃N

(
YN (α̃N )− ZN α̃N

( c̃N
2d̃N

))′
Γ̂−1
N

(
YN (α̃N )− ZN α̃N

( c̃N
2d̃N

))
. (14)

Then, using the previous results, one obtains:

Theorem 2. Under assumptions of Proposition 1,

T̃N
d−→

N→∞
χ2(ℓ− 2). (15)

This (adaptive) goodness-of-fit test is therefore very simple to be computed and used. In the case where d > 0,
which can be tested easily from Theorem 1, this test can also be seen as a test of long memory for linear
processes. ion

4 Simulations

In the sequel, the numerical consistency and robustness of d̃N are first investigated. Simulation are realized and
the results obtained with the estimator d̃N are compared to those obtained with the best known semiparametric
long-memory estimators. Finally numerical properties of the test statistic T̃N are also studied.

Remark 5. Note that all the softwares (in Matlab language) used in this section are available with a free
access on http://samm.univ-paris1.fr/-Jean-Marc-Bardet.

To begin with, the simulation conditions have to be specified. The results are obtained from 100 generated
independent samples of each process belonging to the following ”benchmark”. The concrete procedures of
generation of these processes are obtained from the circulant matrix method in case of Gaussian processes or
a truncation of an infinite sum in case of non-Gaussian process (see Doukhan et al., 2003). The simulations
are realized for d = 0, 0.1, 0.2, 0.3 and 0.4, for N = 103 and 104 and the following processes which satisfy
Assumption A(d, d′):

1. the fractional Gaussian noise (fGn) of parameter H = d + 1/2 (for 0 ≤ d < 0.5) and σ2 = 1. A fGn is
such that Assumption A(d, 2) holds even if a fGn is generally not studied as a Gaussian linear process;

2. a FARIMA[p, d, q] process with parameter d such that d ∈ [0, 0.5), p, q ∈ N. A FARIMA[p, d, q] process
is such that Assumption A(d, 2) holds when Eξ40 <∞ where ξ0 is the innovation process.

3. the Gaussian stationary process X(d,d′), such that its spectral density is

f3(λ) =
1

λ2d
(1 + λd

′

) for λ ∈ [−π, 0) ∪ (0, π], (16)

with d ∈ [0, 0.5) and d′ ∈ (0,∞). Therefore the spectral density f3 is such that Assumption A(d, d′)
holds and since X(d,d′) is a Gaussian process, from the Wold decomposition it is also a linear process.

A ”benchmark” which will be considered in the sequel consists of the following particular cases of these
processes for d = 0, 0.1, 0.2, 0.3, 0.4:

• X1 : fGn processes with parameters H = d+ 1/2;

• X2 : FARIMA[0, d, 0] processes with standard Gaussian innovations;

• X3 : FARIMA[0, d, 0] processes with innovations following a uniform U [−1, 1] distribution;

• X4 : FARIMA[0, d, 0] processes with innovations following a symmetric Burr distribution of parameter
(2, 1) (i.e. its cumulative distribution function is F (x) = (1 − 1

2 (1 + x2)−1) Ix≥0 +
1
2 (1 + x2) Ix<0);

• X5 : FARIMA[0, d, 0] processes with innovations following a Cauchy distribution;

• X6 : FARIMA[1, d, 1] processes with standard Gaussian innovations, MA coefficient φ = −0.3 and AR
coefficient φ = 0.7;
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• X7 : FARIMA[1, d, 1] processes with innovations following a uniform U [−1, 1] distribution, MA coefficient
φ = −0.3 and AR coefficient φ = 0.7;

• X8 : X(d,d′) Gaussian processes with d′ = 1.

Note that the processes X4 and X5 do not satisfy the condition Eξ40 required in Theorems 1 and 2. However,
since we consider the logarithm of wavelet coefficient sample variance and not only the wavelet coefficient
sample variance, it should be possible to prove the consistency of d̃N under a condition such as Eξr0 with r ≥ 2
and perhaps only r > 0...

4.1 Comparison of the wavelet based estimator and other estimators

First let us specify the different choices concerning the wavelet based estimator:

Choice of the function ψ: as it was said previously, it is not mandatory to use a wavelet function associated
with a multi-resolution analysis. We use here the function ψ(x) = x3(1 − x)3

(
x3 − 3

2 x
2 + 15

22 x − 1
11

)
Ix∈[0,1]

which satisfies Assumption Ψ(2)

Choice of the parameter ℓ: This parameter is important to estimate the ”beginning” of the linear part
of the graph drawn by points (log(iaN ), logTN (iaN))1≤i≤ℓ and therefore the data-driven âN . Moreover this

parameter is used for the computation of d̃N as the number of regression points. We chose a two step procedure:

1. following a numerical study (not detailed here), ℓ = [2 ∗ log(N)] (therefore ℓ = 13 for N = 1000 and
ℓ = 18 for N = 10000) seems to be a good choice for the first step: compute α̂n.

2. for the computation of d̃N , we first remark that with the chosen function ψ, Γ̂N does not seem to

depend on d. As a consequence we decide to compute σ2
d(ℓ) =

(
0 1

2

)(
Z ′
1

(
Γ(1, · · · , ℓ, d, ψ)

)−1
Z1

)−1(
0 1

2

)′
for several values of d and ℓ using classical approximations of the integrals defined in Γ(1, · · · , ℓ, d, ψ).
The results of these numerical experiments are reported in Figure 2. The conclusion of this numerical
experiment is the following: for any d ∈ [0, 0.5[, σ2

d(ℓ) is almost not depending on d and decreases when ℓ
increases. Therefore we chose for this second step ℓ = N1−α̃N (logN)−1: by this way the larger considered
scale is N(logN)−1 (which is negligible with respect to N and therefore the CLT 8 holds).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

d

s
ig

m
a

2
(d

)

 

 

N=10
N=20
N=100
N=200
N=500

Figure 1: Graph of the approximated values of σ2
d(ℓ) defined in 13 for d ∈ [0, 0.5] and N = 10, 20, 50, 100, 200

and 500.

