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In conventional lasers, the optical cavity that confines ghetons
also determines essential characteristics of the lasirdemesuch as
wavelength, emission pattern, directivity, and polai@atin random
lasers, which do not have mirrors or a well-defined cavightliis
confined within the gain medium by means of multiple scaitgri
The sharp peaks in the emission spectra of semiconductodgyeyw
first observed in 1999, has therefore lead to an intense elelaiut
the nature of the lasing modes in these so-called lasersrggtimant
feedback. In this paper, we review numerical and theoiesicalies
aimed at clarifying the nature of the lasing modes in disade
scattering systems with gain. The last decade has witnebmed
emergence of the idea that even the low-Q resonances of g&ch o
systems could play a role similar to the cavity modes of a enfav
tional laser and produce sharp lasing peaks. We will focug he
on the near-threshold single-mode lasing regime whereimean
effects associated with gain saturation and mode commetitan
be neglected. We will discuss in particular the link betwesmdom
laser modes near threshold and the resonances or quasl-(Q&)
states of the passive system without gain. For random lagers
the localized (strong scattering) regime, QB states andstinld
lasing modes (TLM) were found to be nearly identiggthin the
scattering medium. These studies were later extended toates of
more lossy systems such as random systems in the diffugpuaee
where it was observed that increasing the openness of sgténsy
eventually resulted in measurable and increasing diftergetween
guasi-bound states and lasing modes. Very recently, atregae
to treat lasers with arbitrarily complex and open cavitieshsas
random lasers established that the threshold lasing maodes &act
distinct from QB states of the passive system and are bedsarithed
in terms of a new class of states, the so-called constantstiabes.
The correspondence between QB states and lasing modesnid fou
to improve in the strong scattering limit, confirming theigay of
initial work in the strong scattering limit® 2010 Optical Society of
America
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1. Introduction

The investigation of laser action in complex media with dilgw has a long history go-
ing back to the early days of laser physics (for a review, $€8]]. Beginning in the mid
1990’s there was a resurgence of interest in this topic lmthd intrinsic interest and
because of a possible relation to the phenomenon of Anddosatization B] previ-
ously studied mainly in the context of electronic systenmendm lasers are disordered
media with gain that do not possess a light-trapping caétyond the confinement pro-
vided by multiple-scattering from the disorder itself. iderthey are usually extremely
open, low finesse lasers. Initially it was unclear whethehssystems could produce
narrow lasing lines without any well-confined electromagnenodes, and while initial
experimental studies did find strong amplification near thadition frequency deter-
mined by the gain medium, discrete lines were not obsereg].[Subsequent studies
in smaller systems with focused pumping did find discreten¢gptines not necessar-
ily located at the center of the gain curve and photon siegistharacteristic of gain
saturation 10-14], demonstrating that in some cases random lasers (RLsybelkeay
much like conventional multimode lasers except for thdatieely high thresholds and
their pseudo-random emission patterns in space. The expetal observations of laser
peaks have naturally called for the search for a feedbaclkhamiEm leading to light
trapping within the scattering medium. There is in fact aecakere light can be well-
confined inside an open disordered medium. Such confinensentowhen the scatte-
ring is extremely strong and the system is in the regime ofeksoh localization]5)].
However, except in quasi-1D geometrid$]| the vast majority of experiments on RLs
do not appear to be in the localized regime, so the questiarhether laser action in a
diffusive (L > ¢) or quasi-ballistiqL ~ ¢) medium has a qualitatively different nature
and origin with respect to conventional lasers remainechdpesome time (heré is



the system size andis the optical elastic mean free path).

With the renewed experimental interest in RLs came also abeurof attempts to
generalize laser theory to describe such a system. Earlymaja distinction was made
between conventional lasers which operate on resonariide@dnd RLs which at least
in some cases were supposed to operate only on non-reseeaitiatk (NRF)4]. In
the case of NRF the light intensity in the laser was descrhiped diffusion equation
with gain but the phase of the light field and hence interfegetid not play a role. A
key finding is that there is a threshold for amplification witlea diffusion length for
escapelp ~ dL?/¢ became longer than the gain length (hdre: 2,3 is the dimen-
sionality). The spatial distribution of intensity aboveeshold would be given by the
solution of a diffusion equation. In this approach there lddae no frequency selec-
tivity and the amplified light would be peaked at the gain eenClearly such a de-
scription would be inadequate to describe RLs based on Anddocalized modes, as
such modes are localized in space precisely due to desgucterference of diffusing
waves arising from multiple scattering.

