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Abstract

This article presents two new algorithms whose purpose is
to maintain the Max-RPC domain filtering consistency dur-
ing search with a minimal memory footprint and implementa-
tion effort. Both are sub-optimal algorithms that make use of
support residues, a backtrack-stable and highly efficient data
structure which was successfully used to develop the state-
of-the-art AC-3rm algorithm. The two proposed algorithms,
Max-RPCrm and L-Max-RPCrm are competitive with best,
optimal Max-RPC algorithms, while being considerably sim-
pler to implement. L-Max-RPCrm computes anapproxima-
tion of the Max-RPC consistency, which is guaranteed to be
strictly stronger than AC with the same space complexity and
better worst-case time complexity than Max-RPCrm. In prac-
tice, the difference in filtering power between L-Max-RPCrm

and standard Max-RPC is nearly indistinguishable on random
problems. Max-RPCrm and L-Max-RPCrm are implemented
into the Choco Constraint Solver through astrong consistency
global constraint.
This work opens new perspectives upon the development of
strong consistency algorithms into constraint solvers.

Introduction
This paper presents a new algorithm for enforcing the Max-
RPC consistency (Debruyne and Bessière 2001), called
Max-RPCrm. It is a coarse-grained algorithm that makes
use of support residues(Likitvivatanavong et al. 2004)
in a way similar to the state-of-the-art AC-3rm algorithm
(Lecoutre and Hemery 2007). We also propose L-Max-
RPCrm, a simpler, lightweight version of the algorithm that
computes an approximation of Max-RPC with good practi-
cal behavior and low space complexity.

The most successful techniques for solving problems with
CP are based on local consistencies. Local consistencies re-
move values or instantiations that cannot belong to a solu-
tion. The most used, studied and versatile local consistency
is Arc Consistency (AC), which removes values that do not
appear in the instantiations a given constraint allows. AC
is the highest level of consistency that can be obtained by
considering the constraints separately.(i, j)-consistencies
(Freuder 1982) and their variants take into account many
constraints at once to achieve higher levels of consistency.
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Higher levels of consistency require more computing power
to be enforced, but by cutting branches of the search tree
earlier, the object is to reduce the (exponential) number of
explored nodes in order to solve the problems faster.

Max-Restricted Path Consistency (Max-RPC) is a
promising consistency that lies between Arc ((1, 1)-) and
Path ((2, 1)-) consistencies.

Background
A constraint network(CN) N consists of a set of variables
X , a set of domainsD , where the domaindom(X) ∈ D

of variableX ∈ X is the finite set of at mostd values
that variableX can take, and a setC of e constraints that
specify the allowed combinations of values for given sub-
sets of variables. An instantiationI is a set of variable/value
couples,(X, v), denotedXv. I is valid iff for any variable
X involved in I, v ∈ dom(X). A relation R of arity k
is any set of instantiations of the form{Xa, Yb, . . . , Zc},
wherea, b, . . . , c are values from a given universeU (∀X ∈
X , dom(X) ⊆ U ). A constraintC of arity k is a pair
(vars(C), rel(C)), wherevars(C) is a set ofk variables and
rel(C) is a relation of arityk. I[X ] denotes the value ofX
in the instantiationI. For binary constraints,CXY denotes
the constraints.t.vars(C) = {X,Y }. Given a constraintC,
an instantiationI of vars(C) = {X, . . . , Z} (or of a super-
set ofvars(C), considering only the variables invars(C)),
satisfiesC iff I ∈ rel(C). We say thatI is allowedbyC. A
solutionof a CNN (X ,D ,C ) is an instantiationIS of all
variables inX s.t. (1.)∀X ∈ X , IS [X ] ∈ dom(X) (IS is
valid), and (2.)IS satisfies (isallowedby) all the constraints
in C .

Local consistencies
Définition 1 (Support, Arc-Consistency). Let C be a con-
straint andX ∈ vars(C). A support for a valuea ∈
dom(X) w.r.t. C is an instantiationI ∈ rel(C) s.t. I[X ] =
a. A valuea ∈ dom(X) is arc-consistentw.r.t. C iff it has
a support w.r.t. C. dom(X) is arc-consistent w.r.t.C iff
∀a ∈ dom(X), a has a support w.r.t.C. C is arc-consistent
iff ∀X ∈ vars(C), dom(X) is arc-consistent.