Now we consider the previous ”benchmark” of processes and apply the estimator d̃N and 2 other semiparametric
d-estimators known for their accuracies:

• d̂MS is the adaptive global log-periodogram estimator introduced by Moulines and Soulier (1998, 2003),
also called FEXP estimator, with bias-variance balance parameter κ = 2;

• d̂R is the local Whittle estimator introduced by Robinson (1995). The trimming parameter is m = N/30.
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Simulation results are reported in Table 1.

Conclusions from Table 1: The wavelet based estimator d̃N numerically shows a convincing convergence rate
with respect to the other estimators. Both the “spectral” estimator d̂R and d̂MS provide more stable results
almost not sensible to d and the flatness of the spectral density of the process, while the convergence rate of the
wavelet based estimator d̃N is more dependent on the spectral density of the process. But, especially in cases
of “smooth” spectral densities (fGn and FARIMA(0, d, 0)), d̃N is a very accurate semiparametric estimator
and is globally more efficient than the other estimators.

Remark 6. In Bardet et al. (2008) we also compared two adaptive wavelet based estimators (the one defined

in Veitch et al., 2003 and the one defined in Bardet et al., 2008) with d̂MS and d̂R (and also with two
others defined in Giraitis et al., 2000, and Giraitis et al., 2006, which exhibit worse numerical properties of
consistency). We observe that

√
MSE of d̃N obtained in Table 1 is generally smaller than the one obtained

with the estimator defined in Bardet et al. (2008) for two reasons: the choice of the definition (6) of wavelet
coefficient sample variance instead of (7) and the choice of a PGLS regression instead of a LS regression.

Comparison of the robustness of the different semiparametric estimators: To conclude with the
numerical properties of the estimators, 3 different processes not satisfying Assumption A(d, d′) are considered:

• a Gaussian stationary process with a spectral density f(λ) =
∣∣|λ| − π/2

∣∣−2d
for all λ ∈ [−π, π] \

{−π/2, π/2}. The local behavior of f in 0 is f(|λ|) ∼ (π/2)−2d |λ|−2d with d = 0, but the smooth-
ness condition for f in Assumption A(0, 2) is not satisfied.

• a trended Gaussian FARIMA(0, d, 0) with an additive linear trend (Xt = FARIMAt + (1 − 2t/n) for
t = 1, · · · , n and therefore mean(X1, · · · , Xn) ≃ 0);

• a Gaussian FARIMA(0, d, 0) with an additive linear trend and an additive sinusoidal seasonal com-
ponent of period T = 12 (Xt = FARIMAt + (1 − 2t/n) + sin(π t/6) for t = 1, · · · , n and therefore
mean(X1, · · · , Xn) ≃ 0).

The results of these simulations are given in Table 2.

Conclusions from Table 2: The main advantages of d̃N with respect to d̂MS and d̂R are exhibited in this
table: it is robust with respect to smooth trends (or seasonality). Note that the sample mean of d̂MS and d̂R
in the case of processes with trend or with trend and seasonality is almost 0.5

4.2 Consistency and robustness of the adaptive goodness-of-fit test:

Tables 1 and 2 provide informations concerning the adaptive goodness-of-fit test. A general conclusion is that
the consistency properties of this test are clearly satisfying when N is large enough (N = 1000 seems to be
too small for using this goodness-of-fit test).

We also would like to know the behavior of the test statistic under the assumption H1. We are going to
study the case of a process which does not satisfy either the stationarity condition either the relation (1) also
verified by the spectral density. Hence 3 particular cases are considered:

1. a process X denoted MFARIMA and defined as a succession of two independent Gaussian FARIMA pro-
cesses. More precisely, we considerXt = FARIMA(0, 0.1, 0) for t = 1, · · · , n/2 andXt = FARIMA(0, 0.4, 0)
for t = n/2 + 1, · · · , n.

2. a process X denoted MGN and defined by the increments of a multifractional Brownian motion (intro-
duced in Peltier and Lévy-Vehel, 1995). Using the harmonizable representation, define Y = (Yt)t such
that

Yt = C(t)

∫

R

eitx − 1

|x|H(t)+1/2
W (dx)

where W (dx) is a complex-valued Gaussian noise with variance dx and H(·) is a function (the case
H(·) = H with H ∈ (0, 1) is the case of fBm), C(·) i a function. Here we consider the functions
H(t) = 0.5 + 0.4 sin(t/10) and C(t) = 1. Then Xt = Yt+1 − Yt for t ∈ Z. X is not a stationary process
but “locally” behaves as a fGn with a parameter H(t) (therefore depending on t).
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N = 103 −→

Model
√
MSE d = 0 d = 0.1 d = 0.2 d = 0.3 d = 0.4

X1

√
MSE d̂MS 0.089 0.091 0.096 0.090 0.100√
MSE d̂R 0.102 0.114 0.116 0.106 0.102√
MSE d̃N 0.047 0.046 0.042 0.052 0.047

p̃n 0.85 0.76 0.78 0.76 0.64

X2

√
MSE d̂MS 0.091 0.094 0.086 0.091 0.099√
MSE d̂R 0.107 0.105 0.112 0.110 0.097√
MSE d̃N 0.048 0.050 0.053 0.061 0.074

p̃n 0.82 0.82 0.75 0.73 0.67

X3

√
MSE d̂MS 0.092 0.094 0.080 0.099 0.096√
MSE d̂R 0.113 0.113 0.100 0.112 0.095√
MSE d̃N 0.052 0.071 0.063 0.077 0.092

p̃n 0.84 0.72 0.75 0.67 0.51

X4

√
MSE d̂MS 0.088 0.079 0.079 0.093 0.104√
MSE d̂R 0.096 0.100 0.103 0.097 0.095√
MSE d̃N 0.051 0.066 0.056 0.061 0.064

p̃n 0.84 0.78 0.78 0.75 0.66

X5

√
MSE d̂MS 0.069 0.067 0.077 0.121 0.143√
MSE d̂R 0.072 0.078 0.093 0.087 0.074√
MSE d̃N 0.073 0.069 0.083 0.087 0.120
p̃n 0.73 0.69 0.68 0.74 0.64

X6

√
MSE d̂MS 0.096 0.091 0.090 0.086 0.093√
MSE d̂R 0.111 0.102 0.100 0.101 0.101√
MSE d̃N 0.153 0.146 0.144 0.158 0.147
p̃n 0.52 0.47 0.48 0.39 0.50

