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Abstract
The problem of aircraft engine condition monitoring based on vibration signals is addressed. To do so, we
compare two estimators of the Frequency Response Function of an aircratengine which input is its shaft
angular position and which output is an accelerometric signal that measuresvibrations. It is shown that this
problem can be seen as a smoothing problem, and that linear kernel smoothing such as Gaussian Process
Regression allows the computation of the FRF.

1 Introduction

We tackle the issue of monitoring the behavior of an aircraft engine from thepoint of view of measured
vibrations. Abnormal level or odd pattern of vibrations may be the consequence of mechanical or sensor
malfunction, both of dramatic importance for engine manufacturers and airlineoperators.

The aim of our work is to develop Damage Detection and Condition Monitoring algorithms for aicraft en-
gines. To do so, we model the engine as an input/output system where the input is the shaft angular position,
considered as a periodic excitation, and the output is the instant vibration level. Most information concerning
this input/output relationship are embedded in the Frequency Response Functions (FRF)G:

G(jωk) =
Y (k)

U(k)
(1)

whereU(k) andY (k) are respectively the Fourier transforms of the shaft angular position, and of the instant
vibration level at frequencyωk. Fig. 4 gives an example of such an FRF plot.

To allow Damage Detection, we propose to estimate confidence intervals around the FRF estimates. If for
one or several frequencies the FRF value crosses the limits, then a mechanical fault is likely to occur.

The originality of this work lies first in the input/output point of view that we propose, between the shaft po-
sition and accelerometric data. Furthermore we suggest a particular smoothing technique, namely Gaussian
Process Regression (GPR) which have been under considerable attention in the Machine Learning commu-
nity. The aim of this regression is to estimate the FRF, when records belonging toseveral “normal” -at
least labelled as such by experts- engines operating at the same regime areavailable. Finally we compute
confidence bounds for the FRF estimate.



Remark that we limit the scope of this work in several respects: first we deal with SISO1 systems only.
Then we disregard important topics such as the presence of nonlinear distortions. We hold the excitation to
be periodic only, while important random contributions related to combustion could be taken into account.
Other technical features will be mentionned in conclusion.

Section 2 relates our article to previous works in several fields. Section 3 makes precise the classical mea-
surement and estimation model used in the litterature. Section 4 aircraft engineand measured data.

2 Related work

This article is related to Condition Based Monitoring (CBM) framework. CBM for industrial machines has
been attracting increasing attention over the years in both academic and industrial areas. According to [24]
it consists in four main steps: data acquisition, feature extraction, feature selection, and decision-making.
The first two steps rely on mechanical modeling or rotor dynamics [16], noise and vibration phenomena
in rotating machines [13, 24] and data analysis [18]. The latter builds on the general tools and methods
developped in signal processing [15, 2], statistical signal estimation and detection [10, 22, 28], learning
theory, change detection [1], fault detection and isolation [7]. AircraftCBM deals with many problems such
as structural health monitoring. It treats Engine Health Monitoring (EHM) as aspecial case [27, 9]. As a
subtopic of EHM, vibrations monitoring in engines addresses the following issues: rotor/stator contact [19],
rotor unbalance, blade defects [11], bearing [17] and gearings defects [30].

Some authors take a probabilistic stand on CBM and study the fluctuations of thevibration spectrum of
aircraft engines. For example [4, 5] take advantage of extreme value theory to detect novelty from spectral
or time-frequency data.

In the Control and System Identification litterature [12, 20] and in Modal Analysis [14], focus is put more
particularly on the FRF, while its non-parametric estimation remains an active fieldof research [29, 21]. The
statistical properties of the estimators of FRF is a topic of deep interest [20, 2.4-6], because of their role in
subsequent parametric identification of plants. In order to reduce their variance, it is common practice to av-
erage the FRF estimator over several blocks, in order to cancel the various perturbations due to measurement
noise of inputs and/or outputs.

