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Abstract

This paper deals with systems of parametric equa-
tions over the reals, in the framework of inter-
val constraint programming. As parameters vary
within intervals, the solution set of a problem may
have a non null volume. In these cases, an inner
box (i.e., a box included in the solution set) instead
of a single punctual solution is of particular inter-
est, because it gives greater freedom for choosing
a solution. Our approach is able to build an inner
box for the problem starting with a single point so-
lution, by consistently extending the domain of ev-
ery variable. The key point is a new method called
generalized projection.
The requirements are that each parameter must oc-
cur only once in the system, variable domains must
be bounded, and each variable must occur only
once in each constraint. Our extension is based on
an extended algebraic structure of intervals called
generalized intervals, where improper intervals are
allowed (e.g. [1,0]).

1 Introduction
The purpose of this paper will be illustrated on a simple ex-
ample of signal relay positioning.

The situation is as follows.m units are deployed on an
area, each of them being equipped with a transceiver. Because
of the limited power of their transceivers, the units cannot
communicate. The question is to position a relay such that all
units get connected.

We denote(ai, bi) the coordinates of theith unit position,
anddi its distance from the relay. Assume first that allai, bi

anddi are fixed. Then, the model consists inm simple dis-
tance equations and is easily solved by any traditional alge-
braic or numerical technique. Since the system is probably
unfeasible, a least-square method can provide a point making
each distance being as close as possible to the desired value
di.

Unfortunately, this model suffers from three serious limi-
tations:

• Distances should not be fixed. The distancedi must be
neither more than the transceiver rangedi, nor less than

a lower bounddi, say, because of the damaging loop ef-
fect. Hence, distances must rather be assigned intervals
d1, ...,dm.

• Positions of units are not fixed neither. They usually
patrol around their position and can move in a boxai ×
bi to pick up the signal.

• Providing a single solution(x, y) is often not realistic.
E.g., an antenna cannot be installed exactly at a pre-
cise position in presence of obstacles. Therefore, one
is rather interested by a boxx×y such that any position
chosen in this box is appropriate. Obviously, the wider
the box, the better.

Finally, our problem is defined as a set of constraintsci(x, y)
(1 ≤ i ≤ m), with ci(x, y) iff

∃(ai, bi, di) ∈ (ai×bi×di) (x− ai)2 + (y − bi)2 = d2
i .

A solution of our problem is a tuple(x, y) such that for all
i ∈ [1..n], ci(x, y) is true and our goal is to build a so-called
inner boxx × y, in which each point(x, y) is a solution
[Wardet al., 1989]. Classical interval analysis and constraint
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Figure 1: The relay positioning problem

programming over the reals provide well-known algorithms
for handling systems of equations with continuum of solu-
tions [Benhamou and Goualard, 2000; Silaghiet al., 2001;
Vu et al., 2002]. Nonetheless, they are not adapted for build-
ing inner boxes when the system involves existentially quan-
tified parameters (especially when the system is not square



w.r.t. the parameters). Some techniques either based on
modal intervals[Herreroet al., 2005], or Newton-like ex-
istence theorems[Goldsztejn, 2006] can detect inner boxes
in presence of parameters, but one needs to enforce a whole
branch-and-bound process to get an answer. Such a process is
heavy and leads to disastrous computation time as the dimen-
sionn increases (merely because it tries to describe a (n-1)-
dimension frontier with very small boxes). Worse, it is never
sure that an inner box will be returned at the end.

We propose in this paper an original method for building
an inner box around an initial solution of the parameter-free
problem. This method starts with a degenerate box (a box
reduced to a point, that can be obtained using a least-square
method, for example) and tries successively to enlarge the
dimensions of the box, while proving that the current box
remains an inner box. Domain extension has already been
achieved in case of parameter-free inequalities by defining an
univariateextrema function and computing its left most and
right most solutions of a selected variable, using a Newton
like method[Collavizzaet al., 1999]. Our new extension al-
gorithm works for parametric equations, thus subsuming in-
equalities and addressing more situations. It essentially ex-
tends one variable at a time and the resulting box depends
on the order in which variables are selected. First of all, the
functions we can handle arearithmeticalfunctions.

