Dislocation-Density Crystalline Plasticity Modelling of Lath Martensitic Microstructures in Steel Alloys - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Philosophical Magazine Année : 2009

Dislocation-Density Crystalline Plasticity Modelling of Lath Martensitic Microstructures in Steel Alloys

Résumé

A three-dimensional multiple-slip dislocation-density-based crystalline formulation, specialized finite-element formulations, and Voronoi tessellations adapted to martensitic orientations, were used to investigate large strain inelastic deformation modes and dislocation-density evolution in martensitic microstructures. The formulation is based on accounting for variant morphologies and orientations, retained austenite, and initial dislocations-densities that are uniquely inherent to martensitic microstructures. The effects of parent austenite orientation and retained austenite were also investigated for heterogeneous f.c.c./b.c.c. crystalline structures. Furthermore, the formulation was used to investigate microstructures mapped directly from SEM/EBSD images of martensitic steel alloys. The analysis indicates that variant morphology and orientations have a direct consequence on dislocation-density accumulation and inelastic localization in martensitic microstructures, and that lath directions, orientations, and arrangements are critical characteristics of high strength martensitic deformation and behaviour.

Mots clés

Fichier principal
Vignette du fichier
PEER_stage2_10.1080%2F14786430903185999.pdf (7.67 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00529578 , version 1 (26-10-2010)

Identifiants

Citer

Tarek Hatem, Mohammed Zikry. Dislocation-Density Crystalline Plasticity Modelling of Lath Martensitic Microstructures in Steel Alloys. Philosophical Magazine, 2009, 89 (33), pp.3087-3109. ⟨10.1080/14786430903185999⟩. ⟨hal-00529578⟩

Collections

PEER
61 Consultations
346 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More