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Abstract

When regression analysis is carried out in a prediction purpose, an evolution in the modeled
phenomenon between the training and the prediction stages obliges the practitioner to perform a new
and complete analysis. Similarly, when regression aims to explain the modeled phenomenon, a new
regression model must be estimated whenever the phenomenon or its study conditions change. This
paper shows how a previous regression analysis can be used for the estimation of the regression model
in a new situation avoiding a new and expensive collect of data. Two case studies are considered
in the paper. On the one hand, a regression model of the house price versus house and household
features is adapted from a city of the US South-East (Birmingham, AL) to a city of the US West
coast (San Jose, CA). On the other hand, the link between CO2 emissions and gross national product
in 1999 is analyzed based on a previous analysis dating from 1980.

1 Introduction

In Economic, as in many other fields, regression
analysis aims to both predict the future of phe-
nomena and to interpret the data at hand. In
a prediction purpose, one of the main assump-
tions is the absence of evolution in the modeled
phenomenon between the training and the predic-
tion stages. In the opposite case, a new regression
model should be estimated independently from the
previous analysis. For the same reasons, when the
goal of the regression analysis is the phenomenon
interpretation, studies of a same phenomenon but
in different situation (at different periods of time,
in different geographical places, etc.) are generally
carried out independently.

In this work, it is shown how a regression model,
used in order to predict or to explain a phe-
nomenon in a given situation, can be efficiently
adapted to a new situation. For this, adaptive
models for linear regression [4] and for mixture
of regressions [5] are considered. In a first analy-
sis, the goal is to predict house value in the city

of San Jose (California, West coast) from sev-
eral features as housing units characteristics or
socio-economic information about the households
that occupy those units. We will see that using
a regression model previously built for the city
of Birmingham (Alabama, South-East), with the
same variables, can leads to spare a new expen-
sive collect of data in the city of San Jose. In the
second study, a regression model of the CO2 emis-
sions according to the gross national product of
countries is used for explaining the link between
these two indicators. As in the previous study,
we will see that data from 1980 and especially the
regression model on these data can be useful for
the estimation of a regression model on the 1999’s
data. Moreover, the exhibited link between the
two regression models is informative and allows to
explain the different evolutions of the economical
politics of the considered countries.

The paper is organised as follows. Section 2
presents the two datasets whereas Section 3 briefly
review the methodology. Results are then pre-
sented and discussed in Section 4. Finally, Sec-
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tion 5 proposes some concluding remarks.

2 The data

In this work, two datasets with evolving popula-
tions will be studied. This section briefly presents
both datasets.

2.1 The American Housing Survey

dataset

The first dataset used in this study is the 1984
American Housing Survey (AHS) dataset. This is
a statistical survey funded by the United States
Department of Housing and Urban Development
(HUD) and conducted by the U.S. Census Bu-
reau. The AHS survey is the largest regular na-
tional housing sample survey in the United States
which aims to give each year an overview of the
housing conditions in 11 U.S. metropolitan areas.
This study focuses on two particular metropoli-
tan areas: the cities of Birmingham, Alabama
(South-East) and of San Jose, California (West
coast). Fourteen relevant features have been se-
lected among all available features for modeling
the housing market of Birmingham. The dataset
contains information on the number and charac-
teristics of housing units as well as the households
that inhabit those units. The selected features for
the study include the number of units in the prop-
erty (NUNITS), the number of rooms (ROOMS),
bedrooms (BEDRMS) and bathrooms (BATHS),
the monthly cost of the housing (ZSMHC), the an-
nual cost in maintenance of the unit (CSTMNT),
the monthly cost in electricity (AMTE), the num-
ber of cars of the household (CARS), the unit
surface (UNITSF), the annual salary of the ten-
ant (SAL1) and of the household (ZINC) and the
number of persons in the household (PER). Fi-
nally, based on these 12 features, the response
variable to predict is the value of the housing. The
model used is simplified in order to interpret the
results more easily: mainly we used a small set
of variables and a classical functional form (log-
linear) to explain housing prices. Indeed, even
if a great number of variables is available in the
American Housing Surveys, according to the lit-
erature and due to important collinearities, it is
sufficient to include some variables belonging to
each of the four classes of characteristics: dimen-
sions, comfort, structure (building) including the
housing and characteristics of its location. In ad-
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Figure 1: Housing value vs surface for Birming-
ham (AL, USA) and San Jose (CA, USA)