This question itself is related to a basic question in naedr optics: can a system,
disordered or not, which is so leaky that it has no isolateedr scattering resonances
nonetheless have sharp laser lines due to the addition 0? gaid if so, how are the
modes associated with these lines related to the broad #imlldito observe reso-
nances of the passive cavity? For an open diffusive or chaBstic medium in two
or three dimensions the resonance spacing in wavevectbdedtease ag9-1/L¢,
whereas the linewidth will scale a&/L? (diffusive) or as ZL (ballistic). Therefore
(unless? ~ A in d = 2) the disordered passive cavity resonances stronglyayerid
cannot be directly observed in linear scattering.

In the search for a feedback mechanism responsible for thigp saser peaks ob-
served experimentallyl[], different scenarios have been proposed. As an altemativ
to the early picture of closed scattering loops, the prdivaldf having ring-shaped
resonators with index of refraction larger than averagehm diffusive regime was
calculated and shown to be substantially increased bydis@orrelation due to finite-
size scattererslB, 19]. Another scenario was put forward where spontaneouslytedi
photons accumulate gain along very long trajectories. fidlisws the observation of
random spikes in the emission spectrum of weakly activeesoag systems in single
shot experiment2D, 21]. These “lucky photons” accumulate enough gain to actiwate
new lasing mode with a different wavelength after each akom shot. The experimen-
tal study of the modal decay rates in microwave experimeadihg to the observation
of anomalous diffusion has brought forward the existenderajer-lived prelocalized
modes in an otherwise diffusive syste®]. An experimental indication of the coexis-
tence of extended and localized lasing modes has been tgdgeaently 23]. It was
suggested that these longer lived-modes could be respergitiasing. However, al-
though they are possibly achieved in some specific situsititiose different scenarios
cannot explain the whole set of experimental observations

In this paper, we present recent work, both numerical andy@eel, which has
shown that within semiclassical laser theory, in which tifects of quantum noise
are neglected, definite answers to these questions candig giithout resorting to ex-



otic scenarios. Sharp laser lines based on interferenteieot feedback) do exist not
only in strongly scattering random lasers where the loedlizgime is reache@4-26]
but also in diffusive random lasers (DRL&)7 28], and even for weak scatteringq.
Numerical studies have shown that they are associated ln#istiold lasing modes
(TLMs), which, inside the cavity, are similar to the resoces or quasi-bound (QB)
states of the passive system (also called quasi-normal shoblee resemblance is ex-
cellent in the localized cas@%, 26] and deteriorates as scattering is reduced. A new
theoretical approach based on a reformulation of the Max@leth equations to ac-
cess the steady state properties of arbitrarily complexogeth cavities allows one to
calculate the lasing modes in diffusive and even in weakttedng random lasers
(¢ ~ L) [30-34]. A major outcome of this approach is the demonstration atthbugh
lasing modes and passive modes can be very alike in randoensysvith moder-
ate openness in agreement with the above numerical retdisfeature fundamental
differences. Their distinctness increases with the openpéthe random system and
becomes substantial for weakly scattering systems. Quritex (CF) states are in-
troduced which better describe TLMs both inside and outtiéescattering medium
for any scattering strength. In addition this theoretiggpr@ach allows one to study
the multimode regime in DRLs and get detailed informatioawtihe effects of mode
competition through spatial hole-burning, which appeadiféer from conventional
lasers.

In this last decade, different types of random lasers (semdigctor powders, pi-
conjugated polymers, scattering suspension in dyes, mmdigrocavities, dye-doped
nematic liquid crystals, random fiber lasers, ...) have lwesisidered in the literature.
We will focus throughout this review mostly on two dimensibi2D) random lasers
which consist of randomly distributed dielectric nanojdes as scatterers. This choice
makes possible the numerical and theoretical exploratfoRDofinite-sized opened
samples where transport can be ballistic, diffusive (inti@st to 1D) or localizedds],
by adjusting the index contrast between the scatterershaniistckground medium.

