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This contribution is devoted to a review of some recent results on existence, symmetry
and symmetry breaking of optimal functions for Caffarelli-Kohn-Nirenberg (CKN) and
weighted logarithmic Hardy (WLH) inequalities. These results have been obtained in a
series of papers1–5 in collaboration with M. del Pino, S. Filippas, M. Loss, G. Tarantello
and A. Tertikas and are presented from a new viewpoint.
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1. Two families of interpolation inequalities

Let d ∈ N∗, θ ∈ [0, 1], consider the set D of all smooth functions which are compactly

supported in Rd \ {0} and define ϑ(d, p) := d p−2
2 p , ac := d−2

2 , Λ(a) := (a− ac)
2 and

p(a, b) := 2 d
d−2+2 (b−a) . We shall also set 2∗ := 2 d

d−2 if d ≥ 3 and 2∗ := ∞ if d = 1

or 2. For any a < ac, we consider the two families of interpolation inequalities:

(CKN) Caffarelli-Kohn-Nirenberg inequalities3,4,6 – Let b ∈ (a + 1/2, a + 1] and

θ ∈ (1/2, 1] if d = 1, b ∈ (a, a+1] if d = 2 and b ∈ [a, a+1] if d ≥ 3. Assume

that p = p(a, b), and θ ∈ [ϑ(d, p), 1] if d ≥ 2. There exists a finite positive

constant CCKN(θ, p, a) such that, for any u ∈ D,

‖|x|−b u‖2 Lp
(Rd)

≤ CCKN(θ, p, a) ‖|x|−a ∇u‖2 θ
 L2

(Rd)
‖|x|−(a+1) u‖2 (1−θ)

 L2
(Rd)

.

(WLH) Weighted logarithmic Hardy inequalities3,4 – Let γ ≥ d/4 and γ > 1/2

if d = 2. There exists a positive constant CWLH(γ, a) such that, for any

u ∈ D, normalized by ‖|x|−(a+1) u‖ L2
(Rd)

= 1,

∫

Rd

|u|2 log
(

|x|d−2−2 a |u|2
)

|x|2 (a+1)
dx ≤ 2 γ log

[

CWLH(γ, a) ‖ |x|−a ∇u‖2
 L2

(Rd)

]

.

(WLH) appears as a limiting case3,4 of (CKN) with θ = γ (p − 2) as p → 2+.

By a standard completion argument, these inequalities can be extended to the set
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D1,2
a (Rd) := {u ∈  L1

loc(R
d) : |x|−a ∇u ∈  L2(Rd) and |x|−(a+1) u ∈  L2(Rd)}. We

shall assume that all constants in the inequalities are taken with their optimal

values. For brevity, we shall call extremals the functions which realize equality in

(CKN) or in (WLH).

Let C∗
CKN(θ, p, a) and C∗

WLH(γ, a) denote the optimal constants when admissible

functions are restricted to the radial ones. Radial extremals are explicit and the val-

ues of the constants, C∗
CKN(θ, p, a) and C∗

WLH(γ, a), are known.3 Moreover, we have

CCKN(θ, p, a) ≥ C
∗
CKN(θ, p, a) = C

∗
CKN(θ, p, ac − 1) Λ(a)

p−2

2p
−θ ,

CWLH(γ, a) ≥ C∗
WLH(γ, a) = C∗

WLH(γ, ac − 1) Λ(a)−1+ 1
4 γ .

(1)

Radial symmetry for the extremals of (CKN) and (WLH) implies that

CCKN(θ, p, a) = C∗
CKN(θ, p, a) and CWLH(γ, a) = C∗

WLH(γ, a), while symmetry break-

ing only means that inequalities in (1) are strict.

2. Existence of extremals

Theorem 2.1. Equality4 in (CKN) is attained for any p ∈ (2, 2∗) and θ ∈
(ϑ(p, d), 1) or θ = ϑ(p, d) and a ∈ (aCKN

⋆ , ac), for some aCKN

⋆ < ac. It is not at-

tained if p = 2, or a < 0, p = 2∗, θ = 1 and d ≥ 3, or d = 1 and θ = ϑ(p, 1).

