Structural modal interaction of a four-degree-of-freedom bladed disk and casing model - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Computational and Nonlinear Dynamics Année : 2010

Structural modal interaction of a four-degree-of-freedom bladed disk and casing model

Résumé

Consideration is given to a very specific interaction phenomenon that may occur in turbomachines due to radial rub between a bladed disk and surrounding casing. These two structures, featuring rotational periodicity and axi-symmetry respectively, share the same type of eigenshapes, also termed nd-nodal diameter traveling waves. Higher efficiency requirements leading to reduced clearance between blade-tips and casing together with the rotation of the blade disk increase the possibility of interaction between these traveling waves through direct contact. By definition, large amplitudes as well as structural failure may be expected. A very simple two-dimensional model of outer casing and bladed disk is introduced in order to predict the occurrence of such phenomenon in terms of rotational velocity. In order to consider traveling wave motions, each structure is represented by its two $n_d$-nodal diameter standing modes. Equations of motion are solved first using an explicit time integration scheme in conjunction with the Lagrange multiplier method which accounts for the contact constraints, and then by the Harmonic Balance Method. While both methods yield identical results that exhibit two distinct zones of completely different behaviours of the system, HBM is much less computationally expensive.
Fichier principal
Vignette du fichier
Legrand_JCNDhal.pdf (354.59 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00522524 , version 1 (30-09-2010)

Licence

Paternité

Identifiants

Citer

Mathias Legrand, Christophe Pierre, Bernard Peseux. Structural modal interaction of a four-degree-of-freedom bladed disk and casing model. Journal of Computational and Nonlinear Dynamics, 2010, 5 (4), pp.13-41. ⟨10.1115/1.4001903⟩. ⟨hal-00522524⟩
485 Consultations
277 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More