The outline of this review is as follows: In section 2 we reviearly numerical
explorations of localized and diffusive random lasing dasimting the existence of
threshold lasing modes (TLMs) in all regimes. In section 3pna&sent recent numeri-
cal work based on a time-independent model, which indictieslifference between
passive cavity resonances and threshold lasing modesisdiag only single-mode
random lasing. The following section will explain why in pciple, quasi-bound (QB)
states cannot describe TLMs. The last section will intredtiee concept of constant-
flux (CF) states and describe the self-consistent timepeddent approach to describe
random lasing modes at threshold as well as in the multimegiene.

2. Early numerical explorations: Time-dependent model

2.1. Localized case

From a modal point of view, Anderson localization means tbastrong disorder, the
eigenmodes of the wave equation are spatially localizedviolamne of finite size 2,
whereé is the localization length. More precisely, they are sjigtlacalized solutions



of the Maxwell equations with tails, which decay expondhtifrom their center,é
being the decay length. In the case of scattering partittiesyalue of the localization
length is controlled by the index contrast between the gadiand the background
medium, the size of the particles, the optical wavelengtih the amount of disorder.
In practice, when finite-size systems in the localizatiogime are considered, two
opposite cases may occur : (§)> L and (2)¢ < L where L is the system size. In
the first case, the system is not large enough for the lighetodnfined by disorder
within the volume of the system. In case (2), light is locadizsince it cannot escape
domains larger thad. More precisely, localized modes are coupled to the boueslar
via their exponential tails. The leakage rate of an expaakntocalized quasi-bound
(QB) state varies as exp2r/¢&) with r the distance to the boundarie36] . Hence, in
sufficiently large systems QB states located far from thendaties (which constitutes
majority of the QB states except a fraction proportiona€ tb.) feature a very small
leakage i.e. a good quality factor.

In this subsection, we will consider case (2). Localized ewoith a disordered scat-
tering system are quite alike the modes of standard optaalies, such as the Fabry-
Perot. B7]. Hence, one can expect that in the presence of gain, theglasodes in
this regime of strong disorder will be close to the localif@B states of the passive
system without gain, in the same way as the lasing modes af\aentional cavity are
built with the QB states of the passive cavity. In order tafyethat this is really the
case one must have access to the individual modes of botraisé/p system and the
active system. Experimentally, such a demonstration hebe®n achieved yet, essen-
tially because the regime of Anderson localization is diffi¢co reach and to observe
in optics. Besides, until recently there was no fully depeld theory describing ran-
dom lasing modes and their relationship with the eigensiaitéhe passive system. The
easiest way to check this conjecture has been to resort teneahsimulations.

Historically, most of the early numerical studies of randtasers were based on
the diffusion equation (see references 4f).[ However, it is not possible to take into
account under the diffusion approximation the interfeeepbenomena which are at
the heart of Anderson localization. This is why Jiang andk®alis [24] proposed to
solve the time-dependent Maxwell equations coupled wighpibpulation equations of
a four-level systemd8]. The populationsN;,i = 1 to 4 satisfy the following equations

dNy/dt = Np/To1 — WpNy (1)

dNy/dt = N3 /132 — N2 /121 — (E/hwy)dP/dt 2
dNs/dt = Ng/T43— N3/132+ (E/hewy)dP/dt 3)
dNs/dt = —Na/T43+W, N1 4)

whereW, is the rate of an external mechanism which pumps electrams the fun-
damental level (1) to the upper level (4). The electrons velld relax quickly with
time constanirys to level 3. The laser transition occurs from level 3 to leveltdre-
guencyw,. Hence, electrons in level 3 can jump to level 2 either spwdasly with
time constants; or through stimulated emission with the rék/hcw,)dP/dt. E andP
are the electric field and the polarization density respelsti Eventually, electrons in



level 2 relax quickly with time constartb; from level 2 to level 1. In these equations,
the populations\;, the electric fielde and the polarization densi®y are functions of
the positionr and the timd.

The polarization obeys the equation

d?P/dt? + Aw,dP/dt + w?P = k.AN.E (5)

whereAN = N, — N3 is the population density difference. Amplification takdéace
when the raté/V, of the external pumping mechanism produces inverted popaola
differenceAN < 0. The line width of the atomic transitiondsw, = 1/132+2/T, where
the collision timeT, is usually much smaller than the lifetintg,. The constank is
given byk = 3c3/2w213, [38).

