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ABSTRACT
Previous works have presented a probabilistic model of the
latency of the grid depending on parameters characterizing
the workload. In this paper, we study both the validity of
parameters along several weeks and the influence of the day
of the week. We show that performance can be improved by
the actualization of model parameters.
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1. INTRODUCTION
Grids are powerful tools for large scale studies on medical
data and specifically on medical images. However, the be-
havior of grids is highly variable and they are subject to
faults. We thus need to model the grid in order to improve
job submissions and estimation of performance.

Our approach consists in probabilistic modeling using ex-
ecution context parameters. Preliminary works [2, 7] have
shown the validity of the model. However these studies have
been made on a very short period of time thus hiding the
temporal variability of workload conditions. In this paper,
we enlarge our study along several weeks in order to study
the model temporal validity.

2. RELATED WORKS
Several initiatives aim at modeling grid infrastructure Work-
load Management Systems (WMS). In [5], correlations be-
tween job execution properties (job size or number of proces-
sors requested, job run time and memory used) are studied
on a multi-cluster supercomputer in order to build models
of workloads, enabling comparative study on system design
and scheduling strategies. In [9], authors make predictions
of batch queue waiting time which improves the total exe-
cution time.

Taking into account contextual information has been re-

ported to help in estimating single jobs and workflows exe-
cution time by rescheduling. Feitelson [1] has observed cor-
relations between run time and job size, number of cluster
and time of the day. In [8], the influence of changes in trans-
mission speed, in both executable code and data size, and in
failure likelihood are analysed for a better estimation of end
time of sub-workflows. This is used for re-scheduling jobs
after fault or overrun.

Authors of [10] analyze job inter-arrival times, waiting times
at the queues, execution times and data exchange sizes.
They conducted experiments on the EGEE grid on several
VOs (Virtual Organizations) and studied the influence of the
day of the week and the time of the day. Their conclusion
on these influences is that there is an increase of the load at
the end of the day but that it is difficult to extract a precise
model of the behavior with respect of the day or the time.

To refine grid monitoring, [11] presents a model of the influ-
ence between the grid components and their execution con-
text (system and network levels), experimented on Grid’5000.

In previous work, we have shown that some of the param-
eters of the execution context have an influence on the ex-
pectation of job execution time [2, 7]. In this work, we focus
on the validity of our parameters along several weeks and
we refine the study on the day of the week.

3. EXPERIMENTAL PLATFORM
Our experiments are based on biomed VO of the EGEE pro-
duction grid infrastructure. With 40000 CPUs dispatched
world-wide in more than 240 computing centers, EGEE rep-
resents an interesting case study as it exhibits highly variable
and quickly evolving load patterns that depend on the con-
current activity of thousands of potential users. Even if the
infrastructure is relatively homogeneous from the OS point
of view (Scientific Linux), important architecture and per-
formance variations are expected among the worker nodes
(64/32 bit machines, multi/single processor).

For the following discussion, the main components of the
batch-oriented EGEE grid infrastructure are introduced. When
a user wants to submit a job from her workstation, she con-
nects to an EGEE client known as a User Interface. A Re-
source Broker (RB) queues the user requests and dispatches
them to the different computing centers available. The gate-
way to each computing center is one or more Computing
Element (CE). A CE hosts a batch manager that will dis-



tribute the workload over the center Worker Nodes, using
different batch queues. Different queues handle jobs with
different wall clock times. However the policies for deciding
of the number of queues and the maximal time assigned to
each of them are site-specific.

During its life-cycle, a job is characterized by its evolving
status. If everything happened as expected, the job is then
completed. Otherwise, it is aborted, timed-out or in an error
status depending on the type of failure.

4. MODEL OF THE LATENCY
Models of the grid latency enable the optimization of job
submission parameters such as jobs granularity or the time-
out value needed to make the WMS robust against system
faults and outliers. Properly modeling a large scale infras-
tructure is a challenging problem given its heterogeneity and
its dynamic behavior. In a previous work, we adopted a
probabilistic approach [3] which proved to improve applica-
tion performances while decreasing the load applied on the
grid middleware by optimizing jobs granularities. Similar
probabilistic models have been proposed to estimate time-
outs in other complex systems [12, 6].