X7

√
MSE d̂MS 0.085 0.096 0.086 0.093 0.098√
MSE d̂R 0.106 0.116 0.097 0.099 0.092√
MSE d̃N 0.155 0.150 0.56 0.147 0.157
p̃n 0.60 0.55 0.49 0.52 0.41

X8

√
MSE d̂MS 0.097 0.104 0.097 0.094 0.101√
MSE d̂R 0.120 0.116 0.117 0.113 0.110√
MSE d̃N 0.179 0.189 0.177 0.175 0.176
p̃n 0.75 0.75 0.68 0.66 0.67

N = 104 −→

Model
√
MSE d = 0 d = 0.1 d = 0.2 d = 0.3 d = 0.4

X1

√
MSE d̂MS 0.032 0.029 0.031 0.031 0.036√
MSE d̂R 0.028 0.028 0.029 0.029 0.032√
MSE d̃N 0.016 0.027 0.034 0.025 0.022

p̃n 0.97 0.93 0.97 0.94 0.97

X2

√
MSE d̂MS 0.034 0.030 0.029 0.032 0.028√
MSE d̂R 0.027 0.027 0.029 0.028 0.023√
MSE d̃N 0.026 0.019 0.019 0.019 0.025
p̃n 0.95 0.97 0.98 0.96 0.94

X3

√
MSE d̂MS 0.034 0.034 0.033 0.030 0.031√
MSE d̂R 0.029 0.028 0.028 0.028 0.029√
MSE d̃N 0.027 0.017 0.016 0.022 0.030
p̃n 0.93 0.96 0.97 0.93 0.92

X4

√
MSE d̂MS 0.029 0.060 0.036 0.031 0.031√
MSE d̂R 0.025 0.027 0.029 0.031 0.029√
MSE d̃N 0.016 0.020 0.021 0.015 0.023

p̃n 0.95 0.91 0.97 0.92 0.91

X5

√
MSE d̂MS 0.093 0.046 0.039 0.073 0.047√
MSE d̂R 0.040 0.046 0.035 0.032 0.024√
MSE d̃N 0.056 0.071 0.027 0.025 0.024

p̃n 0.85 0.88 0.93 0.86 0.85

X6

√
MSE d̂MS 0.031 0.032 0.033 0.032 0.029√
MSE d̂R 0.029 0.028 0.028 0.028 0.028√
MSE d̃N 0.045 0.044 0.046 0.044 0.041
p̃n 0.96 0.93 0.89 0.93 0.90

X7

√
MSE d̂MS 0.030 0.031 0.037 0.030 0.029√
MSE d̂R 0.027 0.027 0.032 0.028 0.027√
MSE d̃N 0.049 0.044 0.050 0.048 0.046
p̃n 0.94 0.91 0.88 0.87 0.86

X8

√
MSE d̂MS 0.038 0.040 0.040 0.035 0.037√
MSE d̂R 0.039 0.038 0.040 0.036 0.035√
MSE d̃N 0.085 0.083 0.086 0.087 0.085
p̃n 0.92 0.94 0.94 0.95 0.93

Table 1: Comparison of the different long-memory parameter estimators for processes of the benchmark. For
each process and value of d and N ,

√
MSE are computed from 100 independent generated samples. Here

p̃n = 1
n #

(
T̃N < qχ2(ℓ−2)(0.95)

)
: this is the frequency of acceptation of the adaptive goodness-of-fit test.
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N = 103 −→

Model
√
MSE d = 0 d = 0.1 d = 0.2 d = 0.3 d = 0.4

GARMA(0, d, 0)
√
MSE d̂MS 0.089 0.091 0.123 0.132 0.166√
MSE d̂R 0.112 0.111 0.119 0.106 0.106√
MSE d̃N 0.041 0.076 0.114 0.142 0.180
p̃n 0.82 0.78 0.63 0.59 0.46

Trend
√
MSE d̂MS 0.548 0.411 0.292 0.190 0.142√
MSE d̂R 0.499 0.394 0.279 0.167 0.091√
MSE d̃N 0.044 0.052 0.056 0.060 0.065

p̃n 0.83 0.81 0.80 0.73 0.64

Trend + Seasonality
√
MSE d̂MS 0.479 0.347 0.233 0.142 0.112√
MSE d̂R 0.499 0.393 0.279 0.167 0.091√
MSE d̃N 0.216 0.215 0.215 0.217 0.185
p̃n 0.35 0.26 0.18 0.21 0.18

N = 104 −→

Model
√
MSE d = 0 d = 0.1 d = 0.2 d = 0.3 d = 0.4

GARMA(0, d, 0)
√
MSE d̂MS 0.031 0.035 0.039 0.049 0.062√
MSE d̂R 0.028 0.031 0.030 0.030 0.034√
MSE d̃N 0.023 0.053 0.052 0.058 0.060
p̃n 0.96 0.94 0.93 0.91 0.88

Trend
√
MSE d̂MS 0.452 0.286 0.167 0.096 0.056√
MSE d̂R 0.433 0.308 0.191 0.100 0.051√
MSE d̃N 0.014 0.016 0.016 0.021 0.028

p̃n 0.99 0.97 0.97 0.95 0.93

Trend + Seasonality
√
MSE d̂MS 0.471 0.307 0.196 0.123 0.076√
MSE d̂R 0.432 0.305 0.191 0.100 0.052√
MSE d̃N 0.044 0.069 0.047 0.042 0.045

p̃n 0.83 0.81 0.76 0.78 0.82

Table 2: Robustness of the different long-memory parameter estimators. For each process and value of d and
N ,

√
MSE are computed from 100 independent generated samples. Here p̃n = 1

n #
(
T̃N < qχ2(ℓ−2)(0.95)

)
: this

is the frequency of acceptation of the adaptive goodness-of-fit test.

Model N = 103 N = 104

MFARIMA p̃n = 0.58 p̃n = 0.87
MGN p̃n = 0.18 p̃n = 0.08
MFGN p̃n = 0.02 p̃n = 0.04

Table 3: Robustness of the adaptive goodness-of-fit test with p̃n = 1
n #

(
T̃N < qχ2(ℓ−2)(0.95)

)
the frequency of

acceptation of the adaptive goodness-of-fit test.

