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Abstract:

In this work we will investigate how to find a matrix rep-
resentation of operators on a Hilbert space H with Bessel
sequences, frames and Riesz bases as an extension of the
known method of matrix representation by ONBs. We
will give basic definitions of the functions connecting in-
finite matrices defining bounded operators on /2 and oper-
ators on ‘H. We will show some structural results and give
some examples. Furthermore in the case of Riesz bases we
prove that those functions are isomorphisms. We are go-
ing to apply this idea to the connection of Hilbert-Schmidt
operators and Frobenius matrices. Finally we will use this
concept to show that every bounded operator is a general-
ized frame multiplier.

1. Introduction

From practical experience it became apparent that the con-
cept of an orthonormal basis is not always useful. This led
to the concept of frames, which was introduced by Duffin
and Schaefer [12] and today it is one of the most important
foundations of sampling theory [1].

The standard matrix description [8] of operators O us-
ing an ONB (ey) is by constructing an matrix M with
the entries M;, = (Oek,e;). In [6] a concept was
presented, where an operator R is described by the ma-
trix (<R¢j, ¢~51>) ~with (¢;) being a frame and (¢;) its
canonical dual. Such a kind of representation is used for
the description of operators in [15] using Gabor frames
and [19] using linear independent Gabor systems. In this
work we are presenting the main ideas for Bessel se-
quences, frames and Riesz sequences and also look at the
dual function which assigns an operator to a matrix. For
proofs and details we refer to [3].

2. Notation and Preliminaries

2.1 Hilbert spaces and Operators

Let B(H1,Hs2) denote the set of all linear and bounded
operators from the Hilbert space H; to Hsy. Furthermore
we will denote the range of an operator A by ran(O) and
its kernel by ker(A).

Let X,Y,Zbesets, f: X — Z,g:Y — Z be arbitrary
functions. The Kronecker product @, : X XY — Z
is defined by (f ®, g) (z,y) = f(z) - g(y). Let f € H;,

g € Ha then define the inner tensor product as an operator
from Hz to H1 by (f ®;9) (h) = (h,g) f for h € Ha.

2.1.1 Hilbert Schmidt Operators

A bounded operator T' € B(H1,Hz) is called a Hilbert-
Schmidt (H.S) [18] operator if there exists an ONB (e,,) C

o0
My such that |T||,s = (/> [[Tenly, < oo. Let
n=1

HS(H1,Hs) denote the space of Hilbert Schmidt oper-
ators from H; to Ho.

2.2 Frames

A sequence U = (y;|k € K) is called a frame [5, 7] for
the Hilbert space H, if constants A, B > 0 exist, such that

A < ST HA e < B-IIfl5, Y fer )
k

A sequence ¥ = (¢,) is called a Bessel sequence with
Bessel bound B if it fulfills the right inequality above. The
index set will be omitted in the following, if no distinction
is necessary.

A complete sequence (1) in H is called a Riesz basis if
there exist constants A, B > 0 such that the inequalities
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hold for all finite sequences (cy).

3. Representing Operators with Frames

Let (¢x) be a frame in H;. An existing operator U €
B(H1,Hs) is uniquely determined by its images of the
frame elements. For f = " cp)g

k

U(f) =UC_ extn) = > cxl ().
k p

On the other hand, contrary to the case for ONBs, we

cannot just choose a Bessel sequence () and define

an operator just by choosing V (tx) := n; and setting

V(> exo) = > cgni. This is in general not well-
k

k
defined. Only if

etk =D dite = > e = Y dini



this definition is non-ambiguous, i.e. if ker (Dy,) C
ker (Dy, ). This condition is certainly fulfilled, if D,
is injective, i.e. for Riesz bases.
This problem can be avoided by using the following defi-
nition

V(f) ?=Z<f7¢k>77k- 2

k

As (n) forms a Bessel sequence, the right hand side of
Eq. (2) is well-defined. It is clearly linear, and it is
bounded. The Bessel condition is necessary in the case
of ONBs to get a bounded operator, too [8]. But contrary
to the ONB case, here, in general, V' (1)) # ng. So this
option does not seem very useful. Instead of changing the
sequence with which the coefficients are resynthezised,
an operator can also be described by changing the coef-
ficients, as presented in the following sections.

