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Abstract

The problem of aircraft engine condition monitoring based on vibratiorassge addressed. To do so, we
compare two estimators of the Frequency Response Function of an aingiak which input is its shaft
angular position and which output is an accelerometric signal that meadlragons. It is shown that this
problem can be seen as a smoothing problem, and that linear kernel smgostbinas Gaussian Process
Regression allows the computation of the FRF.

1 Introduction

We tackle the issue of monitoring the behavior of an aircraft engine fronpdivg of view of measured
vibrations. Abnormal level or odd pattern of vibrations may be the corsgemiof mechanical or sensor
malfunction, both of dramatic importance for engine manufacturers and aipiemtors.

The aim of our work is to develop Damage Detection and Condition Monitoringrigthgns for aicraft en-
gines. To do so, we model the engine as an input/output system where tihésitige shaft angular position,
considered as a periodic excitation, and the output is the instant vibrateinMest information concerning
this input/output relationship are embedded in the Frequency ResponstéoRar{FRF)G:
. Y (k)
G = —= 1
(jwk) k) 1)

whereU (k) andY (k) are respectively the Fourier transforms of the shaft angular positioipfethe instant
vibration level at frequencyy.. Fig. 4 gives an example of such an FRF plot.

To allow Damage Detection, we propose to estimate confidence intervaldatmFRF estimates. If for
one or several frequencies the FRF value crosses the limits, then a noatfeut is likely to occur.

The originality of this work lies first in the input/output point of view that we pose, between the shaft po-
sition and accelerometric data. Furthermore we suggest a particular sngoittimique, namely Gaussian
Process Regression (GPR) which have been under considerabt®oatierthe Machine Learning commu-
nity. The aim of this regression is to estimate the FRF, when records belongsay¢oal “normal” -at
least labelled as such by experts- engines operating at the same regiavaitale. Finally we compute
confidence bounds for the FRF estimate.



Remark that we limit the scope of this work in several respects: first wevd#aSISO' systems only.
Then we disregard important topics such as the presence of nonlingatidiss. We hold the excitation to
be periodic only, while important random contributions related to combustiold dx@ taken into account.
Other technical features will be mentionned in conclusion.

Section 2 relates our article to previous works in several fields. Sectiork8apaecise the classical mea
surement and estimation model used in the litterature. Section 4 aircraft emgimeeasured data.

2 Related work

This article is related to Condition Based Monitoring (CBM) framework. CBMifalustrial machines has
been attracting increasing attention over the years in both academic anttiaidusas. According to [24]

it consists in four main steps: data acquisition, feature extraction, featleetion, and decision-making.
The first two steps rely on mechanical modeling or rotor dynamics [16]erais vibration phenomena
in rotating machines [13, 24] and data analysis [18]. The latter builds onehergl tools and methods
developped in signal processing [15, 2], statistical signal estimation erettibn [10, 22, 28], learning
theory, change detection [1], fault detection and isolation [7]. AircZ&M deals with many problems such
as structural health monitoring. It treats Engine Health Monitoring (EHM) sisegial case [27, 9]. As a
subtopic of EHM, vibrations monitoring in engines addresses the following$sgotor/stator contact [19],
rotor unbalance, blade defects [11], bearing [17] and gearingsti=i30].

Some authors take a probabilistic stand on CBM and study the fluctuations wibtla¢gion spectrum of
aircraft engines. For example [4, 5] take advantage of extreme valogytteedetect novelty from spectral
or time-frequency data.

In the Control and System ldentification litterature [12, 20] and in Modalysis [14], focus is put more
particularly on the FRF, while its non-parametric estimation remains an activefieddearch [29, 21]. The
statistical properties of the estimators of FRF is a topic of deep interest.®],2ecause of their role in
subsequent parametric identification of plants. In order to reduce thr&@nea, it is common practice to av-
erage the FRF estimator over several blocks, in order to cancel thesg@eoturbations due to measurement
noise of inputs and/or outputs.