Finally, the polarization is a source term in the Maxwell &gpns,

OH/dt=—cOxE (6)
g(r)0Edt = cl x H — 40P/ ot. (7)

The randomness of the system arises from the dielectridatrer ), which depends
on the positionr. This time-dependent model has been used in random 1D system
consisting of a random stack of dielectric layers separhtedain media24] and in
random 2D systems consisting of a random collection of tarcparticles embedded
in a gain medium (Figl) [25]. In both cases, a large optical index contrast has been as-
signed between the scatterers and the background mediuakisuare that the regime
of Anderson localization was reached. The Maxwell equatiare solved using the
finite-difference time-domain method (FDTD39]. To simulate an open system, per-
fectly matched layers are introduced at the boundarieseafyhtem40]. The pumping
rateW, is adjusted just above lasing threshold in order to rematteénsingle-mode
regime.

In 1D, the QB states of the passive system were obtained émdigmtly using a time-
independent transfer matrix methotll]. In 2D, the Maxwell equations were solved
without the polarization term in7j using again the FDTD method. First, the spectrum
of eigenfrequencies was obtained by Fourier transform efrtipulse response of the
system. Next, QB states were excited individually by a mbnamatic source at each
of the eigenfrequencies.

Finally, in 1D systems41] as well as in 2D system®§], lasing modes obtained by
the full time-dependent model with gain and localized QBestaf the corresponding
passive system without gain were compared and found to idiédéwith a good pre-
cision. This was verified for all modes obtained by changiregdisorder configuration.
An example of a 2D lasing mode and the corresponding QB sfdteecsame system
(Fig. 1) without gain are displayed in Fig. These results confirmed that the QB states
of a localized system play a role similar to the eigenmodeh@fcavity of a conven-
tional laser. The only difference is the complicated andesyisdependent nature of the
localized modes as opposed to the well-known modes of a otioval cavity. These
results are in good agreement with the theoretical resalisribed in SectioB, which
show that inside systems in the localized regime, the silagieg modes just above
threshold are close to the high-Q resonances of the passitens.
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FIGURE 1.(Color online). Example of a random realization of 896 ciacscat-

terers contained in a square box of size L=5 microns andaptidex n=1. The
radius and the optical index of the scatterers are resgdgtiz60 nm and n=2 .
The total system of size 9 microns is bounded by perfectlychet layers (not
shown) in order to simulate an open system

2.2. Diffusive case

We have seen in the previous section that random lasers iArtlerson localization
regime should behave like conventional lasers. They shexfiibit discrete laser peaks
above threshold in agreement with the experimental obsengof laser action with
resonant feedback. However, subsequent measurements roedn free path showed
that none of the experimental cases that displayed distasez peaks were in the
localized regime. Instead, they were found to be in the sli¥ieiregime and some even
in the quasi-ballistic regime2p). In such systems, there are no localized modes so that
the observation of laser action with resonant feedback bas the subject of much
debate.

Only very recently, numerical evidence was given that evéasive systems with
low Q resonances could exhibit lasing with resonant feeklthac]. The random 2D
systems described in the previous section consisting aforancollections of circu-
lar particles embedded in a gain medium have been investigaith the same time-
dependent model. To be in the diffusive regime instead ofldcalized regime, a
smaller optical index contrag}, = 0.25 instead 0B, = 1.0 has been assigned between
the scatterers and the background medium. Solving the Maregpeations coupled to
the population equations, laser action characterized byagospeak in the emission
spectrum was observed just above a threshold, albeit higrexample of the corre-
sponding lasing mode is displayed in F&g. In contrast to the localized case, the las-



FIGURE 2.(Color online). (a) Spatial distribution of the amplitudealasing
mode in the localized regima & 2) and (b) that of the corresponding QB states of
the same random system without gain. The square delimitctittering medium.
The amplitude rather than the intensity is represented fogtter display of the
small values of the field.

ing mode is now extended over the whole system. Moreoveighlisomplex mode in
the sense that it contains a substantial traveling wave ooerg R7]. However, in this
work comparison of the lasing modes with the QB states of #ssige cavity could not
be carried out by using the time domain method as it was dotieitocalized regime.
Due to strong leakage through the boundaries, resonaneetrangly overlapping in
the frequency domain and one cannot excite them indiviguall a monochromatic
source.