dition, to avoid the problem of numerous miss-
ing values in the fourth class (for instance one
third of the owners do not answer the question
”Is there a problem with crime in the neighbor-
hood”), proxy variables have been used to take
into account the quality of neighborhood with con-
trol for the segmentation of the market (personal
income, household size, number of cars owned).
Finally, in this provisional treatment, a simple
specification is used (no quadratic terms and no
crossed effects). A more complex specification or
mixes of several types of specifications constitute
directions for future work. The difference between
houses in Birmingham and San Jose is illustrated
by Figure 1 which presents the value of the houses
according to their surfaces.

The present work will show how a regression
model of the house value estimated for the city of
Birmingham can be adapted to the prediction of
the houses values in San Jose.

2.2 The CO2-GNP dataset

Economic aspects of diffusion of greenhouse gases
and their impact on environment play an impor-
tant role on the countries economies, and their
analysis have attracted a great interest in the last
twenty years [2, 8]. As pointed out by [9], the
study of such data could also be useful for coun-
tries with low GNP in order to clarify in which
development path they are embarking.
The objectives of this study is to investigate the
relationship and causality between gross national
product (GNP) and carbon dioxide gas (CO2)
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Figure 2: Emissions of CO2 per capita versus

GNP per capita in 1980 (left) and 1999 (right).

emissions to help current debates about emission
projections. This study will also aim to determine
typical economical politics of countries regarding
the environment. For this, the second dataset
studied in the present paper contains the CO2

emission per capita and the gross national prod-
uct per capita, for 111 countries in 1980 and 1999.
The sources of the data are The official United Na-

tions site for the Millennium Development Goals

Indicators and the World Development Indicators

of the World Bank. Figure 2 plots the CO2 emis-
sion per capita versus the logarithm of GNP per
capita for 111 countries, in 1980 (left) and 1999
(right).

This paper will show on this dataset how the
use of the 1980’s data can be helpful in the analy-
sis of 1999’s data, by improving the quality of the
regression models used to explain the relationship
between the gross national product and the CO2

emissions. Moreover, our analysis will allow to
give information about the evolution of this rela-
tionship from 1980 to 1999, and then to explain
the economical political choices of particular coun-
tries.

3 Adaptive models in regression

In this work, the adaptive regression models pro-
posed in [4] and [5] will be used to analyze and
understand the population evolution of the two
datasets presented in the previous section. This
section briefly reviews these adaptive regression
models.

3.1 Adaptive linear models

The general setting of regression analysis is to
identify a relationship (the regression model) be-

tween a response variable and one or several ex-
planatory variables. Adaptive linear models have
been defined in order to adapt an existing regres-
sion model to a new situation, in which the vari-
ables are identical but with a possible different
probability density distribution and the relation-
ship between response and explanatory variables
could have changed.

Linear models for regression In regression
analysis, the data S = {(x1, y1), ..., (xn, yn)}
which arise from a population P , are assumed to
be independent and identically distributed sam-
ples from an unknown distribution, where x =
(x(1), . . . , x(p)) ∈ R

p and Y ∈ R. In regression
studies, Y is considered as a stochastic variable
and x as a deterministic one. A general data
modeling problem is to identify the relationship
between the explanatory variable x (or covari-
ate) and the response variable Y (or dependent
variable). Both standard parametric and non-
parametric regression approaches start with the
following model:

Y = f(x,β) + ǫ, (1)

with ǫ ∼ N (0, σ2) and where β is a vector of real
regression parameters. The most common model
is the linear form:

f(x,β) = β0 +

d∑

i=1

βiψi(x), (2)

with β = (β0, β1, . . . , βd) ∈ R
d+1 are the regres-

sion parameters, and (ψi)1≤i≤d is a basis of regres-
sion functions. In particular, usual linear regres-
sion occurs when d = p and ψi(x) = x(i).