From a statistical point of view, such averaging is related to nonparametric function regression. More pre-
cisely, estimating the trend of a response measurement (e.g.Y (k)) as a function of several predictors (e.g.
U1(k), . . . , Un(k)) in a nonparametric way, such that the estimate is less variable than the predictors, is called
smoothing [8, 2.1]. Among many available (scatterplot, running-mean, kernel smoothers), we choose Gaus-
sian Process Regression (GPR) [25], which is an instance of kernel smoothing. GPR is rooted in Bayesian
statistics, and enables to add physically meaningful constraints to the regressed function (see 3.2, Appendix
C). GPR has several interesting features, such as the simplicity of the underlying theory or its prediction
capacity in areas where data is scarce, which could help to artificially increase the spectral resolution.

In Section 3 the measurement model is discussed, taking into account the various aspects just evoked (con-
dition monitoring, FRF estimation, non-parametric smoothing) .

3 FRF measurement, noise model and statistical properties of esti-
mators

To measure the FRF, the mechanical system under study is first excited by the shafts, each producing periodic
excitations. More precisely, two shafts - the low pressure (LP) and high-pressure(HP) - rotate at different
speeds (see Section 4) around the same axis.

1 Single Input Single Output.



Since accelerometric data are resampled with respect to one shaft only (LPor HP), we will consider one
source of excitation only and treat the other as noise. Such noise is represented as actutator noise in Fig. 1,
and results in an signal notedu(t) in the time domain. The mechanical system is excited byu(t) and outputs
the responsey(t) which is the sum of the pure response tou and of a noise term. Various preprocessing steps
such as antialiasing and digitization are included, before the Discrete Fourier Transform, implemented as an
FFT. With the notations of [20] we have by linearity :

Y (k) = Y0(k) + NY (k) (2)

U(k) = U0(k) + NU (k) (3)

wherek corresponds to frequencyfk = k
NTs

, N andTs being respectively the length of recording andTs the
sampling period.NU (k) andNY (k) are the noise contributions and have been shown to be complex circular
normally distributed in a large number of situations (see Appendix A).

Figure 1: FRF measurement (adapted from [20]).

In Sections 3.1 and 3.2 we state the expressions of a classical estimator of FRF, and of its GPR counterpart.
In both it is admitted that the rotation speed of the motor is periodic, with negligible fluctuations, so that we
consider the situation ofperiodic excitation FRF measurement, as opposed to random excitation measure-
ment (see [20, 2.6]). When explicitly available we write down the statistical properties of the estimators.

3.1 Maximum likelihood estimator of FRF under periodic excitation

As stated above, the estimator of the unknown FRFG0(jωk) = Y0(k)
U0(k) is G(jωk) = Y (k)

U(k) . The error analysis
that reveals the statistical properties of this estimator is standard material, takenmainly from [20].

Provided that the signal was appropriately preprocessed (including band-limiting filtering), that the disturb-
ing noisesNU andNY follow complex spherical normal laws and that|NU (k)/U0(k)| < 1 (see Appendix
B), then the estimator is unbiased.

Similarly, under the same type of hypothesis, the variance ofG can be approximated. These results are
summarized as follows :

E[G(jωk)] = G0(jωk) (4)

V ar[G(jωk)] = |G0(jωk)|
( σ2

Y (k)

|Y0(k)|2
+

σ2
U (k)

|U0(k)|2
− 2Re(

σ2
Y U (k)

Y0(k)Ū0(k)
)
)

(5)

whereσ2
U (k), σ2

Y (k) andσ2
Y U (k) are the variances and covariance of the disturbing noise components.



Variance reduction by cyclic averaging
The material of this paragraph is taken from [20, 2.5]. In order to reduce the variance of the estimator
depicted above, cyclic averaging is applied. This means that successivedata blocks taken from the same
long recording are averaged. Cyclic averaging needs the number of samples to be an integer multiple of a
given integer, the period length. This can be achieved with the help of a keyphasor, but is insured here by
computer resampling [23, 6].