To circumvent this difficulty, an indirect method has beead® compare the lasing
modes with the resonances of the passive system. This mistimspired by the Fox-Li
modes, which in conventional laser physics are modes of an opvity B8,42,43].
The Fox-Li modes are field distributions whose profile is-seffeating in a complete
round trip within the Fabry-Perot laser cavity while decaybecause of the diffraction
losses due to finite surface area of the end mirrors. Anaklgoiiithe lasing modes of
the diffuse system are related to the resonances of thespagsitem, they should decay
by self-repeating themselves when pumping and populatiearsion are turned off.
To study the evolution of the mode profile with time, the fallng spatial correlation
function was introduced[/]

Coltot) = / | /y 92 & (F,t0) £ (7, 1) ®)

which compares the mode profil§(r,t) at timet with the mode profile at the
initial time ty. Here, Z is the scattering medium. The field has been normalized
&(r,t) =E(T,t)/[[ [, d?FE?(T,1)]%2 to counterbalance the decay due to the leakage
through the boundaries. This correlation function osteilaat the laser frequency be-



FIGURE 3.(Color online). (a) Spatial distribution of the amplitudéalasing

mode in the diffusive regime. (b) Spatial distribution oétfield amplitude after
the pump has been stopped and the polarization term has beemzero. The
spatial distribution of scatterers is the collection shawrFig. 1 but here, the
optical index of the scatterersiis= 1.25 instead oh = 2 in Fig. 2

tween -1 and +1 if the normalized mode profile is recoverecaaheeriod (Fig4).
Otherwise, the amplitude of the oscillations should decdf time. This correlation
function was used inZ7] to check whether the first lasing mode at threshold for dif-
fusive random laser indeed corresponds to a Fox-Li modeeop#ssive system. The
pumping is set to zero after the lasing mode has been es$tedlso that at later times
the field can evolve by itself. The long time evolution of tipatsal correlation function
associated with this free field is displayed in Fig. The decay of the total energy of
the system is also shown. While energy decay is observedéomaters of magnitude,
the spatial correlation function is seen to oscillate betwealues close to -1 and +1
meaning that the initial lasing mode profd&r,ty) is reproduced at each period with a
good accuracy. The decaying field amplitude has the spadiaibdition which is shown

in Fig. 3b until eventually, the correlation function decays to zetten the decaying
field reaches the noise level. This result demonstratesthieal LM is very close to

a resonance of the passive system, when measusatethe scattering medium. For
comparison, the evolution of the spatial correlation figrcfor an initial field created
by an arbitrary distribution of monochromatic sources &t léser frequency is dis-
played in Fig.5b. The fast decay of4(to,t) after the sources have been turned off
indicates that this field distribution is not a QB state of plagsive system.

The decay rate observed corresponds to a quality factor,db3fe compared with
the value 16 found in the localized case. This result shows that a “basmance in
a leaky disordered system can nevertheless turn into gglasade in the presence of
an active medium. This result is in stark contrast with thewcmn belief that random
lasing with resonant feedback involves the presence ohees®s with high quality
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FIGURE 4.(Color online). Short time behavior over a few cycles of tbherela-
tion function,C¢(to,t), for (a) a localized lasing mode as in Figgand for (b) a
diffusive lasing mode as in Fi@. The periodic square function in (a) is typical of
a standing wave while the sinus-like function in (b) is cluteastics of a traveling
wave. R7]

factors. It provides a consistent explanation for the drpental observation of random
lasing with resonant feedback even far from the localizeghne, without resorting to
other scenarios such as those reviewed in the introductiGe[l].