Definition 1.1 (Arithmetical function) f is said to be an
arithmetical function, if the formal expressionf(x) matches
the following recursive definition:

• f(x) = xi, with i ∈ [1..n].
• f(x) = c, wherec is a constant inR.

• f(x) = φ(g(x)), whereg is an arithmetical function,
andφ is a “basic” function such assqr, sqrt, sin, . . .

• f(x) = g(x)?h(x) whereg andh are arithmetical func-
tions, and? is a binary operator in{+,−,×, /}.

The keystone of our domain extension is thegeneralized
projection which will be introduced in the theoretical con-
text of modal interval analysis. Informally, our method
uses an inner box characterized by a generalized inclusion
asf(x) ⊆ [2,−1]. We know that, as long asf(x) ⊆ [0, 0], x
is an inner box. Hence, we “enlarge”x as much as we can by
considering a right-hand side “enlarged” to[0, 0]. We propa-
gate this enlargement through the syntactic tree off down to
the leaf representingx.

2 Modal interval analysis
The theory of modal intervals has been developed by Span-
ish researchers since the 1980’s[Gardẽnes et al., 1985;
2001]. It is a nice framework to deal with quantifiers in inter-
val computations.

A simpler widely-adopted formulation of this theory has
recently been proposed[Goldsztejn, 2005], and our next out-
line of modal intervals shall conform to this proposal.

First, let us define the general situation. Given a function
f of variablesx = (x1, . . . , xn)T and a set of parameters
v = (v1, . . . , vp)T , the solution set under study is

{x ∈ Rn | (∃v ∈ v
)

f(x, v) = 0}.

With classical interval arithmetics, evaluating a real-valued
componentfi with interval vector operandsx andv yields an
intervalz satisfying(∀x ∈ x

)(∀v ∈ v
)(∃z ∈ z

) | z = f(x, v).
Such a relation is not adequate for detecting an inner box.
One would rather look for an intervalz satisfying(∀z ∈ z

)(∀x ∈ x
)(∃v ∈ v

) | z = f(x, v),
thus0 ∈ z implies thatx is an inner box.

Modal intervals analysis is an efficient tool for handling
expressions built from intervals with associated quantifiers,
paying special attention to the semantics behind the expres-
sion. The underlying structure of this theory is an extended
set of intervals, calledgeneralized intervals.

2.1 Generalized intervals
A generalized interval [Kaucher, 1980; Shary, 2002] is any
pair [a, b] of reals, without imposinga ≤ b.

Here are some examples of generalized intervals:
[0, 1], [1, 0], [−1, 1], [1,−1], [0, 0]. If x is a generalized
interval[a, b], we denotex := a andx := b.
KR stands for the set of generalized intervals. It can be

split into two subsets: the setIR of so-calledproper inter-
vals, those whose bounds are in increasing order, and the set
of improper intervals, those whose bounds are in strictly de-
creasing order. Hence,x is proper ifx ≤ x andx is improper
if x > x. It is convenient to swap the endpoints of a gen-
eralized interval. For this end, thedual operator has been
introduced :

dual (x) := [x,x]
The pro operator for an interval is also defined to refer to
its underlying set of reals (once the endpoints have been re-
ordered properly).

pro (x) :=
{

x if x ∈ IR
(dual x) otherwise

Finally,KR is equipped with the following inclusion order:

x ⊆ y ⇐⇒ x ≥ y ∧ x ≤ y. (1)

E.g.,[2,−4] ⊆ [1,−3] ⊆ [0, 0] ⊆ [−3, 1] ⊆ [−4, 2].
KR is a complete lattice with respect to this inclusion. The

meetandjoin of two intervals are respectively

x
∧

y = max{z | z ⊆ x∧z ⊆ y} = [max{x,y}, min{x,y}]
x

∨
y = min{z | x ⊆ z∧y ⊆ z} = [min{x,y}, max{x,y}]