Equality4 in (WLH) is attained if γ ≥ 1/4 and d = 1, or γ > 1/2 if d = 2, or for

d ≥ 3 and either γ > d/4 or γ = d/4 and a ∈ (aWLH

⋆ , ac), where a
WLH

⋆ := ac−
√

ΛWLH
⋆

and ΛWLH

⋆ := (d− 1) e (2d+1 π)−1/(d−1) Γ(d/2)2/(d−1).

Let us give some hints on how to prove such a result. Consider first Gross’

logarithmic Sobolev inequality in Weissler’s form7

∫

Rd

|u|2 log |u|2 dx ≤ d

2
log

(

CLS ‖∇u‖2
 L2

(Rd)

)

∀ u ∈ H1(Rd) s.t. ‖u‖ L2
(Rd)

= 1 .

The function u(x) = (2 π)−d/4 exp(−|x|2/4) is an extremal for such an inequality.

By taking un(x) := u(x + n e) for some e ∈ Sd−1 and any n ∈ N as test functions

for (WLH), and letting n → +∞, we find that CLS ≤ CWLH(d/4, a). If equality

holds, this is a mechanism of loss of compactness for minimizing sequences. On the

opposite, if CLS < CWLH(d/4, a), which is the case if a ∈ (aWLH

⋆ , ac) where aWLH

⋆ = a

is given by the condition CLS = C∗
WLH(d/4, a), we can establish a compactness result

which proves that equality is attained in (WLH) in the critical case γ = d/4.

A similar analysis for (CKN) shows that CGN(p) ≤ CCKN(θ, p, a) in the critical

case θ = ϑ(p, d), where CGN(p) is the optimal constant in the Gagliardo-Nirenberg-

Sobolev interpolation inequalities

‖u‖2 Lp
(Rd)

≤ CGN(p) ‖∇u‖2ϑ(p,d)

 L2
(Rd)

‖u‖2 (1−ϑ(p,d))

 L2
(Rd)

∀ u ∈ H1(Rd)

and p ∈ (2, 2∗) if d = 2 or p ∈ (2, 2∗] if d ≥ 3. However, extremals are not known

explicitly in such inequalities if d ≥ 2, so we cannot get an explicit interval of exis-

tence in terms of a, even if we also know that compactness of minimizing sequences
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for (CKN) holds when CGN(p) < CCKN(ϑ(p, d), p, a). This is the case if a > aCKN

⋆

where a = aCKN

⋆ is defined by the condition CGN(p) = C∗
CKN(ϑ(p, d), p, a).

It is very convenient to reformulate (CKN) and (WLH) inequalities in cylindrical

variables.8 By means of the Emden-Fowler transformation

s = log |x| ∈ R , ω = x/|x| ∈ S
d−1 , y = (s, ω) , v(y) = |x|ac−a u(x) ,

(CKN) for u is equivalent to a Gagliardo-Nirenberg-Sobolev inequality on the cylin-

der C := R× Sd−1 for v, namely

‖v‖2 Lp
(C) ≤ CCKN(θ, p, a)

(

‖∇v‖2
 L2

(C)
+ Λ ‖v‖2

 L2
(C)

)θ

‖v‖2 (1−θ)

 L2
(C)

∀ v ∈ H1(C)

with Λ = Λ(a). Similarly, with w(y) = |x|ac−a u(x), (WLH) is equivalent to
∫

C
|w|2 log |w|2 dy ≤ 2 γ log

[

CWLH(γ, a)
(

‖∇w‖2
 L2

(C)
+ Λ

)]

for any w ∈ H1(C) such that ‖w‖ L2
(C) = 1. Notice that radial symmetry for u means

that v and w depend only on s.