A supportIsup w.r.t. a constraintC of an instanciation
I is an instanciationIsup ∈ rel(C) | I ⊂ Isup. Isup is a
support ofXa w.r.t. C iff Isup is a support of the singleton
instanciation{Xa} w.r.t. C.



Définition 2 (Closure). LetN (X ,D ,C ) be a CN,Φ a local
consistency (e.g.AC). Φ(N ) is theclosureof N for Φ, i.e.
the CN obtained fromN where all allowed instantiations
(resp. values in the case of domain filtering consistencies)
that are notΦ-consistent have been removed.

For AC and for most consistencies, the closure is unique.
If this is not the case, the consistency is said to be non-
monotonous.

Restricted Path Consistencies

(i, j)-consistency (Freuder 1982) is a generic concept that
captures many local consistencies. A binary CN is(i, j)-
consistent iff it has no empty domain and any consistent
instantiation ofi variables can be extended to a consistent
instantiation involvingj additional variables. Thus, AC is
(1, 1)-consistency.

All consistencies withi > 1 arerelational consistencies:
they identify inconsistent instantiations (nogoodsof sizei).
In order to apply it, one needs to remove thesenogoodsfrom
the CN. This requires to add and/or update extensional con-
straints in the CN.(2, 1)-consistency (e.g., Path Consistency
(Montanari 1974)) is one of the most studied local consisten-
cies.

Définition 3 (Path Consistency). A binary instantiation
{Xa, Yb} is Path Consistent iff∀Z ∈ X \{X,Y }, ∃c ∈
dom(Z) s.t.{Xa, Zc} and{Yb, Zc} are valid and allowed.

Restricted Path Consistencies (RPC,k-RPC and Max-
RPC) are designed to catch some of the properties of Path
Consistency in order to achieve strongdomain filtering con-
sistencies(Debruyne and Bessière 2001), which only prune
values from domains and leave the structure of the CN un-
changed. Max-RPC is the strongest and most promising of
these consistencies (Debruyne and Bessière 1997).

Définition 4 (Max-RPC). A binary CNN is Max-Restricted
Path Consistent(Max-RPC) iff it is arc-consistent and for
each valueXa, and each variableY ∈ X \X , at least one
support{Xa, Yb} ofXa is PC.

(Debruyne and Bessière 1997) propose Max-RPC-1, a
fine-grainedalgorithm that enforces Max-RPC on a given
binary CN. Max-RPC-1 is close to AC-6, a fine-grained AC
algorithm that does not exploit the bidirectionnality of con-
straints. Max-RPC-1 has a worst-case time complexity in
O(eg + ed2 + cd3) and is proved to be optimal. It has a
space complexity inO(ed+ cd).

An enhanced version of Max-RPC-1, called Max-RPC-
En1 is proposed in (Debruyne 1999). By exploiting the bidi-
rectionnality of constraint in a manner similar to AC-7, Max-
RPC-En1 manages to enforce a consistency stronger than
Max-RPC with the same worst-case complexities (Max-
RPC-En1 is still slightly slower than Max-RPC-1 in prac-
tice).

None of these articles show how these algorithms per-
form when maintaining Max-RPC during search. The Quick
search algorithm, that maintains Max-RPC-EnR (a slightly
weaker variant of Max-RPC-En1) during search is described
in (Debruyne 1998) (PhD Thesis in French).