How to adapt a regression model to another

population? Let us assume that the estimation
of the regression function f has been obtained in
a preliminary study by using the sample S, and
that a new regression model has to be adjusted
on a new sample S∗ = {(x∗

1, y
∗
1), ..., (x

∗
n∗ , y∗n∗)},

measured on the same variables but arising from
another population P ∗ (n∗ is generally assumed to
be small). The new regression model on P ∗ can
be written:

Y |x∗ ∼ N (f(x∗,β∗), σ2),

with

f(x∗,β∗) = β∗0 +

d∑

i=1

β∗i ψi(x
∗).

3



Let us now precise the focus of adaptive linear
models by making the two following assumptions.
Firstly, the variables (Y, x) and (Y ∗, x∗) are as-
sumed to be the same but measured on two differ-
ent populations. Secondly, the size n∗ of the ob-
servation sample S∗ = (y∗i , x

∗
i )i=1,n∗ of population

P ∗ is assumed to be small compared to the num-
ber of observations of the reference population P .
Otherwise, the mixture regression model could be
estimated directly without using the training pop-
ulation.

We consider the following transformation model
between both regression functions for modeling
the link between both populations:

f(x∗,β∗) = φ(f(x,β)). (3)

Since the transformation model (3) proposed in
the previous section is a very general model, we
propose to assume that the transformation func-
tion φ has the following form:

φ(f(x,β)) = f(x,λβ)

with λ ∈ R
d+1. This transformation can be also

written in term of the regression parameters of
both models as follows:

β∗i = λiβi ∀i = 1, . . . , d, (4)

with λi ∈ R. Let us also notice that the regres-
sion functions ψi are assumed to be the same for
both regression models, which is natural since the
variables are identical in both populations.

A family of transformation models As the
number of parameters to estimate for the transfor-
mation (4) is equal to (d+1), learning this trans-
formation model is equivalent to learn a new re-
gression model from the sample S∗. It is therefore
necessary to reduce the number of free parameters
and that can be done by imposing constraints on
the transformation parameters λi. Then, a family
of 7 transformation models is considered, named
further Adaptive Linear Models, from the most
complex model (hereafter M0) to the simplest one
(hereafter M6):

• Model M0: β∗0 = λ0β0 and β∗i = λiβi, for
i = 1, ..., d. This model is the most complex
model of transformation between both popu-
lations P and P ∗, and is equivalent to learn-
ing a new regression model from the sam-
ple S∗.

• Model M1: β
∗
0 = β0 and β∗i = λiβi for i =

1, ..., d. This transformation model assumes
that both regression models have the same
intercept β0.

• Model M2: β∗0 = λ0β0 and β∗i = λβi for
i = 1, ..., d. This transformation model as-
sumes that the intercept of both regression
models differ by the scalar λ0 and all the
other regression parameters differ by the same
scalar λ.

• Model M3: β∗0 = λβ0 and β∗i = λβi for
i = 1, ..., d. This transformation model as-
sumes that all the regression parameters of
both regression models differ by the same
scalar λ.

• Model M4: β∗0 = β0 and β∗i = λβi for
i = 1, ..., d. This transformation model as-
sumes that both regression models have the
same intercept β0 and all the other regression
parameters differ by the same scalar λ.

• Model M5: β
∗
0 = λ0β0 and β∗i = βi for i =

1, ..., d. This transformation model assumes
that both regression models have the same
parameters except the intercept.