A generalized interval arithmetic is defined in[Kaucher,
1980]. Every binary operator and basic function (see Defini-
tion 1.1) is defined is such a way that it extends its counterpart
in classical interval arithmetic. E.g., the addition inKR is :

x + y := [x + y,x + y],

so that[1, 2] + [3, 5] = [4, 7] matches the result of classical
interval addition, and[1, 2] + [5, 3] = [6, 4]. This extended
arithmetic keeps the fundamental property of inclusion iso-
tonicity (with the inclusion order (1)). Furthermore,KR is
a group for addition and multiplication of zero-free intervals.
The opposite ofx is−(dual x), the inverse is(1/(dual x)).
E.g.,[−1, 2] + [1,−2] = [0, 0], [1, 4]× [1, 0.25] = [1, 1].



2.2 Main theorem
By chaining the basic arithmetic operators and functions, one
can evaluate any expression with generalized intervals ar-
guments. The theory of modal intervals has provided the
following important interpretation[Gardẽnes et al., 2001;
Goldsztejn, 2005]:

Proposition 2.1 Let φ : Rn × Rp → R such that each com-
ponent ofv has only one occurrence inφ(x, v). Letx ∈ IRn,
v ∈ IRp and z := f(x,dual (v)). If z is improper then(∀z ∈ pro (z)

)(∀x ∈ x
)(∃v ∈ v

)
z = φ(x, v).

Up to now, this proposition was mainly used as atest for
inner boxes (e.g.,[Grand́on and Goldsztejn, 2006]). We detail
this test in the next subsection.

2.3 Inner box test
Consider a set of constraintsci (1 ≤ i ≤ m), each constraint
being a parametric equationfi(x, v) = 0 with fi : Rn × Rp.
Assume that every componentvj (1 ≤ j ≤ p) only appears
once in the whole system. To check if a given boxx is inner,
evaluatef(x, dual (v)). The result is a vectorz ∈ KRm. If
z ⊆ 0 thenx is an inner box. Indeed, for alli ∈ [1..m],

(∀zi ∈ pro (zi)
)(∀x ∈ x

)(∃v ∈ v
)

zi = fi(x, v).

Sincezi ⊆ 0 ⇐⇒ 0 ∈ pro (zi) then
(∀x ∈ x

)(∃v ∈ v
)

fi(x, v) = 0.

Let us denotevi the vector of parameters involved inci. Then(∀x ∈ x
)(∃vi ∈ vi

)
fi(x, vi) = 0 is true for alli ∈ [1..m],

and this implies
(∀x ∈ x

)(∃v ∈ v
)

f(x, v) = 0.
As a new result, we will show that Proposition 2.1 can also

be used as a constructive tool for inner boxes. Our technique
combines this modal interval analysis result with a constraint
programming concept calledprojection. Next section intro-
duces the latter and expounds our contribution.

3 A Generalized Interval Projection
Let us first consider a real-valued arithmetical functionf :
Rn ×Rp → R. We split variables intox ∈ R andy ∈ Rn−1,
while v ∈ Rp is the vector of parameters. Thus, with no loss
of generality, we shall writef(x, y, v).

This section gives a technique to enlarge the domain of a
variable that has only one occurrence1 in the expression of
the function2, with given domains for other variables and pa-
rameters. So we assumex has only one occurrence inf , and
fix once for ally ∈ IRn−1 andv ∈ IRp.

This technique handlesx (the domain ofx) as a variable
and tries to find a solution inKR to some interval relation.
We work at the interval level, which must be sharply distin-
guished from the usual standpoint of interval analysis: In-
stead of solving an equation of real variable/parameters and

1This is a limitation due to thedependencyproblem of interval
arithmetic. It can be solved by applying a fixed point algorithm over
the multi-ocurrence variable, but this is out of scope of this article.

2This presentation is done for one constraint. In presence of sev-
eral constraints, the same operation is performed for each constraint
and the intersection of the obtained intervals is returned.

using intervals as a way to represent an infinite number of
values, we solve an equation of interval variable and look for
one interval solution.