A new coarse grained algorithm for Max-RPC
This section presents Max-RPCrm, a newcoarse-grainedal-
gorithm for Max-RPC. This algorithm usesupport residues
(Likitvivatanavong et al. 2004), which were success-
fully used to develop the state-of-the-art AC-3rm algo-
rithm (Lecoutre and Hemery 2007).rm stands formulti-
directional residues; a residue is a support which has been
stored during the execution of the procedure that proves that
a given value is AC. During forthcoming calls, this proce-
dure simply checks whether that support is still valid before
searching for another support from scratch. The data struc-
tures are stable on backtrack (they do not need to be reini-
tialized nor restored), hence a minimal overhead on the man-
agement of data. Despite being theoretically suboptimal in
the worst case, Lecoutre & Hemery showed in (Lecoutre and
Hemery 2007) that AC-3rm behaves better than the optimal
algorithm in most cases.

Max-RPCrm

Coarse-grainedmeans that the propagation in the algorithm
is managed on a variable or a constraint level, whereas fine-
grained algorithms such as AC-7 or Max-RPC-1 manage the
propagation on a value level. Propagation queues for coarse-
grained algorithms are lighter, can be implemented very ef-
ficiently and do not require to manage extra data structures
for recording which values a given instantiation supports.
Moreover, variable-oriented propagation schemes permit to
implement revision ordering heuristics very efficiently (Wal-
lace and Freuder 1992; Boussemart, Hemery, and Lecoutre
2004). In the following, when a variable is picked from the
constraint queue, the variable with the smallest domain is
selected first.

As proposed in (Bessière and Régin 1997) for the
GAC-Schema algorithm, we refer to thefirstSup and
nextSup methods, that permit to iterate over supports of
a given value in an user-defined way. In this way, fast ad-
hoc algorithms (e.g. for arithmetical or positive table con-
straints) can be specified.firstSup has two parame-
ters: C andI, and returns the first support found forI in
rel(C). nextSup has an additional parameter: we give to
the method the last support found, so as it can find the first
support strictly after the last one given a static ordering of
rel(C).

Algorithms 1 to 4 describe Max-RPCrm, O-Max-RPCrm

and L-Max-RPCrm. Lines 8-14 of Algorithm 1 and Lines
6-11 and 14-15 of Algorithm 3 are added to a standard AC-
3rm algorithm. The greyed parts correspond to elements to
be removed in order to apply L-Max-RPCrm, which is de-
scribed in a further section.

Algorithm 1 contains the main loop of the algorithm. It is
based on a queue containing variables that have been modi-
fied (i.e. have lost some values), which may cause some val-
ues in the neighbor variables to lose their supports. In the ex-
ample depicted on Figure 1 (considering only constraints in
CΦ), if the variableX is modified, then the algorithm must
check whether all values inT still have a support w.r.t. the
constraintCXT , all values inV have a support w.r.t.CXV ,
and so on forY andZ. This is performed by Lines 4-7 of



Figure 1: Example of CN (macro-structure).

Algorithm 1: MaxRPC (P = (X ,C ), Y )

Y : the set of variables modified since the last call to MaxRPC
1 Q ← Y ;
2 while Q 6= ∅ do
3 pickX from Q ;
4 foreachY ∈ X | ∃CXY ∈ C do
5 foreachv ∈ dom(Y ) do
6 if revise(CXY , Yv, true) then
7 Q ← Q ∪ {Y };

8 foreach (Y,Z) ∈X
2 | ∃(CXY , CY Z , CXZ) ∈ C

3 do
9 foreachv ∈ dom(Y ) do

10 if revisePC(CY Z , Yv, X) then
11 Q ← Q ∪ {Y };

12 foreachv ∈ dom(Z) do
13 if revisePC(CY Z , Zv, X) then
14 Q ← Q ∪ {Z};

Algorithm 1. Therevise function depicted in Algorithm 3
controls the existence of such supports. It removes the value
and returnstrue iff it does not have any (sofalseif the value
has not been removed).

The domain of the (modified) variable that has been
picked is also likely to have contained values that used to
make supports in constraints situated on the opposite side of
a 3-clique Path Consistent. In Figure 1, ifX is modified,
then the supports ofV andZ w.r.t. CV Z , the supports ofY
andZ w.r.t. CY Z and the supports ofT andZ w.r.t. CTZ

need to be checked. This is the purpose of Lines 8-14 of
Algorithm 1 and of the functionrevisePC (Algorithm 2).