• Model M6: β∗0 = β0 and β∗i = βi for i =
1, ..., d. This model assume that both popu-
lations P and P ∗ have the same behavior.

The numbers of parameters to estimate for these
transformation models are presented in Table 2.
Remark that it is possible to consider interme-
diate models, by imposing specific constraints on
some parameters λi for given i ∈ {1, . . . , d}. The
practician could use his experimental knowledge
to introduce some intermediate models especially
useful for his application.

Estimation procedure and model selection

The estimation procedure is made of two main
steps corresponding to the estimation of the re-
gression parameters on the population P and the
estimation of the transformation parameters using
samples of the population P ∗. The natural way for
the first estimation step is to use the ordinary least
squares (OLS) procedure. Once the regression pa-
rameters of population P have been learned, the
parameters of the transformation models can also
be estimated using the OLS procedure. However,
by lack of space, the corresponding estimators are
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Model M0 M1 M2 M3 M4 M5 M6

Parameters numbers d+1 d 2 1 1 1 0

Table 1: Complexity (number of parameters) of the transformation models. We recall that the models
M0 and M6 correspond respectively to OLS on P ∗ and OLS on P .

not presented in this paper but can be found in [4].
Finally, the cross validation PRESS criterion [1] is
used in order to select the most appropriate model
for the data among the 7 Adaptive Linear Models.

3.2 Adaptive mixture models

As an alternative to linear models for modeling
complex systems, the mixture of regressions is
a popular approach which has been introduced
by [7] as the switching regression model. In par-
ticular, this model is often used in Economics for
modeling phenomena with different phases. It as-
sumes that the dependent variable Y ∈ R can be
linked to a covariate x = (1, x(1), ..., x(p)) ∈ R

p+1

by one of K possible regression models:

Y = xtβk + σkε, k = 1, ...,K (5)

where ε ∼ N (0, 1), βk = (βk0, ..., βkp) ∈
{β1, . . . , βK} is the regression parameter vector
in R

p+1 and σ2k ∈ {σ21 , . . . , σ
2
K} is the residual vari-

ance. The conditional density distribution of Y
given x is therefore:

p(y|x) =
K∑

k=1

πkφ(y|x
tβk, σ

2
k), (6)

where π1, ..., πK are the mixing proportions (with
the classical constraint

∑K
i=1 πk = 1), and

φ(·|xtβk, σ
2
k) is the Gaussian density parametrized

by its mean xtβk and variance σ2k. As for the
adaptive linear models, the new population P ∗,
for which we want to predict Y , is assumed to
be different from the training population P . The
mixture regression model for P ∗ can be written as
follows:

Y ∗ = x∗tβ∗k + σ∗kε
∗

p(y∗|x∗) =

K∗∑

k=1

π∗kφ(y
∗|x∗tβ∗k , σ

∗
k
2) (7)

with ε∗ ∼ N (0, 1), β∗k ∈ {β∗1 , . . . , β
∗
K∗} and σ∗k ∈

{σ∗1 , . . . , σ
∗
K∗}. In addition to the assumptions

made in the previous section, as both populations
have the same nature, each mixture is assumed to

have the same number of components (K∗ = K).
Under these assumptions, the goal is then to pre-
dict Y ∗ for some new x∗ by using both samples
S = (yi,xi)i=1,n and S∗.