The comparison of patterns between Hg.and Fig.3b shows that the lasing mode
and the QB modes are close to each other inside the scatwratgm as confirmed
by the evolution of the correlation function, which has beefined only inside the
system. However, one also notices that outside the scagtemedium, the field dis-
tributions differ substantially. The free propagatingdielutside the scattering system
in Fig. 3b reproduces the laser field distribution in Fig with significant distortions
due to the enhancement of the amplitude towards the extbousidaries of the total
system. Hence, the comparison between both figures inditiae if the lasing modes
and the QB modes are similar inside the scattering systesy,differ noticeably out-
side. Moreover, a careful examination of the correlatiancfion in Fig.5a shows that
it oscillates between two extremal values, which slowlyatefrom -1 and +1 well
prior to the ultimate fast decay. This is in contrast with kbieg time behavior of the
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FIGURE 5. (Color online). Correlation function (full line) and engrglecay
(dashed line) vs time of (a) the lasing mode when the pumprigeti off and
(b) an arbitrary field distribution at the frequency of thsitey mode

correlation function in the localized regime (not shownjiet displays oscillations
between -1 and +1 with a very good precision for time scaleshmonger than the
time scale in Figha. This result indicates also that inside the scatteringesysthe
lasing mode is close to but not identical to a QB state.

In conclusion, the time dependent model has provided da@dence of the close-
ness of lasing modes and passive cavity resonances atiehstlocalized case. In the
diffusive regime, the lasing modes are also found rathesecio the QB modes although
small discrepancies manifest themselves. We also foundhiseholds inside the scat-
tering medium. Outside the scattering system howeveerdifices become more sig-
nificant. The advantage of the time dependent model is trehas access in principle
to the full non-linear dynamics of the laser system. How&YBrstates with low qual-
ity factors are not accessible with this approach. Heneenthasure of the difference
between TLM and QB states has been indirectly achieved mgubke spatial correla-
tion function. Another limitation of this method is relatezithe various time constants
involved in this model which lead to time consuming comgatet, particularly when
one wishes to vary disorder and study an ensemble of disoaudigurations. To over-
come these limitations, different approaches such asrapltvie wave equation in the



frequency domain have been used. Several approaches kintii&ill be described in
the next section[3,44-46]. The recent theoretical approach based on a differens clas
of states, the so-called constant flux (CF) states, anddakiim account non-linear
interactions will be described in sectién

3. Numerical simulations: Time-independent models

Different models have been proposed in the frequency dotoanlve the wave equa-
tion. In 1D, it is possible to employ the transfer matrix nagthsimilar to that used
in [4]] for studying the lasing modes in an active layered randosiesy. A direct
comparison between TLMs and quasi-bound states of thespmmeling passive ran-
dom system is proposed in the first part of this section. IntBB,multipole method
has been used, which also provides a direct comparison @Ehstates and the las-
ing modes of a 2D-disordered open system. The comparis@emed in the second
part of this section has been carried out for refractive xnolfethe scatterers ranging
fromnj = 2.0, (localized regime) to; = 1.25 (diffusive regime). We alternatively used
a different approach based on the finite element method &irotite passive modes,
which turned out to be much less computationally demandirige weakly scattering
regime. A brief description of both methods is provided imp&pdicesA andB.

3.1. One-dimensional random lasers

Employing the transfer matrix method, similar to that ugef#il], we study the lasing
modes in a one-dimensional (1D) random system and compamewlith the QB states
of the passive random system. The random system is compb4€&d tayers. Dielec-
tric material with index of refraction; = 1.05 separated by air gap®(= 1) results in

a spatially modulated index of refractiofix). Outside the random mediung = 1. The
system is randomized by specifying thicknesses for ea@r ksl » = (d12) (14 1),
where (d;) = 100 nm and(d,) = 200 nm are the average thicknesses of the layers,
n = 0.9 represents the degree of randomness,aisch random number in (-1,1). The
length of the random structuteis normalized taL) = 24100 nm. Linear gain is sim-
ulated by appending an imaginary part to the dielectric ionce (x) = €'(x) +ig” (x),
wheree’(x) = n?(x). This approximation is valid at or below thresho#tb]. The com-
plex index of refraction is given bp(X) = /&(x) = I'(x) +in”, wheren” < 0. We
considern” to be constant everywhere within the random system. Thisls/ia gain
lengthlg = |1/K’| = 1/|n”"|k (k= 2m/A is the vacuum frequency of a lasing mode)
which is the same in the dielectric layers and the air gaps.réhl part of the index of
refraction is modified by the imaginary part$x) = /n2(x) +n’2.