Algorithm 3 iterates over the supports (Xb) of the value
to revise (Ya), on Lines 3 and 17, in search of a PC instan-
tiation {Xb, Ya}. The Path Consistency of the instantiation
is checked on Lines 6-11 by callingfindPCSupport (Al-
gorithm 4) on each variableZ that forms a 3-clique withX
andY . findPCSupport returns either a support of the
instantiation{Xb, Ya} in Z, or the special value⊥ if none
can be found. Iff no PC support forYa can be found, the
value is removed and the function returnstrue.

Residues. Therevise function firstly checks the valid-
ity of the residue (Lines 1-2). Residues are stored in the
global data structureres[C,Xa], which has anO(ed) space
complexity. The algorithm also makes use of residues for
the PC supports, stored in the structurepcRes with anO(cd)
space complexity (c is the number of 3-cliques in the CN).

Algorithm 2: revisePC (CY Z , Ya, X): boolean

Y : the variable to revise because PC supports inX may have
been lost

1 if pcRes[CY Z , Ya][X] ∈ dom(X) then
2 return false ;

3 b← findPCSupport(Ya, Zres[CY Z ,Ya], X) ;
4 if b = ⊥ then
5 return revise(CY Z , Ya, false) ;

6 pcRes[CY Z , Ya][X]← b; return false;

Algorithm 3: revise (CXY , Ya, supportIsPC): boolean

Ya: the value ofY to revise againstCXY – supports inX
may have been lost

supportIsPC: false if one ofpcRes[CXY , Ya] is no longer
valid

1 if supportIsPC∧ res[CXY , Ya] ∈ dom(X) then
2 return false ;

3 b← firstSup(CXY , {Ya})[X] ;
4 while b 6= ⊥ do
5 PConsistent← true ;
6 foreachZ ∈ X | (X,Y, Z) form a 3-cliquedo
7 c← findPCSupport(Ya, Xb, Z) ;
8 if c = ⊥ then
9 PConsistent← false ;

10 break;

11 currentPcRes[Z]← c ;

12 if PConsistent then
13 res[CXY , Ya]← b ; res[CXY , Xb]← a ;
14 pcRes[CXY , Ya]← currentPcRes ;
15 pcRes[CXY , Xb]← currentPcRes ;
16 return false ;

17 b← nextSup(CXY , {Ya}, {Xb, Ya})[X] ;

18 removea from dom(Y ) ;
19 return true ;

The idea is to associate the residue found by therevise
function with the found PC value for each third variable
of the 3-clique. In this way, at the end of the process-
ing, (Xa, res[CXY , Xa], pcRes[CXY , Xa][Z]) forms a 3-
clique in the micro-structure of the constraint graph for all
3-cliques(X,Y, Z) of the CN and for alla ∈ dom(X).

In the example depicted on Figure 2, at the end
of the processing we haveres[CXY , Xa] = b,
pcRes[CXY , Xa][Z] = a, pcRes[CXY , Ya][Z

′] = a, and
so on. The algorithm exploits the bi-directionnality of the
constraints: ifYb is a support forXa with {Za, Z

′

a} as PC
supports, thenXa is also a support forYb with the same PC
supports. This is done on Lines 13-15 of Algorithm 3.

If a lost PC support is detected on Line 1 ofrevisePC,
then an alternative support is searched. If none can be found,
then the current support of the current value is no longer PC,
and another one must be found. This is done by a call to
revise on Line 5 of Algorithm 2.



Algorithm 4: findPCSupport (Xa, Yb, Z): value

1 c1 ← firstSup(CXZ , {Xa})[Z] ;
c2 ← firstSup(CY Z , {Yb})[Z] ;

2 while c1 6= ⊥ ∧ c2 6= ⊥ ∧ c1 6= c2 do
3 if c1 < c2 then
4 c1 ← nextSup(CXZ , {Xa}, {Xa, Zc2−1})[Z] ;
5 else
6 c2 ← nextSup(CY Z , {Yb}, {Yb, Zc1−1})[Z] ;

7 if c1 = c2 then return c1 ;
8 return ⊥ ;

Figure 2: Example with two 3-cliques (microstructure)

One-pass Max-RPC
One common way to define approximation of a strong con-
sistencyΦ is to remove the propagation process in the algo-
rithm. The strong consistency property is thus checked only
once for each value of the CN. This process ensures that all
the values that were notΦ-consistent before the first call to
the algorithm will be filtered. One example of this idea is
proposed in (Freuder and Elfe 1996) for the Neighborhood
Inverse Consistency property.