From a statistical point of view, such averaging is related to nonparametritién regression. More pre-
cisely, estimating the trend of a response measurementYeg/g) as a function of several predictors (e.g.
Ui(k),...,U,(k)) inanonparametric way, such that the estimate is less variable than the pedéotalled
smoothing [8, 2.1]. Among many available (scatterplot, running-mean, kemeothers), we choose Gaus-
sian Process Regression (GPR) [25], which is an instance of kenugltbing. GPR is rooted in Bayesian
statistics, and enables to add physically meaningful constraints to thesedfesction (see 3.2, Appendix
C). GPR has several interesting features, such as the simplicity of thelyingegheory or its prediction
capacity in areas where data is scarce, which could help to artificially setha spectral resolution.

In Section 3 the measurement model is discussed, taking into account itheés\aspects just evoked (con-
dition monitoring, FRF estimation, non-parametric smoothing) .

3 FRF measurement, noise model and statistical properties of esti-
mators

To measure the FRF, the mechanical system under study is first exciteglshyatts, each producing periodic
excitations. More precisely, two shafts - the low pressure (LP) and prigksure(HP) - rotate at different
speeds (see Section 4) around the same axis.

! Single Input Single Output.



Since accelerometric data are resampled with respect to one shaft ontr (HP), we will consider one
source of excitation only and treat the other as noise. Such noise iseapzd as actutator noise in Fig. 1,
and results in an signal notedt) in the time domain. The mechanical system is excited (@y and outputs
the responseg(t) which is the sum of the pure response:tand of a noise term. Various preprocessing steps
such as antialiasing and digitization are included, before the Discrete Fotaiesform, implemented as an
FFT. With the notations of [20] we have by linearity :

Y(k) = Yo(k)+ Ny(k) 2)
U(k) = Uo(k)+ Nu(k) ©))

wherek corresponds to frequengy = % N andT; being respectively the length of recording ahdhe
sampling period Ny (k) and Ny (k) are the noise contributions and have been shown to be complex circular
normally distributed in a large number of situations (see Appendix A).

actuator system

noise noise

u(t)

Generator H Actuator »é >

Y

Antialiasing

Antialiasing

uaa(t) yaal(t)
Digitization Digitization
uaa(kTs) v v yaa(kTs)
FFT FFT
U(k) Y (k)

Figure 1: FRF measurement (adapted from [20]).

In Sections 3.1 and 3.2 we state the expressions of a classical estimatdf,&reRof its GPR counterpart.
In both it is admitted that the rotation speed of the motor is periodic, with negligibliéltions, so that we
consider the situation gderiodic excitation FRF measuremes opposed to random excitation measure-
ment (see [20, 2.6]). When explicitly available we write down the statisticaigtees of the estimators.

3.1 Maximum likelihood estimator of FRF under periodic excitation

As stated above, the estimator of the unknown ERFjwy) = Zg% isG(jwi) = % The error analysis

that reveals the statistical properties of this estimator is standard materialptakag from [20].

Provided that the signal was appropriately preprocessed (includimdylbaiting filtering), that the disturb-
ing noisesNy and Ny follow complex spherical normal laws and tHaf; (k) /Uy (k)| < 1 (see Appendix
B), then the estimator is unbiased.

Similarly, under the same type of hypothesis, the varianc& afin be approximated. These results are
summarized as follows :

ElG(jwr)] = Go(jwr) (4)

) ) o2 (k o2 (k o2, (k
Varl(ian)] = [Gotion) ({72t + Tts ~ ReGTra ) ©

whereo? (k), o3 (k) ando?; (k) are the variances and covariance of the disturbing noise components.



Variancereduction by cyclic averaging

The material of this paragraph is taken from [20, 2.5]. In order to redhe variance of the estimator
depicted above, cyclic averaging is applied. This means that succesdivédlocks taken from the same
long recording are averaged. Cyclic averaging needs the numbempfesato be an integer multiple of a
given integer, the period length. This can be achieved with the help ofghkepr, but is insured here by
computer resampling [23, 6].