A family of transformation models Follow-
ing the strategy of the linear case, the general
transformation model is considered:

β∗k = Λkβk, (8)

where Λk = diag(λk0, λk1, . . . , λkp)

σ∗k is free,

where diag(λk0, λk1, . . . , λkp) is the diagonal ma-
trix containing (λk0, λk1, . . . , λkp) on its diagonal
completed by zeros. The family of parsimonious
models is defined by imposing some constraints
on Λk:

• MM1 assumes that both populations are the
same population: Λk = Id is the identity ma-
trix,

• MM2 assumes that the link between popu-
lations is covariate and mixture component
independent:

– MM2a : λk0 = 1, λkj = λ and σ∗k =
λσk ∀1 ≤ j ≤ p,

– MM2b : λk0 = λ, λkj = 1 and σ∗k =
σk ∀1 ≤ j ≤ p,

– MM2c : Λk = λId and σ∗k = λσk,

– MM2d : λk0 = λ0, λkj = λ1 and σ∗k =
λ1σk ∀1 ≤ j ≤ p,

• MM3 assumes that the link between popula-
tions is covariate independent:

– MM3a : λk0 = 1, λkj = λk and σ∗k =
λkσk ∀1 ≤ j ≤ p,

– MM3b : λk0 = λk, λkj = 1 and σ∗k =
σk ∀1 ≤ j ≤ p,

– MM3c : Λk = λkId and σ∗k = λkσk,

– MM3d : λk0 = λk0, λkj = λk1 and σ∗k =
λk1σk ∀1 ≤ j ≤ p,
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• MM4 assumes that the link between popula-
tions is mixture component independent:

– MM4a : λk0 = 1 and λkj =
λj ∀1 ≤ j ≤ p,

– MM4b : Λk = Λ with Λ a diagonal ma-
trix,

• MM5 assumes that Λk is unconstrained,
which leads to estimate the mixture regres-
sion model for P ∗ by using only S∗.

Moreover, the mixing proportions are allowed to
be the same in each population or to be different
between both populations P and P ∗. In the latter
case, they consequently have to be estimated using
the sample S∗. Corresponding notations for the
models are respectively MM· and pMM·. Table 2
gives the number of parameters to estimate for
each model. If the mixing proportions are different
from P to P ∗, K− 1 parameters to estimate must
be added to these values.

Estimation procedure and model selection

As before, the estimation procedure is made of two
steps. The first step consists in estimating model
parameters for the reference population P whereas
the second one focuses on the estimation of the
link parameters. The estimation of the mixture re-
gression parameters β∗k are deduced afterward by
plug-in. Conversely to the case of linear models,
parameter estimation can not be done with the
standard OLS procedure and the estimation has
to be carried out by maximum likelihood using a
missing data approach via the EM algorithm [6].
Estimation details can be found in [5]. Finally,
in order to select among the transformation mod-
els previously defined the most appropriate model
of transformation between the populations P and
P ∗, we propose to use the PRESS criterion [1] or
the Bayesian Information Criterion (BIC, [11]).

4 Experimental results

The two adaptive strategies reviewed in the previ-
ous will be now applied to the AHS and CO2/GNP
datasets.

4.1 The housing market data

A semi-log regression model for the housing mar-
ket of Birmingham was learned using all the 1541
available samples and, then, the 7 adaptive linear
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Figure 3: MSE results for the Birmingham-San
Jose data.
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Figure 4: PRESS criterion for the Birmingham-
San Jose data.

models were used to transfer the regression model
of Birmingham to the housing market of San Jose.
In order to evaluate the ability of the adaptive lin-
ear models to transfer the Birmingham knowledge
to San Jose in different situations, the experiment
protocol was applied for different sizes of San Jose
samples ranging from 5 to 921 observations. For
each dataset size, the San Jose samples were ran-
domly selected among all available samples and
the experiment was repeated 50 times for averag-
ing the results. For each adaptive linear model,
the PRESS criterion and the mean squard error
(MSE) were computed, by using the selected sam-
ple for PRESS and the whole San Jose dataset for
MSE.

Figure 3 shows the logarithm of the MSE for the
different adaptive linear models regarding to the
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Model MM1 MM2a−c MM2d MM3a−c MM3d MM4a MM4b MM5

Param. 0 1 2 K 2K p+K p+K + 1 K(p+ 2)

Table 2: Number of parameters to estimate for each model of the proposed family.