With our Max-RPCrm algorithm, this can be achieved by
removing theforeach do loop on Lines 8-14 of Algorithm
1. TherevisePC function andpcRes data structure are
no longer useful and can be removed, together with Lines
11 and 14-15 of Algorithm 3 (all greyed lines in the algo-
rithms), as well as Line 7 of Algorithm 1. We call the ob-
tained algorithmO-Max-RPCrm. The same approximation
can be used to define the O-Max-RPC-1 algorithm. The ob-
tained consistency is not monotonous and will depend on
the order in which the modified variables are picked from
Q. As the loss of AC supports is not propagated, O-Max-
RPC is incomparable with AC: there exists CNs that are not
AC after applying O-Max-RPC on them, and AC CNs on
which O-Max-RPC can filter some values. O-Max-RPC is
not incremental.

Light Max-RPC
We propose another approximation of Max-RPC, that lies
between one-pass and full Max-RPC. The idea is to keep the
propagation process of the original Max-RPC algorithm, but
only to propagate the loss of AC supports. The algorithm
can be obtained by removing all the greyed parts in Algo-
rithms 1-3 and keeping Line 7 of Algorithm 1. We call this
algorithmL-Max-RPCrm. The same approximation can be

Figure 3: Comparing the consistencies. An arrow means “is
strictly stronger than” and the crossed line means “is incom-
parable with”.

used to define the L-Max-RPC-1 algorithm. L-Max-RPC is
strictly stronger than AC: any CN on which L-Max-RPC has
been applied is either empty or AC, and there exists at least
one AC CN on which L-Max-RPC can filter some values.
L-Max-RPC is not monotonous, L-Max-RPC is also strictly
stronger than O-Max-RPC given the same initial ordering of
variables inQ.

Experiments we conducted (see below) show empiri-
cally that the filtering power of L-Max-RPC is only slightly
weaker than that of Max-RPC on random problems, despite
the significant gains in space and time complexities. A sum-
mary of the different consistencies defined in this paper is
given on Figure 3.

Complexity issues
We use these additional notations:c is the number of 3-
cliques in the constraint graph (c ≤

(

n
3

)

∈ O(n3)), g is
the maximum degree of a variable ands is the maximum
number of 3-cliques that share the same single constraint in
the constraint graph. If the constraint graph is not empty (at
least two variables and one constraint), we have the follow-
ing relation:s < g < n. Let us remind here that in a binary
CN, e ≤ ng/2. The complexities are devised in terms of
constraint checks (assumed in constant time).

Proposition 1. After an initialization phase inO(eg), Max-
RPCrm has a worst-case time complexity inO(ed3 + csd4)
and a space complexity inO(ed+ cd).

Proof sketch.The initialization phase consists in detecting
and linking all 3-cliques to their associated constraints and
variables, which can be done inO(eg).

The main loop of the algorithm depends on the variable
queueQ. Since variables are added toQ when they are
modified, they can be added at mostd times in the queue,
which implies that the main loop can be performedO(nd)
times. This property remains true when the algorithm is
called multiple times, removing one value from the domain
of one variable every time. The algorithm is incremental, es-
pecially when maintaining Max-RPC in a systematic search
algorithm. We consider separately the two parts of the main
loop.

1. theforeach do loop at Lines 4-7 of Algorithm 1.
This loop can be performedO(g) times. Since in the
worst case, the whole CN is explored thoroughly in an
homogeneous way, it is amortized with theO(n) factor
of the main loop in a globalO(e) complexity. Thefore-
ach do loop at Lines 5-7 involvesO(d) calls torevise
(totalO(ed2) revises).