To be applied, this technique requires that the variablex
has a domain, i.e., a lower bound and an upper bound, w.r.t.
the inclusion order defined by (1). So there must be intervals
xl andxu such thatxl × y is the initial inner box we want
to enlarge, andxu is the domain of all possible values forx.
Most of the time, it is easy to provide such an upper bound.
Both bounds are proper. We can finally write

xl ⊆ x ⊆ xu. (2)

Our goal is to find a maximal intervalx ∈ KR (w.r.t. the
inclusion defined by (1)) such that,

x satisfies (2) and f(x,y, (dual v)) ⊆ [0, 0],

i.e., such thatx both satisfies the domain constraint and the
inner test. Iff is linear, some methods already tackle this
problem[Markov et al., 1996; Shary, 1996; 2002; Sainzet
al., 2002]. Consider now the (slightly) more general problem
of finding a maximalx such that

x satisfies (2) and f(x,y, (dual v)) ⊆ z, (3)

with z ∈ KR such that

f(xl,y, (dual v)) ⊆ z ⊆ f(xu,y, (dual v)). (4)

Notice that a maximal interval satisfying (3-4) is not neces-
sarily a maximal inner extension ofxl in xu.

Using Definition 1.1, we can recursively solve (3) by iso-
lating the subexpression containingx and applying one of the
three “elementary” projections detailed below.

3.1 Overview
The recursion consists in reducing (3-4) to a simpler relation

x satisfies (2) and g(x,y, (dual v)) ⊆ z′, (5)

whereg is a subexpression off , andz′ satisfies

g(xl,y, (dual v)) ⊆ z′ ⊆ g(xu,y, (dual v)). (6)

Relation (5-6) must be a sufficient condition to (3-4) in the
sense that a maximalx ∈ KR satisfying (5-6) must also be a
maximalx ∈ KR satisfying (3-4).

Given f , x, y, v andz, we detail now how to compute
an appropriatez′, dealing with three different cases. These
cases are related to the syntactic decomposition off given by
Definition 1.1. The base case is straightforward. The other
cases lie on three concepts:theoretical projection, selection
andfiltering.

3.2 Base case (f(x, y, v) = x)
By hypothesis, (4) holds, i.e.,xl ⊆ z ⊆ xu. Hence, a maxi-
malx such thatx satisfies (2) and(x ⊆ z) is z itself.

3.3 Basic function (f(x, y, v) = φ(g(x, y, v)))
• Theoretical projection
For clarity, we replaceg(x,y, (dual v) by the symbolg.
Since every basic functionφ is piecewise strictly monotonic,



hence piecewise invertible, for anyz ∈ KR, a disjunction of
inclusions

(g ⊆ z1) or (g ⊆ z2) or . . .

can formally be derived fromφ(g) ⊆ z, regardless of condi-
tion (2). For example,

exp(g) ⊆ [1, 2] ⇐⇒ g ⊆ [0, log(2)],

g2 ⊆ [4, 0] ⇐⇒ g ⊆ [2, 0] or g ⊆ [0,−2].

Notice that ifφ = sqr, pro (z) cannot include negative
values, so that the square root is always well defined. In-
deed, by hypothesis, (4) holds. Ifz is proper, thenz ⊆
g(xu,y, (dual v))2 and g(xu,y, (dual v))2 ≥ 0 implies
pro (z) ≥ 0. Otherwise,g(xl,y, (dual v))2 ⊆ z, i.e.,
pro (z) ⊆ pro (g(xl,y, (dual v))2) which again implies
pro (z) ≥ 0. This symmetry in the domain ofsqrt and the
image ofsqr is obviously valid for every basic function.

As soon asφ is trigonometric, the disjunction includes an
infinity of terms (which justifies the “theoretical” qualifier):

cos(g) ⊆ [0.5, 1] ⇐⇒ g ⊆ [π/3, π/2] or . . .