Under the hypotheses that the disturbing noiseNu(k), Ny(k) is independent of the undisturbed signals
U0(k), Y0(k) (which may not be true in closed loop contexts), that theM input-output data blocksu[l](n), y[l](n), l =
1, 2, . . . , M come from independent experiments where the noise contributions have finite moments and are
independent, then the averaged estimator is unbiased:

ĜML(jωk) =
Ŷ (k)

Û(k)
(6)

E[ĜML(jωk)] = G0(jωk) (7)

where

U [l](k) = DFT (u[l](1 : n)) (8)

Y [l](k) = DFT (y[l](1 : n)) (9)

Û(k) =
1

M

M−1
∑

l=0

U [l](k) (10)

Ŷ (k) =
1

M

M−1
∑

l=0

Y [l](k) (11)

The variance of the estimator can be approximated by:

V ar[ĜML(jωk)] ∼
|ĜML(jωk)|

2

M

( σ̂2
Y (k)

|Y0(k)|2
+

σ̂2
U (k)

|U0(k)|2
− 2Re(

σ̂2
Y U (k)

Y0(k)Ū0(k)
)
)

(12)

where σ̂2
U (k), σ̂2

Y (k), σ̂2
Y U (k) stand for sample variances and covariance, which definitions are givenin

Appendix B. It can be noticed that this term is divided byM , which was the aim of averaging. Nevertheless,
the above results depend on the validity of the hypotheses, and should be treated with care. Unfortunately,
it depends onY0 andU0, that are most of the time unknown. This means that another way to estimate the
variance of the estimator may be necessary.

3.2 GPR estimation of FRF

As remarked in the Introduction, the variance reduction in Section 3.1 can bethought of as a nonparametric
smoothing [8, 2], with the constraint that abscissa are taken in the discrete set of frequencies{fk}k∈[1,n]

defined in Section 3. In this article we explicitly choose a smoother of a specialkind -namely a Gaussian
Process Regressor, that belongs to the category of kernel smoothing regressions.

The mathematical problem is stated as follows: lety = f(x) + ε be a real or complex function ofx taken
in a vector space, subject to a random perturbation. In our casey andx can be associated respectively to
G(jωk) and to the frequency. We are given a finite sample{(yi,xi)}i=1,...,n. Then we want to estimate the
probability law of the noiseless FRF in points{(x∗i)}i=1,...,n∗ that can be different from{xi}. Technically,
what is looked for is the conditional law evaluated inx∗, which is noted (see [25]):

f∗|X∗,y, X (13)



wherey = (y1, . . . , yn)T , X = (x1, . . . , xn)T , X∗ = (x∗1, . . . , x∗n∗)
T . In order to computef∗|X∗,y, X

we first choose a prior2 :
[

f

f∗

]

∼ N
(

0,

[

K(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

]

)

whereK(X, X∗) is a n × n∗ matrix called the Gram matrix. The value ofK depends on the choice of
the kernel that parametrizes the Gaussian process. Admitting that whenx ety are jointly Gaussian random
vectors such that:

[

x

y

]

∼ N
(

[

mx

my

]

,

[

A C
CT B

]

)

then (cf [25, A.2]) :

x|y ∼ N (mx + CB−1(y − my), A − CB−1CT ) (14)

Consequently the conditionnal law off∗ is (see [25, 2.2]):

f∗|X∗,y, X ∼ N
(

K(X∗, X)(K(X, X) + σ2I)−1y,

K(X∗, X∗) − K(X∗, X)(K(X, X) + σ2I)−1K(X, X∗)
)

(15)

whereK(X, X), K(X∗, X∗), K(X∗, X) are covariance matrices and whereσ2
n is the variance of the obser-

vation noise. In the particular case where we estimatef∗ at the same frequencies as those in the measured
samples, thenX = X∗ and:

f |y, X ∼ N
(

K(X, X)(K(X, X) + σ2I)−1y,

K(X, X) − K(X, X)(K(X, X) + σ2I)−1K(X, X)
)

(16)

Computational shortcuts
The computation of the mean and covariance of the estimator needs the inversion of a large matrix. For
example, with the available data,n = 8192 and four engines are considered at the same time. Since matrix
inversion needs0(n3), the exact computation is impossible in reasonable time. Consequently, we had to
compute approximate results. In this particular case, it turns out that the length-scale of the data is very short.
The corresponding Gram matrix is then sparse, and sparse linear solvers were used to shrink computation
time. This will be made precise in following articles.

Model parameters
The result of the regression is fully determined by the Gram matrixK, the noise levelσ, and the measured
data. K depends on a kernel function, that usually depends on a small number ofparameters. They are
estimated during a calibration phase called “model selection” in the Machine Learning litterature. Details
are given in Appendix C.