Algorithm Time complexity Space cplx
AC-3rm O(ed3) O(ed)

O-Max-RPCrm O(eg + ed2 + cd3) O(c+ ed)
L-Max-RPCrm O(eg + ed3 + cd4) O(c+ ed)
Max-RPCrm O(eg + ed3 + csd4) O(cd + ed)
Max-RPC-En O(eg + ed2 + cd3) O(cd + ed)

Table 1: Summary of complexities

revise (Algorithm 3) first callsfirstSup, which has
a complexity ofO(d) (without any assumption on the
nature of the constraint). Thewhile do loop can be
performedO(d) times. Calls tonextSup (Line 17)
are part of the loop. Theforeach do loop on Lines
6-11 can be performedO(s) times, and involves a call
to findPCSupport in O(d). Thus, revise is in
O(d + sd2). The global complexity of this first part is
thusO(ed3 + esd4). TheO(es) factor is amortized to
O(c), thus a final result inO(ed3 + cd4).

2. theforeach do loop at Lines 8-14 of Algorithm 1.
The number of turns this loop can perform is amortized
with the main loop to anO(cd) factor. Each turn exe-
cutesO(d) calls torevisePC, whose worst-case time
complexity is capped by a call torevise on Line 5
of Algorithm 2. This part of the algorithm is thus in
O(cd2.(d+ sd2)) = O(csd4).

The algorithm uses three data structures: storing the 3-
cliques inΘ(c), storing the AC residues inO(ed) (resdata
structure) and storing the PC residues inO(cd) (pcResdata
structure), hence a space complexity inO(ed+ cd).

If revise is called due to the removal of a value that
does not appear in any support, its complexity falls down
to O(sd). In practice, this happens very regularly, which
explains the good practical behavior of the algorithm.

Proposition 2. After an initialization phase inO(eg), L-
Max-RPCrm has a worst-case time complexity inO(ed3 +
cd4) and a space complexity inO(c+ ed).

Proof sketch.As L-Max-RPCrm skips the 2nd part of the
algorithm, theO(csd4) term is removed. As thepcResdata
structure is removed, the remaining data structures are in
O(c+ ed).

Proposition 3. After an initialization phase inO(eg), O-
Max-RPCrm has a worst-case time complexity inO(ed2 +
cd3) and a space complexity inO(c+ ed).

Proof sketch.As O-Max-RPCrm prevents the modifications
in revise to be propagated, every variable is revised only
once. The main loop of the algorithm is thus performedn
times instead ofO(nd). Thus the worst-case complexity is
reduced by anO(d) factor w.r.t. L-Max-RPCrm. O-Max-
RPCrm has the same data structures as L-Max-RPCrm.

Note that with all variants of the algorithm, the initializa-
tion phase inO(eg) is performed previously to the first call

Figure 4: A strong consistency global constraintCΦ, used
to enforce the strong local consistency on a subset of con-
straintsCΦ. N ′ is the new CN obtained when replacingCΦ

by the global constraint.

to Algorithm 1 and only once when maintaining the Max-
RPC property throughout the search. Table 1 gives a sum-
mary of the complexities of the different algorithms studied
in this paper, as well as those of AC-3rm and Max-RPC-En
for reference.

Implementation

Many solvers use an AC-5 based propagation scheme (van
Hentenryck, Deville, and Teng 1992).Propagatorsare asso-
ciated with constraints to enforce a given level of local con-
sistency. We call them event-based solvers. Each propagator
is called according to the events that occur in domains of the
variables involved in its constraint. Most often, an event is
a value deleted by another constraint. At each node of the
search tree, the pruning is performed within the constraints.
The fix-point is obtained by propagating events among all
the constraints. A propagator is complete when it elimi-
nates all the values that cannot satisfy the constraint. In this
context, generalized arc-consistency (GAC) is,a priori, the
highest level of local consistency that can be enforced (all
propagators are complete).