4. Matrix Representation

4.1 Motivation: Solving Operator Equalities

Given an operator equality O - f = g it is natural to
discretize it to find a solution. Let ® = (¢) be a frame.
Let us suppose that for a given g with coefficients d =
(dr) = ({9, ¢x)) and a matrix representation M of O there
is an algorithm to find the least square solution of

M-c=d 3)
for example using the pseudoinverse [7]. Still, if using
frames, we can not expect to find a true solution for the

operator equality just by applying Dy, on c as in general ¢
is not in ran(Cy) even if d is. But we see the following:

Of =g <= (f,¢x) Oy = g =
k

g Z <fa ¢k> <O$ka¢k> = <gv¢k>
k

= M®D (0). Copf = Copg.
It can be easily seen that this is equivalent to projecting ¢
on ran(C), solving MCgsDjzc = d, which is a common

idea found in many algorithms, for example for a recent
one see [20].

This gives us an algorithm for finding an approximative
solution to the inverse operator problem O f = g.

1. Set M = M©®®) ().

2. Find a good finite dimensional approximation My of
M by using the finite section method [14, 16] and

3. then apply an algorithm like e.g. the QR factorization
[21] to find a solution for the operator equation.

4. and synthezise with the dual frame 3.

4.2 Bessel sequences

Theorem 4.2.1 Let U = () be a Bessel sequence in Hq
with bound B, ® = (¢y) in Ha with B’.

1. Let O : Hi — Hs be a bounded, linear operator.
Then the infinite matrix

(M((b’\l/) (O)> = <Ol/)nv¢m>

m,n

defines a bounded operator from 1% to 1> with
Moo < VB-B"-||Ollyy, .y, As an opera-

tor 12 — [2
MEY) (0) = Cp 000 Dy

This means the function M(®Y) : B(Hy, Hy) —
B(12,1?) is a well-defined bounded operator:

2. On the other hand let M be an infinite matrix defin-
ing a bounded operator from 1* to I, (Mc), =
> M y.ck. Then the operator O®Y) defined by

E

(O@’W) (M)) h=). ZMm (B b) | b,

k

Ho@’vw) (M)H <VB-B'||M||;

H14>H2

—[2
O(q’,‘P)(M) = DgoMoCy = Zsz,j'%@z@j
k J

This means the function O(®%) B(1%1%) —
B(H1, Ha) is a well-defined bounded operator.

O®¥) (M)

O

v M2 (0) '

12 A

Figure 1: The operator induced by a matrix M and the
matrix induced by an operator O.

If we do not want to stress the dependency on the frames
and there is no change of confusion, the notation M (O)
and O(M) will be used.

In the above theorem we have avoided the issue, when an
infinite matrix defines a bounded operator from % to 2. A
criterion has been proved in [9]:



Theorem 4.2.2 An infinite matrix M defines a bounded
operator from 12 to 12, if and only if (M*M)" is defined

foralln = 1,2,3,... and supsup ’ [(M*M)?J
n 1l ’

Q.

For similar conditions see [17].

4.3 Frames

Proposition 4.3.1 Let ¥ = (1) be a frame in H; with
bounds A, B, ® = (¢y,) in Ho with A’ B'. Then

1 (0@ 0 M) = 1a = (O o p@D),
And therefore for all O € B(H1,Hsz):

0= Z <01/~)j, ng> bk @4 Jj
k,j

2. M@Y) s injective and O®Y) is surjective.

3. Let Hy = Ha, then O (Idp) = Idyy,

4. Let = = (&) be any frame in Hs, and O : Hy — Ha
and P : H1 — Hs. Then

MEW (00 P) = (M*2 (0)- MED (P))

As a direct consequence we get the following corollary:

Corollary 4.3.2 For the frame ® = (i) the function
M (@) is a Banach-algebra monomorphism between the
algebra of bounded operators (B(H1,H1), o) and the in-
finite matrices of (B(lz, 12), )

Lemma 4.3.3 Let O : H1 — Hs be a linear and bounded
operator, let U = (Yr) and ® = (Pi) be frames in
Hy resp. Ho. Then M®Y)(O) maps ran (Cy) into
ran (Cy) with

((fr k) = ((OF, d1))y -

If O is surjective, then M(‘bj’)(Q) maps ran (Cg) onto
ran (Cg). If O is injective, M(®¥)(O) is also injective.

The other function O is in general not so “well-behaved”.
It is, if the dual frames are biorthogonal. In this case these
functions are isomorphisms, see the next section.

4.4 Riesz sequences

Theorem 4.4.1 Let ® = (¢y) be a Riesz basis for Hy,

= (Yy) one for Hy. The functions M®%) and o@D
between B(H1,Hz) and the infinite matrices in B(1?,1?)
are bijective. M®Y) and O@Y) are inverse to each
other. For H1 = 'Ha the identity is mapped on the iden-
tity be(@,\p) and o@D, If furthermore ¥ = ® then
M@ and O@®) gre Banach algebra isomorphisms,
respecting the identities id;2 and idpy.