All intervals in the (possibly infinite) sequence share both the
same proper/improper nature and the same diameter. Fur-
thermore, either their proper projections are all disjoint (i 6=
j =⇒ pro (zi)∩pro (zj) = ∅), either they all intersect. They
cannot however overlap more than a bound. One may won-
der if two overlapping intervalsg1 andg2 can be merged,
i.e., if the condition(g ⊆ z1) or (g ⊆ z2) can be replaced by
g ⊆ (z1 ∨ z2). This is not allowed sinceg ⊆ (z1 ∨ z2) is
only a necessary condition (as counter-example,g := [−1, 1]
satisfiesg ⊆ [0, 2] ∨ [−2, 0] = [−2, 2] but neither satisfies
g ⊆ [0, 2] nor g ⊆ [−2, 0]). In contrast,g ⊆ (z1 ∧ z2) is
a sufficient but stronger condition, and maximality is lost (no
solution can even be found). Thus, no merging of any kind
can be done. Summing up, solving (3) boils down to solving

x satisfies (2) and g(x,y, (dual v))) ⊆ zj (7)

for onezj in the sequence. We can now avail ourselves of the
constraint on the domain ofx to selectandfilter a feasible
interval in this sequence.Selectionmeans that we pick an
intervalzj such that a solutionx of (7) exists.Filtering means
that we find the largestz′ ⊆ zj such that (6) is satisfied.
• Selection

Relation (2) allows us to keep only a finite number ofzj

in the theoretical projection. By inclusion isotonicity of
Kaucher arithmetic,xl ⊆ x implies g(xl,y, dual v) ⊆
g(x,y, dual v). So we can detect whetherzj (j = 1, 2, . . .)
is feasible or not by checkingg(xl,y, (dual v)) ⊆ zj . The
number of feasiblezj resulting from this test is necessarily
finite (see Example 3.2). We can pick any one of them.

Example 3.1 Consider f(x, y, v) = (x + v)2, xl =
[−1,−1], xu = [−2, 3], v = [−1, 2] andz = [4, 1]. Then,
we haveφ = sqr, g(x, y, v) = x + v and

(x+(dual v))2 ⊆ [4, 1] ⇐⇒
{

x + (dual v) ⊆ [2, 1] or
x + (dual v) ⊆ [−1,−2]

But sincexl + (dual v) = [1,−2], [2, 1] is not feasi-
ble (because[1,−2] 6⊆ [2, 1]) whereas[−1,−2] is feasible
([1,−2] ⊆ [−1,−2]).

For the sake of simplicity, we performed in the last exam-
ple theoretical projection and selection consecutively, as two
separate steps. With trigonometric functions, this is not pos-
sible as the number of theoretical projections is infinite. So,
we rather use selection as a pre-selecting process. This is il-
lustrated on the next example.

Example 3.2 Considerf(x, y, v) = cos(x + v), xl = [6, 6],
xu = [5, 9], v = [−1, 1] and. Then, we haveφ = cos and
g(x, y, v) = x + v. We first compute

gl := xl + (dual v) = [7, 5],

It follows thatpro (gl) ⊆ [5, 7], which restricts the projection
of cosinus to two half periods,[π, 2π] and[2π, 3π]:

x + (dual v) ⊆ 2π + arccos([0.7, 0.8]) = [6.93, 7.08]
or

x + (dual v) ⊆ 2π − arccos([0.7, 0.8]) = [5.49, 5.64].

• Filtering
Oncezj was proven to be feasible, relation (2) can be used
to makezj smaller and fulfill (6). Indeed,x ⊆ xu implies
g(x,y, dual v) ⊆ g(xu,y, dual v). Hence we can substi-
tutezj by zj ∧ g(xu,y, (dual v)).

Example 3.3 In Example 3.1, we found out that interval
[−1,−2] was feasible. But asxu+(dual v) = [0, 2], we must
actually havex + (dual v) ⊆ [0, 2] ∧ [−1,−2] = [0,−2].
This condition is indeed stronger.

3.4 Binary Operator
(f(x, y, v) = g(x, y, v) ? h(y, v))

Putw := h(y, (dual v)) and consider first the addition. The
inclusionf(x,y, (dual v)) ⊆ z turns to

g(x,y, (dual v)) + w ⊆ z.