Under the hypotheses that the disturbing nalégk), N, (k) is independent of the undisturbed signals
Uo(k), Yo (k) (which may not be true in closed loop contexts), thattheput-output data blocks’! (n), 3! (n), I =
1,2,..., M come from independent experiments where the noise contributions hagearfoments and are
independent, then the averaged estimator is unbiased:

Curs i) = gg:; ©)
ElGur(jwr)] = Goljwr) 7)
where

Ul(k) = DFTWM(1 :n)) (8)
vy = DFT@"(1:n)) ©)
ow = L3 ol (10

- M =0
P = L3 vl (11)

M 1=0

The variance of the estimator can be approximated by:

A G (wn)|® ¢ 6% (k) 6F(k) oyy (k)

VarlGnon) ~ (I (SEE - P R T)

where 63 (k), 6% (k), 6% (k) stand for sample variances and covariance, which definitions are given
Appendix B. It can be noticed that this term is divided/ly which was the aim of averaging. Nevertheless,
the above results depend on the validity of the hypotheses, and shoukhtedtwith care. Unfortunately,

it depends orYy andU), that are most of the time unknown. This means that another way to estimate the
variance of the estimator may be necessary.

3.2 GPR estimation of FRF

As remarked in the Introduction, the variance reduction in Section 3.1 ctirobght of as a honparametric
smoothing [8, 2], with the constraint that abscissa are taken in the diseteté Sequencieq fi } (1,0
defined in Section 3. In this article we explicitly choose a smoother of a sgéontinamely a Gaussian
Process Regressor, that belongs to the category of kernel smoagiegsions.

The mathematical problem is stated as follows:ylet f(x) + ¢ be a real or complex function of taken

in a vector space, subject to a random perturbation. In ourxgaselx can be associated respectively to
G(jwi) and to the frequency. We are given a finite sam{lg, x;) }i—1,....». Then we want to estimate the
probability law of the noiseless FRF in poinfté.;)}i=1.... », that can be different fronix; }. Technically,
what is looked for is the conditional law evaluatedkify which is noted (see [25]):

X, y, X (13)



wherey = (y1,...,yn)", X = (21,...,2,)7, Xs = (T41, ..., T4n, ). In order to computd, | X,,y, X

we first choose a priér.
f K(X,X) K(X, X,)
l £, ] NN(O’ l K(X.,X) K(X. X)) )
where K (X, X,) is an x n, matrix called the Gram matrix. The value &f depends on the choice of

the kernel that parametrizes the Gaussian process. Admitting thatxwbiegn are jointly Gaussian random
vectors such that:

X m, A C
RN
then (cf [25, A.2]) :
xly ~ N(m;+CB !y -my),A-CB'CT) (14)

Consequently the conditionnal law fiyfis (see [25, 2.2]):
£X.,y, X ~ N(K(X,X)(K(X, X)+0)y,
K(X., X,) - K(X.,X)(K(X,X)+o*I) 'K (X, X*)) (15)

whereK (X, X), K(X., X.), K(X,, X) are covariance matrices and whetgis the variance of the obser-
vation noise. In the particular case where we estinfatat the same frequencies as those in the measured
samples, theX = X, and:

fly, X ~ N(K(X X)(K(X X)+0)y,
K(X,X) = K(X, X)(K(X,X) + o) 'K (X, X)) (16)

Computational shortcuts

The computation of the mean and covariance of the estimator needs the invafrsidarge matrix. For
example, with the available data,= 8192 and four engines are considered at the same time. Since matrix
inversion need$®(n?), the exact computation is impossible in reasonable time. Consequently, we had to
compute approximate results. In this particular case, it turns out that thia{scgle of the data is very short.

The corresponding Gram matrix is then sparse, and sparse linearsselwey used to shrink computation
time. This will be made precise in following articles.

Model parameters

The result of the regression is fully determined by the Gram méfrixhe noise levet, and the measured
data. K depends on a kernel function, that usually depends on a small numbperasheters. They are
estimated during a calibration phase called “model selection” in the Machimaibgditterature. Details

are given in Appendix C.