We find the frequenck and threshold gaik’ of each lasing mode within the wave-
length range 500 nm A < 750 nm. The results are shown in F&@.Finding ‘match-
ing’ QB states for lasing modes with large thresholds (lakgg is challenging due to
large shifts of the solution locations [Fi§(region c)]. However, there is a clear one-
to-one correspondence with QB states for the lasing modeaining [Figs.6(region
a) and (region b)]. It is straightforward to find the matchi@Q® states for these las-
ing modes and calculate their differences. The averagepedifference between QB
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FIGURE 6.The frequenciek of quasi-bound modes (crosses) and lasing modes
with linear gain (open diamonds) together with the decags‘q"; of QB states

and the lasing thresholds of lasing modes. The horizontal dashed lines separate
three different regions of behavior: (a) lasing modes astlyeanatched to QB
states, (b) clear differences appear but matching lasirdesito QB states is still
possible, (c) lasing modes have shifted so much it is diffituimatch them to
QB states. The QB state with the largest decay rate and timg lasde with the
largest threshold are circled, though they may not be a riragqiair.

state frequencies and lasing mode frequencies in@rggion a) is 0.013% while it
is 0.15% in Fig.6(region b). The average percent difference between QB dtatay
ratesk, and lasing thresholde in Fig. 6(region a) is 2.5% and in Fidi(region b) is
21%.

The normalized intensities of the QB statgg and lasing modes with linear gain
I are also compared. Figuileshows representative ‘pairs’ of modes from the three
regions shown in Fig6. The spatially averaged relative difference between eaah p
of modes is calculated by

_ Jllgs—ILg|dA
[LcdA

For small thresholds [Fig7(a)], the difference between the lasing modes and the
matching QB states is very small. The average percent difter between all pairs of
modes in this region i$oy) = 4.2%. For lasing modes with slightly larger thresholds
[Fig. 7(b)], there are clear differences. Nevertheless, we mafidmmtly match each
lasing mode in this region with its corresponding QB statee &verage percent differ-
ence between all pairs of modes in this regiofdg) = 24%. As mentioned earlier, it

is challenging to find matching pairs of lasing modes and QBestfor large thresh-
olds. Figure7(c) compares the lasing mode with the largest threshold e @B state

(0q) x 100% 9)
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FIGURE 7.(Color online) Spatial intensity distributions of quasitind modes
loa(x) (red solid lines) and lasing modgs;(x) (black dashed lines) from each of
the three regions in Fig. Representative samples were chosen for each case. (a)
The lasing mode intensity is nearly identical to the QB siatensity withoy =

1.7%. (b) A clear difference appears between the lasing moddtenQB state,

with gy = 21.8%, but they are still similar. (¢) The lasing mode with thegkst
threshold and QB state with the largest decay rate are cadpaithoy = 198%.
Though these two modes are fairly close to each other [diritieFig. 6(region

c)], their intensity distributions are quite different.

with the largest decay rate [circled in Fig(region c)]. Though these two modes are
fairly close to each other in terms b,fkg, andk’, their intensity distributions are quite
different. Indeed, there may be no correspondence betvireevb.

The deviation of the lasing modes from the QB states can blaiegpl by the mod-
ification of the transfer matrix. In the passive systdgnis constant, buk'i = kyn(x)
varies spatially. With the introduction of gaik, becomes constant within the random
system, and feedback due to the inhomogeneity &f removed. However, introducing
gain generates additional feedback inside the randommystdeised by the modifica-
tion in the real part of the wave vectilr= kn(x). Neglecting this effect results in some
correspondence between lasing modes and QB states evegeahiaesholds47]. Fur-
thermore, since there is no gain outside the random sy#tesuddenly drops to zero
at the system boundary. This discontinuitykofgenerates additional feedback for the
lasing modes. In this weakly scattering system, the thidstain is high. The large
drop ofk” at the system boundary makes the additional feedback strong

3.2. Two-dimensional random lasers

We turn now to the 2D case. A different approach based on thépole method
has been used. The multipole method is best suited to ckamectnultiple scattering



problems involving scatterers with circular cross-settibhis method has been used
to compute the scattering of a plane wave by a random callecti cylinders 29,489,

to calculate the defect states in photonic crystd#, [to construct the exact Green’s
function of a finite system30], or to calculate the local density of statésl]. This
method has also been used to explain the anomalously lam shift that occurs
in photonic crystals by calculating the QB states in suchcstire b2]. Finally, The
multipole method can be used to characterize the modeses thimensional structures
composed of cylindersbB] and in particular to find the modes of the phothonic crystal
fibers B4-56]. It will be used here to calculate the QB states and the dasindes of
the 2D-disordered scattering systems of the kind shown gn Fand studied in the
previous section for different regimes of scattering. det@bout this method can be
found in AppendixA.