Model 10 obs. 25 obs. 50 obs. 100 obs. 250 obs. all obs.

Model M0 3.5×107 576.9 386.1 336.8 310.7 297.5

Model M2 414.8 356.7 342.1 336.0 332.5 330.1
Model M6 1528.9 1528.9 1528.9 1528.9 1528.9 1528.9

Table 3: MSE results for the Birmingham-San Jose data.

size of the used San Jose samples. Similarly, Fig-
ure 4 shows the logarithm of the PRESS criterion.
Firstly, Figure 3 indicates that the model M6,
which corresponds to the Birmingham’s model,
is actually not adapted for modeling the housing
market of San Jose since it obtains a not satis-
fying MSE value. Let us notice that the curve
corresponding to the MSE of the modelM6 is con-
stant since the regression model has been learned
on the Birmingham’s data and consequently does
not depend on the size of the San Jose’s dataset se-
lected for learning. Secondly, the modelM0, which
is equivalent to OLS on the San Jose samples, is
particularly disappointing (large values of MSE) if
learned with a very small number of observations
and becomes more efficient for learning datasets
larger than 50 observations. The model M1 has
a similar behavior for small learning datasets but
turns out to be less interesting than M0 when the
size of the learning dataset is larger. These behav-
iors are not surprising since both models M0 and
M1 are very complex models and then need large
datasets to be correctly learned. Conversely, the
modelsM2 toM5 appear not to be sensitive to the
size of the dataset used for adapting the Birming-
ham model. Particularly, the model M2 obtains
very low MSE values for a learning dataset size
as low as 20 observations. This indicates that the
modelM2 is able to adapt the Birmingham model
to San Jose with only 20 observations. Moreover,
Table 3 indicates that the modelM2 provides bet-
ter prediction results than the model M0 for the
housing market of San Jose for learning dataset
sizes less than 100 observations. Naturally, since
the model M0 is more complex, it becomes more
efficient than the model M2 for larger datasets
even though the difference is not so big for large
learning datasets. Figure 4 shows that the PRESS
criterion, which will be used in practice since it is
computed without a validation dataset, allows the

practician to successfully select the most appro-
priated transfer model. Indeed, it appears clearly
that the PRESS curves are very similar to the
MSE curves computed on the whole dataset. Fi-
nally, in such a context, the transformation pa-
rameters obtained by the different adaptive linear
models can be interpreted in an economic way and
this could be interesting for economists. In partic-
ular, the estimated transformation parameters by
the modelM2 with the whole San Jose dataset are
λ0 = 1.439 and λ = 0.447. The results obtained,
mainly a proportionality between the parameters,
suggest that, in this case, the contribution of each
characteristic to the growth of the housing value
in the second city is just one half of what it is
in the first one, while, in the same time, the ba-
sic price in the second city is one time and a half
greater. This results from a simple regulation pro-
duced by the market, if the constraint of the same
specification for the two cities is validated by the
statistical results. In terms of MSE and PRESS
we obtain good indicators of the validation of this
constraint within the scope defined for this initial
approach.

To summarize, this experiment has shown that
the adaptive linear models are able to transfer the
knowledge on the housing market of a reference
city to the market of a different city with a small
number of observations. Furthermore, the inter-
pretation of the estimated transformation param-
eters could help the practician to analyze in an
economic way the differences between the studied
populations.

4.2 The CO2-GNP data

A mixture of second order polynomial regressions
seems to be particularly well adapted to fit the link
between the CO2 emissions and the log-GNP, and
will be used in the following. For the 1980’s data,

7



30% of the 1999’s data (n∗ = 33)
model BIC PRESS MSE
pMM2a 13.21 4.01 4.77
pMM2b 12.89 4.57 3.66

pMM2c 12.57 4.16 4.55
pMM2d 17.13 4.38 4.77
pMM3a 15.92 4.49 4.66
pMM3b 16.01 5.59 4.11
pMM3c 15.75 6.17 4.23
pMM3d 22.72 4.49 4.66
UR 27.08 7.46 7.66
MR 32.89 5.54 5.11