Error analysis

The convergence df | X.,y, X to the regression functioB[y|x] is established in [25, 7], using equivalent
kernels. The variance of the estimator is directly given by the estimated ramismee, obtained by model
selection. Quantity that are equivalent to the bias can be computed in thsi@agentext of GPR, such as
the risk, or expected loss [25, 7.2]. This will be examined in further works

From the point of view of linear smoothers, bias and variance are ddjunete hard to compute. General
expressions can be written for linear smoothers [8, 3.4.2,3.8], but @ppatons are not available in our
particular case, up to our knowledge.

2 As discussed in [25, 2.7], it is not mandatory to choose zero mean .



4 System and data

A turbofan whose structure is presented by Fig. 2 is considered. Air fhe outside enters an intake, then
is successively compressed by the low-pressure (LP) and highypee@iP) compressors. Compressed air
passes to a combustion chamber, where it is mixed with fuel and burnt. Baipressors are powered by
turbines located at the rear of the engine, which transmit their energy tothgressors through two contra-
rotating shafts, the low-pressure (LP) shaft and the high-preskiffeghaft. Although turbofan condition
monitoring can be achieved in various ways, we take the stand to focusrati@its monitoring in this work.
Two accelerometers provide vibration measurements at a constant Siekjdericy. Since compressors and
turbines are fan-like components made of a varying number of blades ndoamthe shafts, it is expected
that their motion entails vibrations at frequencies which are multiples of Shedos.

LP Shaft HP Turbine

HP Shaft

LP Compressor LP Turbine

Figure 2: Turbofan engine. Simplified diagram of fan, low-pressuck tagh-pressure compressors and
turbines attached to their respective shafts.

The recordings under study were provided by the Health Monitoring irepat of SNECMA and cor-
respond to a dual-shaft turbofan mounted on a testbench, that uedeagmntinuous acceleration during
several minutes. They include raw vibration outputs of an accelerometgiec at 51kHz, as well as LP
and HP shaft angular velocity computed from raw keyphasor data angled at 6.25 Hz. Sample time
series are plotted in Fig. 3. Four recordings are currently used in thig stud
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Figure 3: (a) Raw accelerometric data; (b) LP shaft angular velocitynn rp
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In order to apply cyclic averaging -so that the signal is composed of ageinteumber of periods- we
resample the vibration measurements [23, 6] with 1024 samples per period.

Four subsamples whith length= 8192 are extracted from the whole signal vectors for regime values close
to 2000 rpm . Because of the relative slow increase of the regime, when camassationarity of vibration
signals.

5 Results

The main result of this section is the fact that the model selection step and tissi@aProcess Regression
were succesfully computed in reasonable time, given the fact that the donerfishe data is: = 4 x 8192,
which is very large for usual GPR problems as explained in Section 3.2.

We suppose that the parameté&fsando of the Gaussian Process have been adequately learnt from the data
thanks to model selection (see Appendix C).

Then we compute the me#ifj X, y, X and the covariance of the FRF estimator, that allow to plot confidence
interval. Fig. 4(top) shows a detail of both, on a limited order domain. Figottfin) also shows the four
individual FRF that were used for regression.
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Figure 4: FRF in the order domain (top) predicted mean and associatederardiinterval (bottom) super-
imposed FRF of all engines.

We notice that the FRF is almost everywhere included in the confidencedhtesvich is consistent with
the fact that the four engines are labelled as normal by the expert.

6 Conclusions and perspectives

In this article we have raised the issue of using FRF to perform nonpafariatnage Detection in aircraft
engine with vibration data. We have presented classical tools and morg oews, and confronted their
theoretical advantages and drawbacks. Preliminar results are avaiedlshow that Gaussian Process
Regression can be used to estimate the mean spectrum and associatehcerifitervals, in spite of the



size of the samplen(= 4 x 8192). Thorough examination on experimental grounds is necessary, spHgifi
concerning the estimation of the bias and variance of the two compared estimator

Future works will concern mainly:

e the evaluation of the capacity of these tools to perform damage detectiomgfitiois is our aim,
the current article has focused mainly on estimation tools. We expect to megfisglifficulties
because of the scarceness of fault data, related to the very high reliabaitgraft engines. This was
addressed for example by [5].

e the assessment of the computed FRF. Indeed there are many facts tldabeased to check the
validity of the FRF, such as the knowledge of the geometry of the compressarumber of blades,
etc...