In [4], we have shown how the distribution of the grid la-
tency impacts the choice of a timeout value for the jobs.
We model the grid latency as a random variable R with
probability density function (pdf) fR and cumulative den-
sity function (cdf) FR. The optimal timeout value can be
obtained by minimizing the expectation of the job execu-
tion time J which can be expressed as a function of R, the
timeout t∞ and the proportion of outliers ρ:

EJ (t∞) =
1

FR(t∞)

Z t∞

0

ufR(u)du +
t∞

(1 − ρ)FR(t∞)
− t∞

(1)

Experimental measures show high variability in the latency.
In this paper, we present two different studies aiming at re-
ducing this variability and improving job execution on pro-
duction grids. First, we study the evolution of the optimal
timeout and the expectation of the job execution time over
several weeks. Second, we focus on a particular parameter
of the execution context, the day of the week, and discuss
its relevance regarding different weeks.

5. EXPERIMENTAL DATA
To study grid latency, measures were collected by submitting
a very large number of probe jobs. These jobs, consisting
in the execution of an almost null duration /bin/hostname

command, are only impacted by the grid latency. In the
remainder we make the hypothesis that the users job execu-
tion time is known and that therefore only the grid latency
varies significantly between different runs of the same com-
putation task. To avoid variations of the system load, a
constant number of probes was executing inside the system
at any time of the data collection: a new probe was submit-
ted each time another one completed. For each probe job,
we logged the job submission date, the job status and the
total duration. The probe jobs were assigned a fixed 10000
seconds timeout beyond which they were considered as out-
liers and canceled. This value is far greater than the average
latency observed.
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Figure 1: Cumulative density function of the latency
for each week, computed on completed jobs.

For the previous work [2], we collected a log gathering 5800
job traces in September 2006 (denoted further as 2006-IX).
In this paper, we added 5093 job traces acquired from week
36 to week 39 of 2007 and week 50 of 2007 to week 03 of
2008. The discontinuity of the periods in the new data set
is due to our local network failures and does not have any
relations with authors choices.

6. ALONG THE WEEKS
Figure 1 presents the cumulative density function of the la-
tency for the different weeks and for the whole period of
2007-2008. The curves concerning the period 2007-2008
presents a similar profile with steps coming from he waiting
time of the jobs in the resource brokers (RB). One of the hy-
pothesis is that they could be due to the internal scheduling
algorithm of resource broker. Another possible cause might
be implementation flaws in the RB code. Those steps have
also been observed in the vlemed VO of the EGEE grid.
However, an interesting way to compare those curves is to
consider the differences between the optimal timeout val-
ues that they lead to (computed using equation 1). Figure
2 shows the expectation of execution time for the different
weeks. Despite the fact that the different curves present dif-
ferent profiles, the optimal timeout values are visually in the
same interval around 400s. These values are more precisely
detailed in table 1: the optimal value for 2006 is 528s while
values for 2007-2008 are between 422s and 491s. The table
presents also, for each period of time, the mean value and
the standard deviation of the latency R. In most cases, the
reduction of time conducts to a reduction of the standard
deviation. Finally the optimal expected execution time is
shown. Assuming that the optimal timeout value has been
computed in September 2006 (528s), we compute, in table 2,
the resulting expectation of execution time and the relative
difference with the optimal value computed week by week
in order to measure the impact of parameters chosen earlier
instead of the optimal one. The relative differences are up
to 8%. It happens that this timeout value is greater than
all optimal values for the period 2007-2008. The highest dif-
ferences are obtained when the ascending slope of figure 2
are the highest, which is directly related to the fraction of
outliers.
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Figure 2: Expectation of job execution time with
respect to the timeout value (t∞). The minimum of
each curve gives the best timeout value.