3. a process X denoted MFGN and defined by the increments of a multiscale fractional Brownian motion
(introduced in Bardet and Bertrand, 2007). Let Z = (Zt)t be such that

Zt =

∫

R

σ(x)
eitx − 1

|x|H(x)+1/2
W (dx)

where W (dx) is a complex-valued Gaussian noise with variance dx, H(·) and σ(·) are piecewise constant
functions. Here we consider the functions H(x) = 0.9 for 0.001 ≤ x ≤ 0.04 and H = 0.1 for 0.04 ≤ x ≤ 3.
Then Xt = Zt+1 −Zt for t ∈ Z and X is a Gaussian stationary process which can be written as a linear
process behaving as a fGn of parameter 0.9 for low frequencies (large time) and as a fGn of parameter
0.1 for high frequencies (small time).

We applied the test statistic to 100 independent replications of both these processes. The results of this simu-
lation are proposed in Table 3. We observed that the processes MGN and MFGN are clearly rejected with the
adaptive goodness-of-fit test. However, the test is not able to reject the process MFARIMA which does not
satisfy the Assumption of the Theorem 2. The reason is that the test does an average of the behavior of the
sample and in the case of changes (it is such the case for MFARIMA) it is the average LRD parameter which

is estimated (an average of 0.30 for d̃N and a standard deviation 0.03 are obtained).
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5 Proofs

First, we will use many times the following lemma:

Lemma 1. If ψ satisfies Assumption Ψ(k) with k ≥ 1, then there exists Cψ ≥ 0 such that for all λ ∈ R,

∣∣∣1
a

a∑

k=1

ψ
(k
a

)
e−iλ

k
a −

∫ 1

0

ψ(t)e−iλ tdt
∣∣∣ ≤ Cψ

(1 + |λ|k)
ak

. (17)

Proof of Lemma 1. This proof is easily established from a mathematical induction on k when λ ∈ [−π, π].
Then since we consider 2π-periodic functions (of λ) the result can be extended to R.

Proof of Property 1. First, it is clear that for a ∈ N
∗, (e(a, b))1≤b≤N−a is a centered linear process. It is a

stationary process because X is a stationary process and clearly
∑N
k=1

1
aψ

2
(
k−b
a

)
<∞.

Now following similar computations to those performed in Bardet et al. (2008), we obtain for a ∈ N
∗,

E(e2(a, 0)) =

∫ aπ

−aπ
f
(u
a

)
×
∣∣∣1
a

a∑

k=1

ψ
(k
a

)
e−i

k
a
u
∣∣∣
2

du.

Now, since supu∈R |ψ̂(u)| <∞, for a large enough,

∣∣∣E(e2(a, 0))−
∫ aπ

−aπ
f
(u
a

)
× |ψ̂(u)|2 du

∣∣∣ ≤ 2 sup
u∈R

|ψ̂(u)|Cψ
1

ak

∫ aπ

−aπ
(1 + |u|k) f

(u
a

)
|ψ̂(u)|2 du

Under Assumption Ψ(k) for any k ≥ 1, supu∈R
(1 + un)|ψ̂(u)| <∞ for all n ∈ N. Therefore, since there exists

ca > 0 satisfying f(λ) ≤ caλ
−2d for all λ ∈ [−π, π], for all d < 1/2,

∫ aπ

−aπ
(1 + |u|k) f

(u
a

)
|ψ̂(u)|2 du ≤

(
ca

∫ ∞

−∞
(1 + |u|k)u−2d|ψ̂(u)|2 du

)
a2d,

and thus there exists C > 0 (not depending on a) such that for a large enough,

∣∣∣E(e2(a, 0))−
∫ aπ

−aπ
f
(u
a

)
× |ψ̂(u)|2 du

∣∣∣ ≤ C a2d−k. (18)

Following the same reasoning, for any n ≥ 0, there exists C(n) > 0 (not depending on a) such that for a large
enough,

∣∣∣
∫ aπ

−aπ
f
(u
a

)
|ψ̂(u)|2 du−

∫ ∞

−∞
f
(u
a

)
|ψ̂(u)|2 du

∣∣∣ ≤ C(n) a−n. (19)

Finally, from Assumption A(d, d′), we obtain the following expansion:

∫ ∞

−∞
f
(u
a

)
|ψ̂(u)|2 du = 2π

∫ ∞

−∞

(
cd(

u

a

)−2d
+ cd′(

u

a

)d′−2d
+ (

u

a

)d′−2d
ε(
u

a
)
)
|ψ̂(u)|2 du

= 2π cdK(ψ,2d) a
−2d + 2π cd′ K(ψ,2d−d′) a

2d−d′ + o(a2d−d
′

) (20)

using the definition (5) of K(ψ,α) and because limλ→0 ε(λ) = 0 and applying Lebesgue Theorem. Then, using
(18), (19) and (20), we obtain that

∣∣∣E(e2(a, 0))− 2π cdK(ψ,2d) a
−2d + 2π cd′ K(ψ,2d−d′) a

2d−d′
∣∣∣ ≤ o(a2d−d

′

) + C a2d−k. (21)

When k > d′, it implies (4).

Proof of Theorem 1. We decompose this proof in 4 steps. First define the normalized wavelet coefficients of
X by:

ẽN (a, b) :=
e(a, b)√
Ee2(a, 1)

for a ∈ N
∗ and b ∈ Z, (22)
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and the normalized sample variance of wavelet coefficients:

T̃N(a) :=
1

N − a

N−a∑

k=1

ẽ2(a, k). (23)

Step 1 We prove in this part that NCov (T̃N(r aN ), T̃N (r′ aN )) converges to the asymptotic covariance matrix
Γ(ℓ1, · · · , rℓ, ψ, d) defined in (9). First for λ ∈ R, denote

Sa(λ) :=
1

a

a∑

t=1

ψ(
t

a
)eiλt/a.