In order to integrate strong consistency algorithms into
an event-based solver such asChoco (Laburthe, Jussien,
and others 2008), we designed a new global constraint
(Beldiceanu and Contejean 1994; Régin 1994; Bessière
and van Hentenryck 2003), and an object-oriented generic
scheme, as detailed in (Vion, Petit, and Jussien 2009). Given
a local consistencyΦ, the principle is to deal with the subset
CΦ of constraints on whichΦ should be applied, within a
new global constraintCΦ added to the CN. Constraints in
CΦ are connected toCΦ instead of being included into the
initial CN N (see Figure 4). In this way, events related to
constraints inC Φ are handled in a closed world, indepen-
dently from the propagation queue of the solver. This per-
mits to implement any (strong) consistency algorithm in an
event-based constraint solver with minimal implementation
effort. As a side effect, this scheme permits to easily apply
different levels of consistency in the same CN.

Experiments
We implemented the algorithms using our own binary
constraint solver, and in the general-purpose Choco
Solver (Laburthe, Jussien, and others 2008), using the
method described above. On the Figures 5-6, each point is



the average result over 100 generated binary random prob-
lem of various characteristics solved using our binary con-
straint solver. A binary random problem is characterized by
a quadruple(n, d, γ, t) whose elements respectively repre-
sent the number of variables, the number of values, the den-
sity1 of the constraint graph and the tightness2 of the con-
straints.

Pre-processing:Figure 5 compares the time and memory
used for the initial propagation on rather large problems (200
variables, 30 values). Left hand figures are results with 5%
density, right hand figures are results with 15%. Topmost
figures compare Max-RPC-1, Max-RPCrm, their Light vari-
ants, and Max-RPC-En1. The two small figures show the
percentage of removed values w.r.t. the tightness of the con-
straints. There is a transition phase from a zone where no
values can be removed, to a zone where the inconsistency of
the problems are detected during the pre-processing phase.
The earliest the transition phase occurs, the strongest theal-
gorithm is. Of course, Max-RPC-1 and Max-RPCrm detect
the same inconsistent values. With low densities, Max-RPC-
En1 also has the same filtering power. The weaker Light
variants nearly coincide between each other. All algorithms
show a peak in cpu time near the threshold. Although Max-
RPCrm tends to be the slower algorithm, L-Max-RPCrm is
the fastest algorithm before the peak and only very slightly
slower than L-Max-RPC-1 after the peak. Bottommost pic-
tures show the comparison between one-pass variants, with
Max-RPC-1 and L-Max-RPCrm given for reference. The
two one-pass algorithms have about the same performances,
and are only slightly faster than L-Max-RPCrm despite their
lower filtering power.

These graphs show that L-Max-RPCrm is very competi-
tive w.r.t. Max-RPC-1 and Max-RPC-En1 in both speed and
filtering power, despite its simplicity and low space com-
plexity.

Maintaining Max-RPC during search:Figure 6 depicts
experiments with a systematic search algorithm, where the
various levels of consistency are maintained throughout
search. The variable ordering heuristic isdom/ddeg.3 The
impact of the number of variables, number of values and the
density of the problem on the search time and the number
of nodes is evaluated. All runs were done at the threshold
point. For each point, we found the tightnessttp where the
transition phase occurs, and used that value to generate the
instances. The cpu time (in seconds) and number of nodes
is shown for each algorithm, using the left hand logarith-
mic scale. The relative difference in cpu time and number
of nodes between running respectively L-Max-RPCrm and
Max-RPC-EnR w.r.t. AC-3rm at each node of the search
is shown, using the right hand linear scale. All graphs show
a very similar behavior between maintaining Max-RPC-EnR
and maintaining L-Max-RPCrm, despite the latter’s simplic-

1The density is the proportion of constraints in the graph w.r.t.
the maximal number of possible constraints, i.e.γ = e/

(

n

2

)

.
2The tightness is the proportion of instantiations forbidden by

each constraint.
3The process of weighting constraints fordom/wdeg is not de-

fined when more than one constraint lead to a domain wipeout.

ity and low memory usage.
The top left graph shows how the behavior of the different

algorithms evolves as the number of variables grows. The
density is evaluated using theneighb(g, n) function so that
the average degreeg of the variables remains constant.4 The
graph shows that the additional filtering of Max-RPC algo-
rithms tends to reduce the number of nodes by about 40%
w.r.t. maintaining AC. More time is gained when the num-
ber of variables grows, up to 30% less time taken with Max-
RPC algorithms at 110-120 variables. Top right graph shows
that the number of nodes and time tends to be more reduced
as the size of the domains grows, up to 60% nodes less and
30% time less around 60 variables.