Consider a sequence (vn)n of functions in H1(C), which minimizes the functional

Ep
θ,Λ[v] :=

(

‖∇v‖2
 L2

(C)
+ Λ ‖v‖2

 L2
(C)

)θ

‖v‖2 (1−θ)

 L2
(C)

under the constraint ‖vn‖ Lp
(C) = 1 for any n ∈ N. As quickly explained below, if

bounded, such a sequence is relatively compact and converges up to translations

and the extraction of a subsequence towards a minimizer of Ep
θ,Λ.

Assume that d ≥ 3, let t := ‖∇v‖2
 L2

(C)
/‖v‖2

 L2
(C)

and Λ = Λ(a). If v is a mini-

mizer of Ep
θ,Λ[v] such that ‖v‖ Lp

(C) = 1, then we have

(t + Λ)θ = Ep
θ,Λ[v]

‖v‖2 Lp
(C)

‖v‖2
 L2

(C)

=
‖v‖2 Lp

(C)

CCKN(θ, p, a) ‖v‖2
 L2

(C)

≤ S
ϑ(d,p)
d

CCKN(θ, p, a)

(

t+ a2c
)ϑ(d,p)

where Sd = CCKN(1, 2∗, 0) is the optimal Sobolev constant, while we know from (1)

that lima→ac
CCKN(θ, p, a) = ∞ if d ≥ 2. This provides a bound on t if θ > ϑ(p, d).

An estimate can be obtained also for vn, for n large enough, and standard tools

of the concentration-compactness method allow to conclude that (vn)n converges

towards an extremal. A similar approach holds for (CKN) if d = 2, or for (WLH).

The above variational approach also provides an existence result of extremals

for (CKN) in the critical case θ = ϑ(p, d), if a ∈ (a1, ac) where a1 := ac −
√

Λ1 and

Λ1 = min{(C∗
CKN(θ, p, ac − 1)1/θ/ Sd)d/(d−1), (a2c C

∗
CKN(θ, p, ac − 1)1/θ/ Sd)d.

If symmetry is known, then there are (radially symmetric) extremals.3 Anticipat-

ing on the results of the next section, we can state the following result which arises

as a consequence of Schwarz’ symmetrization method (see Theorem 3.2, below).

Proposition 2.1. Let d ≥ 3. Then (CKN) with θ = ϑ(p, d) admits a radial extremal

if 5 a ∈ [a0, ac) where a0 := ac −
√

Λ0 and Λ = Λ0 is defined by the condition

Λ(d−1)/d = ϑ(p, d)C∗
CKN(θ, p, ac − 1)1/ϑ(d,p)/ Sd.

A similar estimate also holds if θ > ϑ(d, p), with less explicit computations.5



4

3. Symmetry and symmetry breaking

Define

a(θ, p) := ac − 2
√
d−1

p+2

√

2 p θ
p−2 − 1 , ã(γ) := ac − 1

2

√

(d− 1)(4 γ − 1) ,

ΛSB(γ) := 1
8 (4 γ − 1) e

(

π4 γ−d−1

16

)
1

4 γ−1
(

d
γ

)

4 γ
4 γ−1 Γ

(

d
2

)
2

4 γ−1 .

Theorem 3.1. Let d ≥ 2 and p ∈ (2, 2∗). Symmetry breaking holds in (CKN) if

either3,5 a < a(θ, p) and θ ∈ [ϑ(p, d), 1], or5 a < aCKN

⋆ and θ = ϑ(p, d).

Assume that γ > 1/2 if d = 2 and γ ≥ d/4 if d ≥ 3. Symmetry breaking holds

in (WLH) if 3,5 a < max{ã(γ), ac −
√

ΛSB(γ)}.

When γ = d/4, d ≥ 3, we observe that ΛWLH

⋆ = ΛSB(d/4) < Λ(ã(d/4)) with the

notations of Theorem 2.1 and there is symmetry breaking if a ∈ (−∞, aWLH

⋆ ), in the

sense that CWLH(d/4, a) > C∗
WLH(d/4, a), although we do not know if extremals for

(WLH) exist when γ = d/4.