Then for a ∈ N
∗ and b = 1, · · · , N − a, since ψ is (0, 1])-supported function,

N∑

t=1

α(t − s)ψ(
t− b

a
) =

a∑

t=0

ψ
( t
a

) ∫ π

−π
α̂(λ)eiλ(t−s+b)dλ

=

∫ π

−π
aSa(aλ)α̂(λ)e

i(b−s)λdλ

=

∫ aπ

−aπ
Sa(λ)α̂(

λ

a
)ei(b−s)

λ
a dλ. (24)

Thus,

Cov (T̃N (a), T̃N(a
′)) =

1

N − a

1

N − a′

N−a∑

b=1

N−a′∑

b′=1

Cov (ẽ2(a, b), ẽ2(a′, b′))

≃ (a a′)−2d(cdK(ψ,2d))
−2

4π2(N − a)(N − a′)

N−a∑

b=1

N−a′∑

b′=1

Cov (e2(a, b), e2(a′, b′)). (25)

But,

Cov (e2(a,b), e
2
(a′,b′))=

1

a a′

N∑

t1,t2,t3,t4=1

∑

s1,s2,s3,s4∈Z

( 2∏

i=1

α(ti − si)ψ(
ti − b

a
)
)( 2∏

i=1

α(ti − si)ψ(
ti − b′

a′
)
)
Cov

(
ξs1ξs2 , ξs3ξs4

)

= C1 + C2, (26)

since there are only two nonvanishing cases: s1 = s2 = s3 = s4 (Case 1 => C1), s1 = s3 6= s2 = s4 and
s1 = s4 6= s2 = s3 (Case 2 => C2).
* Case 1: in such a case, Cov

(
ξs1ξs2 , ξs3ξs4

)
= µ4 − 1 and

C1=
µ4 − 1

a a′

∑

s∈Z

∣∣∣
N∑

t=1

α(t− s)ψ(
t− b

a
)
∣∣∣
2∣∣∣

N∑

t=1

α(t− s)ψ(
t− b′

a′
)
∣∣∣
2

C1=(µ4 − 1) a a′ lim
M→∞

∫

[−π,π]4
dλdλ′dµdµ′ei[b(λ−λ

′)+b′(µ−µ′)]

×
M∑

s=−M
eis[(λ−λ

′)+(µ−µ′)]Sa(aλ)α̂(λ)Sa(aλ′)α̂(λ′)Sa′(a
′µ)α̂(µ)Sa′(a′µ′)α̂(µ′)

using the relation (24). From usual asymptotic behavior of Dirichlet kernel, for g ∈ C1
2π((−π, π)), lim

M→∞

∫ π

−π
DM (z)g(x+

z)dz = g(x) uniformly in x with DM (z) =
1

2π

sin
(
(2M + 1)z/2

)

sin
(
z/2

) =
1

2π

M∑

k=−M
eikz . Therefore with h a C1 func-

tion 2π-periodic for each component,

lim
M→∞

∫

[−π,π]4
2πDM ((λ− λ′) + (µ− µ′))h(λ, λ′, µ, µ′)dλdλ′dµdµ′ = 2π

∫

[−π,π]3
h(λ′ − µ+ µ′, λ′, µ, µ′)dλ′dµdµ′;
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Therefore,

C1 = 2π (µ4 − 1) a a′
∫

[−π,π]3
dλ′dµdµ′ei(µ−µ

′)(b′−b)

× Sa(a(λ
′ − µ+ µ′))α̂(λ′ − µ+ µ′)Sa(aλ′)α̂(λ′)Sa′(a

′µ)α̂(µ)Sa′(a′µ′)α̂(µ′). (27)

* Case 2: in such a case, with s1 6= s2, Cov
(
ξs1ξs2 , ξs1ξs2

)
= 1 and

C2=
2

a a′

∑

(s,s′)∈Z2,s6=s′

N∑

t1=1

α(t1 − s)ψ(
t1 − b

a
)

N∑

t2=1

α(t2 − s)ψ(
t2 − b′

a′
)

N∑

t3=1

α(t3 − s′)ψ(
t3 − b

a
)

N∑

t4=1

α(t4 − s′)ψ(
t4 − b′

a′
)

=− 2C1

µ4 − 1
+

1

a a′

∑

(s,s′)∈Z2

N∑

t1=1

α(t1 − s)ψ(
t1 − b

a
)

N∑

t2=1

α(t2 − s)ψ(
t2 − b′

a′
)

N∑

t3=1

α(t3 − s′)ψ(
t3 − b

a
)

N∑

t4=1

α(t4 − s′)ψ(
t4 − b′

a′
)

C2=− 2C1

µ4 − 1
+ 2 a a′ lim

M→∞
lim

M ′→∞

∫

[−π,π]4
dλdλ′dµdµ′ei[b(λ−µ)−b

′(λ′−µ′)]

×
M∑

s=−M

M ′∑

s=−M ′

eis(λ
′−λ)+is′(µ′−µ)Sa(aλ)α̂(λ)Sa′ (a′λ′)α̂(λ′)Sa(aµ)α̂(µ)Sa′(a′µ′)α̂(µ′)

=− 2C1

µ4 − 1
+ 8π2 a a′

∫

[−π,π]2
ei(λ−µ)(b−b

′)Sa(aλ)Sa′(a′λ)Sa(aµ)Sa′(a′µ) ×
∣∣α̂(λ)

∣∣2 ∣∣α̂(µ)
∣∣2dλdµ,

using the asymptotic behaviors of two Dirichlet kernels.

Now we have to compute

N−a∑

b=1

N−a′∑

b′=1

(C1 + C2). In both cases (C1 and C2), one again obtains a function of a

Dirichlet kernel:

FN (a, a′, v) :=
N−a∑

b=1

N−a′∑

b′=1

ei v (b−b
′) = eiv(a−a

′)/2 sin((N − a)v/2) sin((N − a′)v/2)

sin2(v/2)
. (28)

For a continuous function h : [−π, π] 7→ R,

lim
N→∞

1

N

∫ π

−π
h(v)FN (a, a′, v)dv = lim

N→∞

1

N2

∫ πN

−πN
h(
v

N
)FN (a, a′,

v

N
)dv = 4h(0)

∫ ∞

−∞

sin2(v/2)

v2
dv = 2πh(0),

thanks to Lebesgue Theorem and with a/N → 0 (N → 0). Then, from (27),

N
1

N − a

1

N − a′

N−a∑

b=1

N−a′∑

b′=1

C1∼4π2 (µ4 − 1)aa′
∫

[−π,π]2
dλ′dµ′|Sa(aλ′)|2 |Sa′(a′µ′)|2 |α̂(λ′)|2|α̂(µ′)|2

∼4π2 (µ4 − 1)

∫ aπ

−aπ
|Sa(λ)|2 |α̂(λ/a)|2dλ

∫ a′π

−a′π
|Sa(µ)|2 |α̂(µ/a′)|2dµ

=⇒ N
(aa′)−2d(cdK(ψ,2d))

−2

4π2(N − a)(N − a′)

N−a∑

b=1

N−a′∑

b′=1

C1 −→
N→∞

(µ4 − 1) (29)

and
N

aN

(raN r
′aN )−2d(cdK(ψ,2d))

−2

4π2(N − raN )(N − r′aN )

N−raN∑

b=1

N−r′aN∑

b′=1

C1 −→
N→∞

0, (30)

using the same arguments than in Property 1 since aN → ∞ (and therefore a→ ∞ and a′ → ∞).