date R̄ σ(R) outliers best t∞ EJ(t∞)
2006-IX 570s 886s 5% 528s 494s
2007/08 469s 723s 17% 474s 500s
2007-36 446s 748s 24% 423s 502s
2007-37 506s 848s 33% 422s 606s
2007-38 447s 682s 24% 428s 522s
2007-39 489s 741s 32% 436s 585s
2007-50 660s 1046s 18% 467s 628s
2007-51 478s 510s 13% 491s 510s
2007-52 443s 582s 13% 482s 469s
2007-53 375s 238s 31% 432s 581s
2008-00 454s 699s 14% 484s 468s
2008-01 434s 317s 13% 485s 491s
2008-02 418s 547s 12% 433s 435s
2008-03 538s 1196s 10% 474s 413s

Table 1: Mean and standard variation of the latency,
fraction of outliers, best timeout value and minimal
expectation of execution time. These quantities are
computed for the 2006 period, for the 2007-2008 pe-
riod and for all weeks int the 2007-2008 period.

date EJ (528s) ∆EJ date EJ (528s) ∆EJ

2007-36 528s 5.2 % 2007-52 477s 1.7 %
2007-37 648s 7.0 % 2007-53 623s 7.1 %
2007-38 544s 4.2 % 2008-00 475s 1.5 %
2007-39 631s 7.9 % 2008-01 493s 0.4 %
2007-50 652s 3.9 % 2008-02 441s 1.4 %
2007-51 514s 0.9 % 2008-03 418s 1.2 %

Table 2: In this experiment, the timeout value from
the period of September 2006 has been used (528s).
For each week of the 2007-2008 period, we present
the expectation of execution time and the relative
difference with the optimal one.

date EJ(422s) ∆EJ% EJ(491s) ∆EJ%
2007-36 505.5 0.7% 527.1 5.0%
2007-37 605.9 0% 632.2 4.3%
2007-38 524.8 0.5% 530.5 1.6%
2007-39 602.9 3.1% 616.8 5.5%
2007-50 718.7 14.5% 642.3 2.3%
2007-51 594.9 16.7% 509.6 0%
2007-52 491.2 4.8% 470.9 0.4%
2007-53 593.7 2.1% 600.0 3.2%
2008-00 501.9 7.2% 470.0 0.4%
2008-01 516.7 5.2% 493.1 0.4%
2008-02 437.0 0.6% 437.2 0.6%
2008-03 419.1 1.5% 414.8 0.5%

Table 3: In this experiment, we focus on data from
the period 2007-2008. As determined in table 1, the
minimum timeout value is 422s and the maximum is
491s. For these extreme values, the new expectation
of execution time and the relative difference with the
optimal value are presented.

Figure 3: For each day of the week and for each
week, the best timeout value is computed. We have
plotted boxes for each day of the week. According to
ANOVA, there is no significant difference between
the days of the week.

Furthermore, we took the minimal and the maximal of time-
out values among the different weeks : 422s and 491s. We
present the expected execution time for each of these values
and the relative differences in table 3. In the case of the
maximal timeout value, relative errors are below 6% while
in the case of the minimal timeout value, relative errors are
up to 17%. This is clearly explained by the shape of the
curves on figure 2: the slope of the decreasing part is higher
than the slope of the increasing part of each curve. Thus,
an overestimation of the timeout value is better than an un-
derestimation, if this overestimation is not too high, which
must be quantified. As a conclusion of this part of the study,
actualization of the timeout value may improve the total ex-
ecution time, up to 17%.

7. DAY OF THE WEEK
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Figure 4: Each curve corresponds to a week of the
experiment. The optimal timeout value is plotted
with respect to the day of the week.

In this second experiment, we study the influence of the day
of the week on the best timeout value: for each week and
each day of the week, we compute the best timeout value.
These values are plotted on figure 3 with respect to the day
of the week. As confirmed by ANOVA analysis, there is no
significant difference between the days of the week.

However, in figure 4, we observe that, in most weeks, there is
a decrease of best timeout value between Tuesday or Wednes-
day and Thursday followed by an increase until Friday or
Saturday. This profile information thus needs further inves-
tigation to be exploited.

8. CONCLUSION
The experiment on the influence of the day of the week shows
that it has a hardly relevant impact. The hour of the day
could be considered alternatively.

This study shows that variations of the load conditions over
long periods of time make it necessarily to update the model
parameters along time.

Future work will focus on strategies to perform this update.
Moreover, other parameters of the execution context such
as the grid resources need to be studied over long period of
time.
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