By adding−dual (w) to each side of the latter, we get

g(x,y, (dual v)) ⊆ z− (dual w)

thanks to the group property of Kaucher arithmetic. Filtering
can apply here to narrow (or possibly empty)z − (dual w).
The same idea applies to subtraction and division (by respec-
tively adding and multiplyingz by (dual w)).
Multiplication however requires some precaution. If0 6∈
pro (w), then we can again dividez by (dual w). But if 0 ∈
pro (w), because Kaucher arithmetic does not handle infinite
bounds we need to hand-craft a special division. Similar ex-
tensions of Kaucher’s division are proposed in[Popova, 1994;
Goldsztejn, 2005]. A maximalg satisfyingg×w ⊆ z is ob-
tained with the next table.

z > 0 z < 0 0 ⊆ z z ⊂ 0
0 ⊆ w 1 2 3 4
w ⊂ 0 5 6 7 8

1. g = ∅ (no solution)

2. g = ∅ (no solution)

3. g ⊆ [max{z/w, z/w}, min{z/w, z/w}]
4. g = ∅ (no solution)

5. g ⊆ [−∞, z/w] or g ⊆ [z/w,+∞]



6. g ⊆ [−∞, z/w] or g ⊆ [z/w, +∞]
7. g ⊆ [−∞, +∞]
8. g ⊆ [−∞, min{z/w, z/w}] or [max{z/w, z/w}, +∞]

Applying filtering ong (a consistent extension of (1) to
intervals with infinite bounds is easy) immediately removes
infinite bounds sinceg is necessarily proper. Hence, infi-
nite bounds are not propagated to subsequent computations
(which would have led to undefined results). They only are
a convenient way to represent arbitrarily large values when
enforcing filtering.

Example 3.4 Considerf(x, y, v) = x × v, xl = [−1, 1],
xu = [−3, 3], v = [−1, 2] andz = [−2, 6]. Then, we have
? = ×, g(x, y, v) = x. Thanks to the table, we get

x ⊆ [−∞,−1] or x ⊆ [1, +∞].

Both containxl, hence are feasible. Applying “meet” opera-
tor with xu yieldsx ⊆ [−3,−1] or x ⊆ [1, 3].

Remark 1 We have seen that the constraint on the domain
is crucial in presence of trigonometric functions or multipli-
cation with0 in operands. In the other cases, by removing
domain constraint (i.e., condition(2)), it can be easily proven
that a maximalx satisfying

f(x,y, (dual v)) ⊆ [0, 0]

also satisfies f(x,y, (dual v)) = [0, 0].

It is worth mentioning that functions need not be decom-
posed formally into subexpressions: projections are directly
performed by an automatic projection algorithm[Benhamou
et al., 1999], similar to automatic differentiation.

We detail now a trace of our extension algorithm.

4 Trace
We instantiate our relay example with 4 units. According to
the problem in section 1, the set of constraints are:

∃(ai, bi, di) ∈ (ai×bi×di) (x− ai)2 + (y − bi)2 = d2
i ,

and the domains of the parameters are:

a1 = [0, 2] b1 = [0, 1] d1 = [1, 8]
a2 = [4, 5] b2 = [9, 10] d2 = [1, 8]
a3 = [13, 15] b3 = [−11,−10] d3 = [1, 14]
a4 = [16, 17] b4 = [5, 7] d4 = [1, 8]

A least-square solution obtained by fixing each parameter to
the midpoint of its domain is(x̃ = 9.04286, ỹ = 2.6494).
We first check that this solution can be taken as the starting
point of our domain extension. We compute for alli,

(x− dual (ai))2 + (y − dual (bi))2 − dual (di)2

with x = [x̃, x̃] andy = [ỹ, ỹ]. We get the following image
vector :

[87.8,−11.7], [78.5,−7.3], [220.8,−20.3], [81.2,−10].

As this vector is included in 0, then the initial degenerate box
x × y is an inner box. We can now decide that the posi-
tion (x, y) should not be out of a bounding boxxu × yu =
[5, 15]× [0, 20]. The extension ofx can start.