13



Moreover, if we consider that a = raN and a′ = r′aN ,

N
1

N − a

1

N − a′

N−a∑

b=1

N−a′∑

b′=1

C2∼ 16π3aa′
∫ π

−π

∣∣Sa(aλ)
∣∣2∣∣Sa′(a′λ)

∣∣2∣∣α̂(λ)
∣∣4dλ− 2N

µ4 − 1

1

N − a

1

N − a′

N−a∑

b=1

N−a′∑

b′=1

C1

∼ 16π3rr′aN

∫ aNπ

−aNπ

∣∣SraN (rλ)
∣∣2∣∣Sr′aN (r′λ)

∣∣2∣∣α̂(λ/aN )
∣∣4dλ− 2N

µ4 − 1

1

N − raN

1

N − r′aN

N−raN∑

b=1

N−r′aN∑

b′=1

C1

=⇒ N

aN

(r r′ a2N )−2d(cdK(ψ,2d))
−2

4π2(N − raN )(N − r′aN )

N−raN∑

b=1

N−r′aN∑

b′=1

C2 −→
N→∞

4π
(rr′)1−2d

K2
(ψ,2d)

∫ ∞

−∞

∣∣ψ̂(rλ)
∣∣2|ψ̂(r′λ)

∣∣2

λ4d
dλ,

always using the same trick than in Property 1 since a → ∞ and a′ → ∞. Therefore, with (30), one deduces
that:

N

aN
Cov (T̃N(r aN ), T̃N (r′ aN )) −→

N→∞
4π

(rr′)1−2d

K2
(ψ,2d)

∫ ∞

−∞

∣∣ψ̂(rλ)
∣∣2|ψ̂(r′λ)

∣∣2

λ4d
dλ. (31)

Note that if r = r′ then
N

r aN
Var (T̃N (r aN )) −→

N→∞
σ2
ψ(d) = 64π5 K(ψ∗ψ,4d)

K2
(ψ,2d)

only depending on ψ and d.

Step 2 We prove here that if the distribution of the innovations (ξt)t is such that there exists r > 0 sat-

isfying E
(
erξ0

)
≤ ∞ (condition so-called the Cramèr condition), then for any a ∈ N

∗, (T̃N (ri aN ))1≤i≤ℓ =(
1

N−riaN
∑N−riaN

k=1 ẽ2(riaN , k)
)
1≤i≤ℓ

satisfies a central limit theorem. Such theorem is implied by the proof

that
√

N
aN

∑ℓ
i=1

ui

N−riaN
∑N−riaN
k=1 ẽ2(riaN , k) asymptotically follows a Gaussian distribution for any (ui)1≤i≤ℓ ∈

R
ℓ. For establishing this result we are going to adapt a proof of Giraitis (1985) which shows central limit the-

orems for function of linear processes using a decomposition with Appell polynomials. Indeed we specified
that X is a two-sided linear process and therefore martingale type results as in Wu (2002) or Furmanczyk
(2007) can not be applied. Moreover, since aN is a sequence depending on N it is required to prove a central
limit theorem for triangular arrays. Unfortunately the recent paper of Roueff and Taqqu (2009) dealing with
central limit theorems for arrays of decimated linear processes, and which can be applied to establish a mul-
tidimensional central limit for the variogram of wavelet coefficients associated to a multi-resolution analysis
can not be applied here because in this paper this variogram is defined as in (7) with coefficients taken every
n/nj (≃ aN with our notation) and the mean of nj (N/aN with our notation) coefficients is considered (and
the convergence rate is

√
nj). Our definition of the wavelet coefficient variogram (6) is an average of N − aN

terms and the convergence rate is N/aN . Then we chose to adapt the results and method of Giraitis (1985).
More precisely, consider the case ℓ = 1. For a > 0, (ẽ(a, b))1≤b≤N−a is a stationary linear process satisfying as-
sumptions of the paper of Giraitis (called Xt in this article). Now we consider H2(x) = x2−1 the second-order
Hermite polynomial and would like to prove that

( N
aN

)1/2 1

N − aN

N−aN∑

b=1

(
ẽ2(aN , b)− 1

)
≃

( 1

NaN

)−1/2
N−aN∑

b=1

H2(ẽ(aN , b))
L−→

N→∞
N
(
0, σ2

ψ(d)
)
.

Now since the distribution of ξ0 is supposed to satisfy the Cramèr condition, following the proof of Proposition

6 (Giraitis, 1985), define S
(n)
N =

∑N−aN
b=1 A

(aN )
n (ẽ(aN , b)) where A

(aN )
n is the Appell polynomial of degree n

corresponding to the probability distribution of ẽ(aN , ·). We are going to prove that the cumulants of order
k ≥ 3 are such as

χ
(
S
(n(1))
N , . . . , S

(n(k))
N

)
= o

(
(NaN )k/2

)
(32)

for any n(1), · · · , n(k) ≥ 2 (the computation of the cumulant of order 2 is induced by Step 1 of this proof).