5. Matrix Representation of 7S Operators

We now have the adequate tools to state that .S opera-
tors correspond exactly to the Frobenius matrices, as ex-
pected. Let A be an m by n matrix, then [|A[;., =

n—1m—1
>0 ag, ]| is the Frobenius norm. Let us denote
=0 7=0

the set of all matrices with finite Frobenius norm by [(32),
the set of Frobenius matrices.

Proposition 5.0.2 Ler U = (vy,) be a Bessel sequence in
Hy with bound B, ® = (¢y,) in Ho with B'. Let M be
a matrix in 12, Then O®Y) (M) € HS(H1, Hs), the
Hilbert Schmidt class of operators from H; to Ha, with
10(M)llys < VBB || M]|,,-

Let O € HS, then M®Y)(0) ¢
MOl fro < VBB'[[Oll3ys-

12:2) yith

5.1 Matrices and the Kernel Theorems

For L?(R?) the H.S operators are exactly those integral
operators with kernels in L? (R??) [18]. This means that
there exists a ko € L?(R??) such an operator can be de-
scribed as

(Of) (x) = / ko (z,y) f(y)dy

Or in weak formulation

(0f,9) //Hol‘y

From 4.2.1 we know that

0=>" <01/3j7<13k> D @i b,

Jsk

)g(x)dydx = (ko, f @0 7) -
“4)

and so

Corollary 5.1.1 Let O € HS (L* (R?)). Ler ¥ = (1)
and ® = (¢) be frames in L? (R?). Then the kernel of
O is given as:

no—ZMM

¢k ®o 1/} j
This directly leads to the next concept.

6. Generalized Bessel Multipliers

Let m be a sequence and diag(m) the matrix that has this
sequence as diagonal. Then define
M, o v =

O®Y) (diag(m ka br @ g,

This means we have arrived quite naturally at the defini-
tion of frame multipliers as introduced in [2].

It is a very natural idea to extend this definition to include
more side-diagonals:



Definition 6.0.2 Letr Hy, Hs be Hilbert-spaces, let
(Yr)per, € Hiand (¢r)c i © Ha be Bessel sequences.
Let M be a (K x L)-matrix that defines a bounded op-
erator from 1% to 12. Define the operator Mo (), (0n)
‘H1 — Hoa, the generalized Bessel multiplier for the Bessel
sequences (V) and (¢r,), as the operator

Mo (1), (pi) (f) = Z Z My (f: k) ¢u-
Ik

The sequence m is called the symbol of M. If the se-
quence is a frame, we call the operator a ’generalized
frame multiplier’.

For Gabor frames, this is a particular case of the ’gener-
alized Gabor multipliers’ as found in [10] or [11] in this
volume.

Using the results above we can write

Proposition 6.0.3 For mo frames () < Hi and
(¢} C Ha every operator O : Hy — Ha can be
written as a generalized frame multiplier with the symbol

M = <01/~)k7 fl~51>
Further results as the following are easy to prove:
Theorem 6.0.4 Let M = M,, 4, v, be a Bessel multi-

plier for the Bessel sequences () C Hy and (¢} C Ho
with the bounds B and B’'. Then

LIf M,M* € 1Y with M|, = K and
|| M = Koy then M is a well defined bounded
operator with || M|, < vV B'BK1 K>.

||1,oo

2. If sup HM(”)HOP = K < oo then M is a well de-
ﬁne?i bounded operator with | M|, < VB'BK.

3. If (M*M)" is defined for n =
sup sup [(M*M)?l} v =

IMll, < VBBE.

4. If ¢, = Y and M € B(I?) is a positive matrix, M is
positive.

5. Let M c B(l2), then (MM’(d)k)’(’l/Jk))* =
Mure (1), (p1)- Therefore if M is self-adjoint and
o1 = Vi, M is self-adjoint.

6. Lett M € B(l?) be a matrix such that
lim HM(”) — MHOP = 0, then M is compact.

1,2,...and

K < oo then

7. If M € 12, M is a Hilbert Schmidt operator with
1Ml < VB'VB |[M]|y 5.

Here for an operator A we denote A = p. AP, where
Pn(l‘o,ajl,xz, .. ) = (:1?1,.%‘2, e ,xn,l,0,0, N ), see
[14] (finite sections).

7. Perspectives

In this work we have investigated the basic idea of matrix
representations using frames. An interesting question, as
discussed in Section 4.1, is how to find a good finite ap-
proximation matrix. For first ideas in the Gabor case see
[13,10, 11,22, 4].
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