50% of the 1999’s data (n∗ = 55)
model BIC PRESS MSE
pMM2a 14.10 4.76 3.88
pMM2b 13.99 4.10 3.77

pMM2c 14.07 5.29 4.22
pMM2d 17.82 4.45 4.66
pMM3a 18.07 4.27 4.66
pMM3b 18.00 5.62 4.44
pMM3c 17.60 5.62 4.33
pMM3d 26.61 6.12 4.55
UR 20.87 7.95 7.21
MR 39.69 4.82 4.77

70% of the 1999’s data (n∗ = 77)
model BIC PRESS MSE
pMm2a 15.15 5.51 8.21
pMM2b 14.82 3.89 3.77
pMM2c 14.71 4.53 4.44
pMM2d 19.00 5.83 4.99
pMM3a 18.96 4.79 4.44
pMM3b 19.06 4.34 4.22
pMM3c 18.98 5.26 3.77
pMM3d 27.57 5.55 4.88
UR 22.08 8.00 7.10
MR 43.91 5.06 3.33

(n∗ = 111)
model BIC PRESS MSE
pMM2a 15.51 3.83 3.77
pMM2b 15.54 3.87 4.77
pMM2c 15.34 4.13 4.11
pMM2d 20.14 4.41 4.33
pMM3a 20.19 4.48 4.77
pMM3b 20.03 4.41 4.33
pMM3c 20.06 4.35 3.44
pMM3d 29.55 4.76 5.44
UR 23.62 7.53 6.99
MR 47.19 3.66 2.89

Table 4: MSE on the whole 1999’s sample, PRESS and BIC criterion for the 8 adaptive mixture
models (pMM2a to pMM3d), usual regression model (UR) and classical regressions mixture model
(MR), for 4 sizes of the 1999’s sample: 33, 55, 77 and 111 (whole sample). Lower BIC, PRESS and
MSE values for each sample size are in bold character.
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Figure 5: Emissions of CO2 per capita versus GNP per capita in 1980 (left) and 1999 (right) and
estimated adaptive mixture models (with model pMM2c for 1999).
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two groups of countries are easily distinguishable:
a first minority group (about 25% of the whole
sample) is made of countries for which a grow
in the GNP is linked to a high grow of the CO2

emission, whereas the second group (about 75%)
seems to have more environmental political orien-
tations. This country discrimination in two groups
is more difficult to obtain on the 1999’s data: it
seems (from Figure 2) that countries which had
high CO2 emission in 1980 have adopted a more
environmental development than in the past, and
a two-component mixture regression model could
be more difficult to exhibit.

In order to help this distinction, adaptive mix-
ture models are used to estimate the mixture re-
gression model on the 1999’s data. The eight mod-
els pMM2a to pMM3d (since pMM4a and pMM4b

are equivalent to pMM2a and pMM2c for p = 1),
classical mixture of second order polynomial re-
gressions with two components (MR) and usual
second order polynomial regression (UR) are con-
sidered. Different sample size of the 1999’s data
are tested: 30%, 50%, 70% and 100% of the S∗ size
(n∗ = 111). The experiments have been repeated
20 times in order to average the results. Table 4
summarizes these results: MSE corresponds to
the mean square error, whereas PRESS and BIC
are the model selection criteria introduced in Sec-
tion 3. In this application, the total number of
available data in the 1999 population is not suf-
ficiently large to separate them into two training
and test samples. For this reason, MSE is com-
puted on the whole S∗ sample, although a part of
it has been used for the training (from 30% for the
first experiment to 100% for the last one). Con-
sequently, MSE is a significant indicator of pre-
dictive ability of the model when 30% and 50%
of the whole dataset are used as training set since
70% and 50% of the samples used to compute the
MSE remain independent from the training stage.
However, MSE is a less significant indicator of pre-
dictive ability for the two last experiments and the
PRESS should be preferred in these situations as
indicator of predictive ability.