Indeed, χ
(
S
(n(1))
N , . . . , S

(n(k))
N

)
=

∑
γ∈Γ0(T ) dγIγ(N) where Γ0(T ) is the set of possible diagrams and the

definition of Iγ(N) is provided in (34) of Giraitis (1985).
In the case of Gaussian diagrams, Iγ(N) = o

(
(NaN )k/2

)
, since this case is induced by the Gaussian case and

the second order moments.
If γ is a non Gaussian diagram, mutatis mutandis, we are going to follow the notation and proof of Lemma 2
of Giraitis (1985). Note first from Step 1, we can write:

ẽ(a, b) =
∑

s∈Z

βa(b − s) ξs with βa(s) =

√
a√

Ee2(a, b)

∫ π

−π
Sa(aλ)α̂(λ)e

iλsdλ. (33)
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Then for u ∈ [−π, π],

β̂a(u) =
1

2π

∞∑

s=−∞
βa(s)e

−isu

=

√
a

2π
√
Ee2(a, b)

lim
m→∞

∫ π

−π

m∑

s=−m
Sa(aλ)α̂(λ)e

is(λ−u)dλ

=

√
a√

Ee2(a, b)
Sa(au)α̂(u),

with the asymptotic behavior of Dirichlet kernel. Now, in case a/ of Lemma 2 of Giraitis (1985), consider
the diagram V1 = {(1, 1), (2, 1), (3, 1)} and assume that for the rows Lj of the array T , j = 1, · · · , k (k ≥ 3),
|V1 ∩Lj | ≥ 1 for at least 3 different rows Lj. Then the inequality (39) can be repeated, and on the hyperplane
xV1 , a part of the integral (34) provides

∣∣∣
∫

{x11+x21+x31=0}∩[−π,π]3
dx11dx21dx31

3∏

j=1

DN((xj1 + · · ·+ xjn(j))β̂a(xj1)
∣∣∣ ≤ C α1(u1)α2(u2)α3(u3),

with ui = xi2 + · · · + xin(i) and the same expressions of αi provided in Giraitis (1985). It remains to bound
αi(u). But, with the same approximations as in the proof of Property 1, for a and N large enough

α1(u) =

∫ π

−π

∣∣β̂a(u)DN (x+ u)
∣∣dx ∼

√
2π

1√
a

∫ aπ

−aπ

∣∣ ψ̂(x)
|x|d

∣∣ ∣∣DN

(x
a
+ u

)∣∣du

≤ 2
√
a sup
x∈R

{ |ψ̂(x)|
|x|d

} ∫ π

−π
|DN (x+ u)|dx

≤ 2C sup
x∈R

{ |ψ̂(x)|
|x|d

}√
a logN,

since there exists C > 0 such as
∫ π
−π |DN (x+ u)|dx ≤ C logN for any u ∈ [−π, π]. Now for i = 2, 3, a and N

large enough,

α2
i (u) = ‖β̂aN (·)DN (u + ·)‖22

≤ 2

∫ aNπ

−aNπ

|ψ̂(x)|2
|x|2d D2

N

( x

aN
+ u

)
du

≤ 2C sup
x∈R

{ |ψ̂(x)|2
|x|2d

}
aN

∫ π

−π
|D2

N (x+ u)|dx

≤ C′ sup
x∈R

{ |ψ̂(x)|2
|x|2d

}
NaN .

Then α1(u1)α2(u2)α3(u3) = o((NaN )3/2).
For the k− 3 other terms, a result corresponding to Lemma 1 of Giraitis (1985) can also be obtained. Indeed,
for a and N large enough,

‖gN,j‖22 =

∫

[−π,π]n(j)

dxD2
N (x1 + · · ·+ xn(j))

n(j)∏

i=1

|β̂a(xi)|2

≤ C

∫

[−aπ,aπ]n(j)

dxD2
N (

1

a
(x1 + · · ·+ xn(j))

n(j)∏

i=1

|ψ̂(xi)|2
|xi|2d

≤ C
∣∣ sup
x∈R

{ |ψ̂(x)|2
|x|2d

}∣∣n(j) a ‖DN

(
·
)
‖22

≤ C′NaN

with C′ ≥ 0 not depending on N and aN . Thus ‖gN,j‖2 ≤ C (NaN )1/2 with C ≥ 0. Using the same
reasoning, there also exists C′ ≥ 0 such as ‖g′N,j‖2 ≤ C (NaN )1/2 for j ≥ 2 while ‖g′N,1‖2 = O(

√
aN logN) =
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o((NaN )1/2). As a consequence, for γ such as |V1∩Lj | ≥ 1 for at least 3 different rows Lj, and more generally
with |V1| ≥ 3,

Iγ(N) = o
(
(NaN )k/2

)
. (34)

For other γ, it remains to bound the function h(u1, u2) defined in Giraitis (1985, p. 32) as follows (with
x = x11 + x12) and with u1 + u2 6= 0:

h(u1, u2) =
( ∫ π

−π

∣∣β̂aN (−x)DN (u1 + x)DN (u2 − x)
∣∣dx

)(∫ π

−π

∣∣β̂aN (x)
∣∣2dx

)

≤
∣∣ sup
x∈R

{ |ψ̂(x)|2
|x|2d

}∣∣ aN
( ∫ π

−π

∣∣DN

(
u1 + x

)
DN

(
u2 − x

)∣∣dx
)(

2π

∫ ∞

−∞

|ψ̂(x)|2
|x|2d dx

)
.

But
∫ π

−π

∣∣DN

(
u1 + x

)
DN

(
u2 − x

)∣∣dx ≤ 2

∫ 2πN

−2πN

∣∣∣ sin(x)
x

sin(N2 (u1 + u2)− x)

sin(12 (u1 + u2)− x
N )

∣∣∣dx

≤
{
C logN

∣∣ sin(12 (u1 + u2))
∣∣−1

if |u1 + u2| ≥ (N logN)−1

C N if |u1 + u2| < (N logN)−1 .

Therefore,

‖h(u1, u2)‖22 =

∫

[−π,π]2
h2(u1, u2)du1du2 ≤ C a2N

(
log2N

∫ π

(N logN)−1

(sinx)−2 dx+N2

∫ (N logN)−1

0

dx
)

≤ C a2N
(
N log3N +N logN

)
,

and hence ‖h(u1, u2)‖2 = o(NaN ). Finally, (34) holds for all γ and it implies (32).

If ℓ > 1, the same proof can be repeated from the linearity properties of cumulants. Thus, (T̃N (ri aN ))1≤i≤ℓ
satisfies the following central limit:

√
N

aN

(
T̃N(ri aN )− 1

)
1≤i≤ℓ

d−→
N→∞

N
(
0 , Γ(r1, · · · , rℓ, ψ, d)

)
, (35)

with Γ(r1, · · · , rℓ, ψ, d) = (γij)1≤i,j≤ℓ given in (9).