Results of symmetry breaking for (CKN) with a < a(θ, p) have been established

first1,8,9 when θ = 1 and later3 extended to θ < 1. The main idea in case of (CKN)

is consider the quadratic form associated to the second variation of Ep
θ,Λ around a

minimizer among functions depending on s only and observe that the linear operator

Lp
θ,Λ associated to the quadratic form has a negative eigenvalue if a < a. Results3

for (WLH), a < ã(γ), are based on the same method.

For any a < aCKN

⋆ , we have C∗
CKN(ϑ(p, d), p, a) < CGN(p) ≤ CCKN(ϑ(p, d), p, a),

which proves symmetry breaking. Using well-chosen test functions, it has been

proved5 that a(ϑ(p, d), p) < aCKN

⋆ for p − 2 > 0, small enough, thus also proving

symmetry breaking for a− a(ϑ(p, d), p) > 0, small, and θ − ϑ(p, d) > 0, small.

Theorem 3.2. For all d ≥ 2, there exists2,5 a continuous function a∗ defined on

the set {(θ, p) ∈ (0, 1] × (2, 2∗) : θ > ϑ(p, d)} such that limp→2+ a∗(θ, p) = −∞
with the property that (CKN) has only radially symmetric extremals if (a, p) ∈
(a∗(θ, p), ac) × (2, 2∗), and none of the extremals is radially symmetric if (a, p) ∈
(−∞, a∗(θ, p)) × (2, 2∗).

Similarly, for all d ≥ 2, there exists5 a continuous function a∗∗ : (d/4,∞) →
(−∞, ac) such that, for any γ > d/4 and a ∈ [a∗∗(γ), ac), there is a radially sym-

metric extremal for (WLH), while for a < a∗∗(γ) no extremal is radially symmetric.

Schwarz’ symmetrization allows to characterize5 a subdomain of (0, ac) × (0, 1) ∋
(a, θ) in which symmetry holds for extremals of (CKN), when d ≥ 3. If θ = ϑ(p, d)

and p > 2, there are radially symmetric extremals5 if a ∈ [a0, ac) where a0 is given

in Propositions 2.1.

Symmetry also holds if a− ac is small enough, for (CKN) as well as for (WLH),

or when p → 2+ in (CKN), for any d ≥ 2, as a consequence of the existence of the

spectral gap of Lp
θ,Λ when a > a(θ, p).

For given θ and p, there is2,5 a unique a∗ ∈ (−∞, ac) for which there is symmetry

breaking in (−∞, a∗) and for which all extremals are radially symmetric when a ∈
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(a∗, ac). This follows from the observation that, if vσ(s, ω) := v(σ s, ω) for σ > 0,

then (Ep
θ,σ2Λ[vσ])1/θ−σ(2 θ−1+2/p)/θ2

(Ep
θ,Λ[v])1/θ is equal to 0 if v depends only on s,

while it has the sign of σ − 1 otherwise.

From Theorem 3.1, we can infer that radial and non-radial extremals for (CKN)

with θ > ϑ(p, d) coexist on the threshold, in some cases.

Numerical results illustrating our results on existence and on symmetry / sym-

metry breaking have been collected in Fig. 1 below in the critical case for (CKN).

a

θ

ac0

1

(1)

(2)

(3)

(a)

a

θ

ac0

1

(1)

(2)
(3)

(4)

(3)

(b)

Fig. 1. Critical case for (CKN): θ = ϑ(p, d). Here we assume that d = 5.
(a) The zones in which existence is known are (1) in which a ≥ a0, because extremals are achieved
among radial functions, (2) using the a priori estimates: a > a1, and (3) by comparison with the
Gagliardo-Nirenberg inequality: a > aCKN

⋆
.

(b) The zone of symmetry breaking contains (1) by linearization around radial extremals: a <

a(θ, p), and (2) by comparison with the Gagliardo-Nirenberg inequality: a < aCKN
⋆

; in (3) it is not
known whether symmetry holds or if there is symmetry breaking, while in (4) symmetry holds by
Schwarz’ symmetrization: a0 ≤ a < ac.
Numerically, we observe that a and aCKN

⋆
intersect for some θ ≈ 0.85.
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