Error analysis
The convergence off∗|X∗,y, X to the regression functionE[y|x] is established in [25, 7], using equivalent
kernels. The variance of the estimator is directly given by the estimated noise variance, obtained by model
selection. Quantity that are equivalent to the bias can be computed in the Bayesian context of GPR, such as
the risk, or expected loss [25, 7.2]. This will be examined in further works.

From the point of view of linear smoothers, bias and variance are definedbut are hard to compute. General
expressions can be written for linear smoothers [8, 3.4.2,3.8], but approximations are not available in our
particular case, up to our knowledge.

2 As discussed in [25, 2.7], it is not mandatory to choose zero mean .



4 System and data

A turbofan whose structure is presented by Fig. 2 is considered. Air from the outside enters an intake, then
is successively compressed by the low-pressure (LP) and high-pressure (HP) compressors. Compressed air
passes to a combustion chamber, where it is mixed with fuel and burnt. Both compressors are powered by
turbines located at the rear of the engine, which transmit their energy to the compressors through two contra-
rotating shafts, the low-pressure (LP) shaft and the high-pressure (HP) shaft. Although turbofan condition
monitoring can be achieved in various ways, we take the stand to focus on vibrations monitoring in this work.
Two accelerometers provide vibration measurements at a constant 51 kHz frequency. Since compressors and
turbines are fan-like components made of a varying number of blades mounted on the shafts, it is expected
that their motion entails vibrations at frequencies which are multiples of shaft speeds.

Figure 2: Turbofan engine. Simplified diagram of fan, low-pressure and high-pressure compressors and
turbines attached to their respective shafts.

The recordings under study were provided by the Health Monitoring Department of SNECMA3 and cor-
respond to a dual-shaft turbofan mounted on a testbench, that undergoes a continuous acceleration during
several minutes. They include raw vibration outputs of an accelerometer sampled at 51kHz, as well as LP
and HP shaft angular velocity computed from raw keyphasor data and sampled at 6.25 Hz. Sample time
series are plotted in Fig. 3. Four recordings are currently used in this study.

(a) (b)

Figure 3: (a) Raw accelerometric data; (b) LP shaft angular velocity in rpm.

3http://www.snecma.fr



In order to apply cyclic averaging -so that the signal is composed of an integer number of periods- we
resample the vibration measurements [23, 6] with 1024 samples per period.

Four subsamples whith lengthn = 8192 are extracted from the whole signal vectors for regime values close
to 2000 rpm . Because of the relative slow increase of the regime, when can assume stationarity of vibration
signals.

5 Results

The main result of this section is the fact that the model selection step and the Gaussian Process Regression
were succesfully computed in reasonable time, given the fact that the dimension of the data isn = 4× 8192,
which is very large for usual GPR problems as explained in Section 3.2.

We suppose that the parametersK andσ of the Gaussian Process have been adequately learnt from the data
thanks to model selection (see Appendix C).

Then we compute the meanf∗|X∗,y, X and the covariance of the FRF estimator, that allow to plot confidence
interval. Fig. 4(top) shows a detail of both, on a limited order domain. Fig. 4(bottom) also shows the four
individual FRF that were used for regression.

Figure 4: FRF in the order domain (top) predicted mean and associated confidence interval (bottom) super-
imposed FRF of all engines.

We notice that the FRF is almost everywhere included in the confidence interval, which is consistent with
the fact that the four engines are labelled as normal by the expert.

6 Conclusions and perspectives

In this article we have raised the issue of using FRF to perform nonparametric Damage Detection in aircraft
engine with vibration data. We have presented classical tools and more recent ones, and confronted their
theoretical advantages and drawbacks. Preliminar results are available:we show that Gaussian Process
Regression can be used to estimate the mean spectrum and associated confidence intervals, in spite of the



size of the sample (n = 4×8192). Thorough examination on experimental grounds is necessary, specifically
concerning the estimation of the bias and variance of the two compared estimators.

Future works will concern mainly:

• the evaluation of the capacity of these tools to perform damage detection. Though this is our aim,
the current article has focused mainly on estimation tools. We expect to meet specific difficulties
because of the scarceness of fault data, related to the very high reliabilityof aircraft engines. This was
addressed for example by [5].