The bottom left graph shows that even though the num-
ber of nodes is reduced by a stable 45-50% factor when the
density grows, it does not longer compensate the additional
time spent in the filtering algorithm. With the given charac-
teristics (50 variables, 20 values), maintaining AC is more
efficient when the density is above 14%.

These figures tends to show that maintaining Max-RPC is
especially efficient on large problems (in terms of number of
variables/values) that are not too much dense, and confirms
the competitiveness of L-Max-RPCrm over Max-RPC-En.

Mixing local consistencies:5 Table 2 shows the effective-
ness of the possibility of mixing two levels of consistency
within the same model, using the Choco Solver. The first
row corresponds to the median results over 50 instances
of problems(35, 17, 44%, 31%), and the second row to
(105, 20, 5%, 65%) instances. Given its higher density, the
first problem is better resolved by using AC-3rm while the
second one shows better results with Max-RPC. Third row
corresponds to instances where two problems are concate-
nated and linked with a single additional loose constraint.
On the last two columns, we maintain AC on the denser part
of the model, and (L-)Max-RPCrm on the rest. Mixing the
two consistencies entails a faster solving, which emphasizes
the interest of our approach. The last two rows present the
results with larger problems.

Conclusion & Perspectives
This paper presented Max-RPCrm, a new, simple algo-
rithm for enforcing the Max-RPC domain filtering consis-
tency. Two variants of the algorithm, O-Max-RPCrm and
L-Max-RPCrm were proposed, studied, experimented and
compared to the legacy Max-RPC algorithms. Experiments
showed that L-Max-RPCrm is competitive with state-of-the-
art, optimal algorithms, although being considerably sim-
pler to implement and requiring less data structures. Max-
RPCrm and its variants were implemented into the Choco
Solver, exploiting (Vion, Petit, and Jussien 2009)’s generic
scheme for adding strong local consistencies to the set of
features of constraint solvers. This technique allows a solver
to use different levels of consistency for different subsets of
constraints in the same model. The interest of this feature is
validated by our experiments.

4neighb(g, n) = g/(n− 1)
5These results are extracted from (Vion, Petit, and Jussien

2009)
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Figure 5: Initial propagation: cpu time and filtering power on homogeneous random problems (200 variables, 30 values).

AC-3rm Max-RPCrm L-Max-RPCrm AC-3rm+Max-RPCrm AC-3rm+L-Max-RPCrm

(35, 17, 44%, 31%)
cpu (s) 6.1 25.6 11.6 non non
nodes 21.4k 5.8k 8.6k applicable applicable

(105, 20, 5%, 65%)
cpu (s) 20.0 19.4 16.9 non non
nodes 38.4 k 20.4 k 19.8 k applicable applicable

(35, 17, 44%, 31%)
+(105, 20, 5%, 65%)

cpu (s) 96.8 167.2 103.2 90.1 85.1
nodes 200.9k 98.7k 107.2k 167.8k 173.4k

(110, 20, 5%, 64%)
cpu (s) 73.0 60.7 54.7 non non
nodes 126.3k 54.6k 56.6k applicable applicable

(35, 17, 44%, 31%)
+(110, 20, 5%, 64%)

cpu (s) 408.0 349.0 272.6 284.1 259.1
nodes 773.0k 252.6k 272.6k 308.7k 316.5k

Table 2: Mixing two levels of consistency in the same model

This work opens many perspectives upon the devel-
opment of strong consistency algorithms. The use of
backtrack-stable data structures such as support residues,
and the development of non-monotonous approximations of
strong consistencies seem very promising. Future works in-
clude the development of strong consistency algorithms that
can be applied on non-binary CNs.
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