Step 3 Now we extend the central limit obtained in Step 2 for linear processes with an innovation distri-
bution satisfying a Cramèr condition (E

(
erξ0

)
< ∞) to the weaker condition Eξ40 < ∞ using a truncation

procedure. Thus assume now that Eξ40 < ∞. Let M > 0 and define ξ−t = ξt I|ξ|≤M and ξ+t = ξt I|ξ|>M ,
ẽ−(a, b) =

∑
s∈Z

βa(b−s) ξ−s and ẽ+(a, b) =
∑
s∈Z

βa(b−s) ξ+s using (33). Clearly ẽ(a, b) = ẽ+(a, b)+ ẽ−(a, b).
We are going to prove that (35) holds. For this, we begin by writing

T̃N(ri aN )− 1 =
1

N − riaN

(N−riaN∑

b=1

(
ẽ−(riaN , b)

)2 − 1
)
− 2ẽ+(riaN , b)ẽ

−(riaN , b) +
(
ẽ+(riaN , b)

)2)
(36)

We first prove that
(
T̃−
N (ri aN ) − 1

)
1≤i≤ℓ =

(
1

N−riaN
∑N−riaN

b=1

(
ẽ−(riaN , b)

)2 − 1
)
1≤i≤ℓ also satisfies (35).

Indeed, (ẽ−(riaN , b)) is a linear process with innovations (ξ−t ) satisfying the Cramèr condition and it is obvious

that
(

E

(
ẽ(riaN ,b)

)2

E

(
ẽ−(riaN ,b)

)2

)1/2

ẽ−(riaN , b)b,i has exactly the same distribution than ẽ(riaN , b)b,i. Therefore it remains

to prove that
√

N
aN

(
E

(
ẽ(riaN ,b)

)2

E

(
ẽ−(riaN ,b))2

− 1
)
converges to 0. We have E

(
ẽ(riaN , b))

2 =
(∑

s∈Z
β2
a(s)

)
E(ξ0)

2 = 1

and Eξ20 = 1 (from Property 1). Then

∣∣∣
E
(
ẽ−(riaN , b))2

E
(
ẽ(riaN , b))2

− 1
∣∣∣ ≤ 2

(
E
(
ẽ+(riaN , b))

2
)1/2

+ E
(
ẽ+(riaN , b))

2.

We have E
(
ẽ+(riaN , b))

2 =
(∑

s∈Z
β2
a(s)

)
E(ξ+0 )2 = E(ξ+0 )

2 from previous arguments and since we assume that

the distribution of ξ0 is symmetric. But using Hölder’s and Markov’s inequalities E(ξ+0 )2 ≤ (Eξ40)
1/2(Pr(|ξ0| >

M))1/2 ≤ (Eξ40)M
−2. Hence, there exists C > 0 not depending on M and N ,

√
N

aN

∣∣∣
E
(
ẽ−(riaN , b))2

E
(
ẽ(riaN , b))2

− 1
∣∣∣ ≤ C

M

√
NaN −→

N→∞
0
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when M = N (for instance). Therefore
(
T̃−
N (ri aN )− 1

)
1≤i≤ℓ satisfies the CLT (35).

From (36), it remains to prove that

√
N

aN

1

N − riaN

(N−riaN∑

b=1

−2ẽ+(riaN , b)ẽ
−(riaN , b) +

(
ẽ+(riaN , b)

)2) P−→
N→∞

0.

FromMarkov’s and Hölder inequalities, this is implied when
√

N
aN

(
E
(
ẽ+(riaN , b)

)2
+2

√
E
(
ẽ+(riaN , b)

)2) −→
N→∞

0

with E
(
ẽ+(riaN , b)

)2
= 1. Using E

(
ẽ+(riaN , b))

2 ≤ (Eξ40)M
−2 obtained above, we deduce that this statement

holds when M = N (for instance). As a consequence, from (36), the CLT (35) holds even if the distribution
of ξ0 is only symmetric and such that Eξ40 <∞.

Step 4 It remains to apply the Delta-method to (35) with function (x1, · · · , xℓ) 7→ (log x1, · · · , log xℓ):
√
N

aN

(
log

(
TN (ri aN )

)
− log(Ee2(aN , 1))

)
1≤i≤ℓ

d−→
N→∞

N
(
0 , Γ(r1, · · · , rℓ, ψ, d)

)
,

With Ee2(aN , 1) provided in Property 1, we obtain

logEe2(aN , 1) = 2d log(aN ) + log
(cdK(ψ,2d)

2π

)
+
cd′K(ψ,2d−d′)

2π ad
′

N

(
1 + o(1)

)

Therefore, when

√
N

aN

1

ad
′

N

−→
N→∞

0, i.e. N
1

1+2d′ = o(aN ), the CLT (8) holds.

Proof of Theorem 1. Here we use Theorem 1 of Bardet et al. (2008) where it was proved that the CLT (8) is

still valid when aN is replaced by N α̃N . Then, since d̃N = M̃N YN (α̃N ) with M̃N =
(
0 1/2

)(
Z ′
1Γ̂

−1
N Z1

)−1
Z ′
1Γ̂

−1
N

we deduce that
√
N/N α̃N

(
d̃N−d

)
is asymptotically Gaussian with asymptotic variance the limit in probability

of M̃N Γ(1, . . . , ℓ, d, ψ) M̃ ′
N , that is σ

2.
The right hand side relation of (13) is also an obvious consequence of Theorem 1 of Bardet et al. (2008).

Proof of Theorem 2. The theory of linear models can be applied: ZN α̃N

( c̃N
2d̃N

)
is an orthogonal projector

of YN (α̃N ) on a subspace of dimension 2, therefore YN (α̃N ) − ZN α̃N

( c̃N
2d̃N

)
is an orthogonal projector of

YN (α̃N ) on a subspace of dimension ℓ − 2. Moreover, using the CLT (8) where aN is replaced by N α̃N , we

deduce that
√
N/N α̃N Γ̂−1

N YN (α̃N ) asymptotically follows a Gaussian distribution with asymptotic covariance
matrix Iℓ (identity matrix). Hence form Cochran Theorem we deduce (15).
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