• the assessment of the computed FRF. Indeed there are many facts that could be used to check the
validity of the FRF, such as the knowledge of the geometry of the compressor, the number of blades,
etc. . .

• the validity of hypotheses given the available data: for example it is assumed that the FFT of the noise
contribution is circular complex normal. This should be tested, following [26].The uniformity of the
data, i.e. the fact that all vibration recordings belong to healthy engines, at the same regime, should
be verified. Reciprocally, the presence of outliers could be automatically discovered. This is related to
model selection, and to the problem of “multiple task learning”.

• the comparison between smoothers: the analytical expression of bias and variance of the ML estimator
are available, but hard to estimate from data. The results given by nonparametric techniques such as
bootstrap must be used to compare the empirical variance of ML and GPR estimators of the mean
FRF. Other aspects such as the computational load and the convergence speed of estimators might be
of interest, if easily available.

• the evaluation of other smoother: one main drawback of GPR is the fact that observation noise variance
does not depend onx. Some authors have extended GPR to heteroskedastic noise (see [25, 9.3]).
Linear smoothers can also cope with the dependence tox (see “weighted smoothers”, [8, 3.2]).

• the relation with system identification in the frequency domain: non parametric FRF estimation is
meant to be a mere subroutine of system identification? The quality of estimates determines that of
system identification. Can we measure the advantage of linear smoothing with respect to the system
identification that occurs after FRF estimation ?

• various generalisations:

1. so far accelerometric data have been resampled with respect to LP shaft.

2. can the estimation be extended to MIMO systems ?

3. can outlier frequencies be detected and discarded ?

4. what is the influence of nonlinear distortions on FRF estimates ?

5. can random excitation be taken into account, to take into account the combustion noise ?
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A Noise contribution in the frequency domain

Following [3] we admit that ther-component vectorX is circular complex normal with meanµX and
covarianceΣXX if the vector[Re(X); Im(X)] is distributed as:

N

([

Re(µX)
Im(µX)

]

,
1

2

[

Re(ΣXX) −Im(ΣXX)
Im(ΣXX) Re(ΣXX)

])

It is shown (see [3, 4.4], [20, 14.16]) that the Fourier coefficients ofa stationary time series with finite
moments converge asymptotically to a circular complex normal law whith independent components. In [26]
the quality of the normal approximation for small samples is assessed.

B Bias and variance of FRF estimators

The following Taylor series converges provided that|NU (k)/U0(k)| < 1, i.e. if the Signal to Noise Ratio
(SNR) is large enough. Then it follows :

G(jωk) =
Y (k)

U(k)
(17)

= G0(jωk)
1 + Ny(k)/Y0(k)

1 + NU (k)/U0(k)
(18)

∼ G0(jωk)
(

1 +
Ny(k)

Y0(k)

)(

1 +
NU (k)

U0(k)

)

(19)

When cyclic averaging is added, the following expressions are needed:

σ̂2
U (k) =

1

M − 1

M
∑

l=1

|U [l](k) − Û(k)| (20)

σ̂2
Y (k) =

1

M − 1

M
∑

l=1

|Y [l](k) − Ŷ (k)| (21)

σ̂2
Y U (k) =

1

M − 1

M
∑

l=1

(Y [l](k) − Ŷ (k))(U [l](k) − Û(k)) (22)

C Model selection for GPR

Model selection is aimed at estimating the hyperparameters of the covariance function which itself deter-
mines the Gram matrixK. The most popular covariance function is the squared exponential whichexpres-
sion is:

k(xp, xq) = σ2
f exp

(

−
1

2l2
(xp − xq)

2
)

(23)

whereσf is the signal energy andl the characteristic length-scale of the signal. LetX andX∗ be vectors of
points wherek is evaluated :

K(X, X∗) = (k(xi, xj∗))1≤i≤m,1≤j≤n (24)



The adequation between the data and the model is quantified by the marginal likelihood whose expression
is:

log p(y|X) = −
1

2
yT (K + σ2

nI)−1y −
1

2
log |K + σ2

nI| −
n

2
log(2π) (25)

whereσn is the noise level.

Given the data sample{(xi, yi)}i∈[1,n], the marginal likelihood is numerically optimized with respect to
hyperparameters(σn, σf , l), thanks to appropriate algorithms such as the conjugate gradient [25, 5].