We detail the projection ofc1 overx. Our goal is to find
the biggestx (x̃ ⊆ x ⊆ xu) such that

(x− (dual a1))2 + (y − (dual b1))2 − (dual d1)2 ⊆ 0

• Apply Case 3.
Computew := (y − (dual b1))2 − (dual d1)2. We get
w = (2.6494− [1, 0])2 − [8, 1]2 = [6.02,−61.28]. Then,

(x−(dual a1))2+w ⊆ 0 ⇒ (x−(dual a1))2 ⊆ −(dual w)

Finally, (x− (dual a1))2 ⊆ [−6.02, 61.28].
We apply domain restriction. We first compute

(x̃ − (dual a1))2 = [81.77, 49.60] and check that
[81.77, 49.60] ⊆ [−6.02, 61.28]. We also computexu −
(dual a1))2 = [25, 169] and filter [−6.02, 61.28] to
[25, 61.28].

(x− (dual a1))2 ⊆ [25, 61.28]

• Apply Case 2.

(x− (dual a1)) ⊆ [5,
√

61.28] = [5, 7.82]
∨

(x− (dual a1)) ⊆ [−√61.28,−5] = [−7.82,−5]

But (xl− (dual a1)) = [9.04, 7.04] and(xu− (dual a1)) =
[5, 13]. So, by domain restriction,[−7.82,−5] is discarded,
and[5, 7.82] is left intact.

x− (dual a1) ⊆ [5, 7.82]

• Apply Case 3.

x ⊆ [5, 7.82] + a1 ⇐⇒ x ⊆ [5, 9.82] .

• Apply Case 1: the answer is[5, 9.82].

We perform a generalized projection to compute consistent
extension of̃x w.r.t the other constraints and get three other
intervals:x2 = [5, 9.86], x3 = [7, 15] andx4 = [8.36, 15].
The intersection of the four intervals,[8.36, 9.82], is inner
w.r.t. the whole system (See Section 2.3). We can per-
form now a generalized projection to compute an extension
over y of the new box[8.36, 9.82] × ỹ and we get respec-
tively for each constrainty1 = [0, 2.6494], y2 = [2.62, 16],
y3 = [0, 3.20] and y4 = [2.64, 9.35]. The intersection
of these extensions is[2.6494, 2.6494]. The final inner box
[8.36, 9.82]× [2.6494, 2.6494] is shown in Figure 2(a).

Let us roll back this extension. If we start domain exten-
sion over the variabley at first, and then, overx, we obtain
another box,[9.04286, 9.04286] × [2.1, 3.42] shown in 2(b).
We observe that the maximal extension obtained for the first
variable we project over generally prevents the other variables
from being extended. In order to obtain more balanced boxes,
we introduce a heuristic of extension in two steps. First, we
extend all variables but the last one to the middle point be-
tween the initial value and the bounds of the maximal ex-
tension. The last variable is extended to the maximal inter-
val. For example,x will be extended to[8.7, 9.43] instead
of [8.36, 9.82], and theny will be extended to[2.35, 3.32].
Second, we perform a maximal extension for all variables (if
they can again be extended). Figures 2(c) and 2(d) show the
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Figure 2: (a). Inner box with maximal extension ofx and
(b) with maximal extension ofy. (c). First step of heuristic
starting withx. (d). First step of heuristic starting withy.

results obtained with the first step of the heuristic, starting
with variablex and variabley (boxes[8.7, 9.43]×[2.35, 3.32]
and [8.45, 9.48] × [2.373, 3.039]), respectively. Figure 2(c)
shows a maximal inner box, while figure 2(d) can be extended
again. Step two will extendy to a maximal interval, which is
[2.373, 3.237].

5 Conclusion
This paper provides a new method for extending consistent
domains with parametric equations over the reals. The key
point is thegeneralized projection, a new operator that com-
bines a constraint programming concept with theoretical re-
sults from modal interval analysis. This projection can be
computed in linear time w.r.t. the number of operators and
functions involved in the equations. This makes our approach
cheap and efficient. Furthermore, universally quantified pa-
rameters can also be included straightforwardly. Some limi-
tations remain: parameters must occur once in the whole sys-
tem, and variables cannot appear more than once in a given
equation. Despite of these limitations, this is an original and
promising approach to handle parametric equations, espe-
cially when existentially quantified parameters are involved
(problems with uncertainties).
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