Table 4 first allows to remark that the 1999’s
data are actually made of two components as in
the 1980’s data since both PRESS and MSE are
better for MR (2 components) than UR (1 com-
ponent) for all sizes n∗ of S∗. This first result
validates the assumption that both the reference
population P and the new population P ∗ have
the same number K = 2 components, and conse-

quently the use of adaptive mixture of regression
does make sense for this data. Secondly, adaptive
mixture models turns out to provide very satis-
fying predictions for all values of n∗ and particu-
larly outperforms the other approaches when n∗

is small. Indeed, both BIC, PRESS and MSE
testify that these models provide better predic-
tions than the other studied methods when n∗ is
equal to 30%, 50% and 70% of the whole sample.
Furthermore, it should be noticed that adaptive
mixture model provide stable results according to
variations on n∗. In particular, the models pMM2

are those which appear the most efficient on this
dataset and this suggests that the link between
both populations P and P ∗ is mixture component
independent. This application illustrates well the
interest of combining informations on both past
(1980) and present (1999) situations in order to
analyze the link between CO2 emissions and gross
national product for several countries in 1999, es-
pecially when the number of data for the present
situation is not sufficiently large. Moreover, the
competition between the adaptive mixture mod-
els is also informative. Indeed, it seems that three
models are particularly well adapted to model the
link between the 1980’s data and those of 1999’s
data: pMM2a, pMM2b and pMM2c. The partic-
ularity of these models is that they consider the
same transformation for both classes of countries,
which means that all the countries have the same
kind of evolution.
The estimated mixture of two regression models
on the 1980’s data is:

CO2 = 26.96 − 9.62 log(GNP ) + 0.88 log(GNP )2

CO2 = 13.42 − 4.57 log(GNP ) + 0.40 log(GNP )2

with respective probability π1 = 0.26 and π2 =
0.74 and residual variances σ21 = 3.10 and σ21 =
0.55. The model for the 1999’s data obtained with
model pMM2c (for the whole sample size) is ob-
tained with a link parameter λ = 1.26:

CO2 = 33.92 − 12.1 log(GNP ) + 1.11 log(GNP )2

CO2 = 16.89 − 5.75 log(GNP ) + 0.50 log(GNP )2

with π1 = 0.15, σ∗21 = 4.9, π2 = 0.85 and σ∗21 =
0.87.

These results are illustrated by Figure 5. One
can first remark that there are still two groups
of countries: the first group of countries has a
low ratio CO2/GNP whereas the second one as
a highest ratio. Without trying to generalize, the
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presence of two types of countries may indicate
the existence of two different environmental pol-
itics. In particular, one can remark that USA,
Canada and Australia remain in the group of high
CO2/GNP ratio whereas Belgium, Netherlands,
Finland and New Caledonia have moved from
the high CO2/GNP group to the low CO2/GNP
group.

This experiment are therefore shown that the
use of adaptive models for switching regression can
help the practician in understanding and inter-
prating the evolution of the studied phenomenum.

5 Conclusion

When carrying out a regression analysis to analyze
a phenomenon which have already been studied in
different conditions, adaptive models can help to
exploit the previous analysis in order to emphasize
the quality of the current one. In this paper, we
have shown how a regression model predicting the
house value can be adapted from the US South-
East to the US West coast, and how the regression
of the CO2 emissions in function to the gross na-
tional product in 1999 can be estimated by using
information about the same analysis in 1980. In
such contexts, the adaptive models proposed in [4]
and [5] can help the practician in both improving
the prediction quality and for understanding the
evolution of the studied phenomenon. Let us fi-
nally notice that similar models exist in a classifi-
cation context [3, 10] as well and allow to classify
observations in a situation different from the one
in which the classification rule has been estimated.
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