¢ the validity of hypotheses given the available data: for example it is assumieithéhFT of the noise
contribution is circular complex normal. This should be tested, following [Z6F uniformity of the
data, i.e. the fact that all vibration recordings belong to healthy engih#ise dame regime, should
be verified. Reciprocally, the presence of outliers could be automaticatigwdised. This is related to
model selection, and to the problem of “multiple task learning”.

¢ the comparison between smoothers: the analytical expression of biaaréantte of the ML estimator
are available, but hard to estimate from data. The results given by reampaic techniques such as
bootstrap must be used to compare the empirical variance of ML and GPR testimhthe mean
FRF. Other aspects such as the computational load and the convergeadeo$ estimators might be
of interest, if easily available.

¢ the evaluation of other smoother: one main drawback of GPR is the factibatation noise variance
does not depend or. Some authors have extended GPR to heteroskedastic noise (see [R5, 9.3
Linear smoothers can also cope with the dependengddee “weighted smoothers”, [8, 3.2]).

¢ the relation with system identification in the frequency domain: non parametficesRmation is
meant to be a mere subroutine of system identification? The quality of estiméesithes that of
system identification. Can we measure the advantage of linear smoothing sptttdo the system
identification that occurs after FRF estimation ?

e various generalisations:

1. so far accelerometric data have been resampled with respect to tP shaf
can the estimation be extended to MIMO systems ?

can outlier frequencies be detected and discarded ?

what is the influence of nonlinear distortions on FRF estimates ?

a s~ N

can random excitation be taken into account, to take into account the stombuoioise ?
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A Noise contribution in the frequency domain

Following [3] we admit that the--component vectoX is circular complex normal with meanyxy and
covariancel y y if the vector[Re(X); Im(X)] is distributed as:

(] Belpx) | 1] Re(Sxx) —Im(Xxx)
Im(px)

Im(ZXx) Re(ZX)()
It is shown (see [3, 4.4], [20, 14.16]) that the Fourier coefficienta atationary time series with finite
moments converge asymptotically to a circular complex normal law whith indepeodmponents. In [26]
the quality of the normal approximation for small samples is assessed.

B Bias and variance of FRF estimators

The following Taylor series converges provided thst; (k)/Up(k)| < 1, i.e. if the Signal to Noise Ratio
(SNR) is large enough. Then it follows :

o Y(k)
G(jwr) = W (17)
_ 1+ Ny(k)/Yo(k)
= U TN () Tah) e
~ Goljwr)(1 %((]]:)))(1+ U((:))) (19)
When cyclic averaging is added, the following expressions are needed:
3 = LS w0 - o) (20)
W Mo1&
EY SR T ] (21)
T Mo1&
M
Fulh) = = S (V) ~ V)T — O(k) (22)

C Model selection for GPR

Model selection is aimed at estimating the hyperparameters of the covariamt®n which itself deter-
mines the Gram matri¥x’. The most popular covariance function is the squared exponential whjres-
sion is:

1

5@ — 70)°) (23)

k(zp,xzq) = J?exp(—

whereo; is the signal energy andhe characteristic length-scale of the signal. Keand X x be vectors of
points where is evaluated :

K(X,Xx) = (k(zi, %)) 1<i<m1<j<n (24)

SO ) >



The adequation between the data and the model is quantified by the margililabtiklenhose expression
is:

1 _ 1 n
logp(y|X) = —oy"(K+o3)7y — S log|K +o71| — - log(27) (25)

whereo™ is the noise level.

Given the data samplg(x;, y:) }ic1,n), the marginal likelihood is numerically optimized with respect to
hyperparameter&,, o, 1), thanks to appropriate algorithms such as the conjugate gradient [25, 5].