This method is based essentially on a search for the polessoétsering matrix.
Because the system is open, the problem is not Hermitianeamcklthere are no modes
occurring for real wavelengths. The poles of the QB statksclur in the complex
plane at wavelengths = A’ +iA”, with causality requiring that” > 0. The real part
of the wavelength\’ determines the resonance wavelength of the QB state, vitgle t
imaginary partA” determine the quality factd@ = A’ /(2A") of the mode $2].

The same method is used to find the lasing modes (TLM) at thlesh is necessary
to find this time the poles of the scattering matrix in the mmensional spac@\’, &)
of real wavelengthsX” = 0) and imaginary component of the complex dielectric con-
stant outside the scatterers where the gain is distriblttedn also be used to find the
lasing modes when gain is localized inside of the scatteherthis case the poles of
the scattering matrix are searched in the space of real emytis §” = 0) and the
imaginary part of the dielectric constant of cylindef9

The multipole method is both accurate and efficient: the daon conditions are
analytically satisfied, thus providing enhanced converggeparticularly when the re-
fractive index contrast is high. However, in the case ofdasgstems the method can
be slow (given that field expansions are global, rather tloaal) when it is neces-
sary to locate all poles within a sizable wavelength rangeother extremely efficient
time-independent numerical method based on Finite Elemlathod [B7] has been
tested. This method is briefly described in 8ieWe checked that the results obtained
by both methods, the (purely numerical) finite element mettmad the (semi-analytic)
multipole method were identical with a good precision.

3.2.a. Localized case

We first consider the localized casg & 2.0) for which a complete comparison of the
QB states and the lasing modes was possible with the timerdiemt FDTD-based
method (sectior?.1), thus providing a reference comparison for the multipaksa-
lations. The lasing mode is found at a wavelenyjth= 446.335 nm for a value of the
imaginary part of the refractive indef’ = —1.967 x 1074, representing the pumping
threshold for this mode. The spatial distribution of its ditade is shown in Fig8(b).
The QB states of the passive system are calculated in th&apécinity of the lasing
mode. The number of required multipoles igax= 4 (seeA). Figure8(a) shows the



FIGURE 8. (Color online) The intensity|E|?> of the localized QB state (a)
(Media 1) and corresponding lasing mode (bj€dia 2 calculated using multi-
pole method for a 2D-disordered scattering system of thd khown in Fig.1
with the refractive index of the cylindens = 2.0.

QB state which best resembles the lasing mode. Its wavélergt quality factor are
respectivelyd’ = 446339 nm andQ = 8047. The relative difference between the two
modes is0q) = 0.05%. These calculations provide confirmation that the tasiodes
and the QB states are the same inside the scattering regibigfoQ-valued states.

FIGURE 9. (Color online). The intensityE|? of the diffusive QB state (a)
(Media 3 and the lasing mode (b)Media 4 calculated using the multipole
method for the same random configuration as in Bidgput with the refractive
index of the cylinders ofiy = 1.25.

3.2.b. Diffusive case

We next consider the diffusive case and choose- 1.25. This is where the time-
independent method becomes interesting since, in coritdee FDTD approach, it
gives a direct access to the QB states. They are accuratelyatad in this regime for
Nmax = 2 multipoles. Figure shows a lasing mode and its corresponding QB state.
The lasing mode is found at’ = 455827 nm for an imaginary part of the refractive
indexn = —3.778x 10~2. The wavelength and the quality factor of the QB state are
respectivelyA’ = 45679 nm andQ = 29.2. The lasing mode is therefore red-shifted
relative to the QB state’s wavelength, as a result of the napading effect. The QB
state and the lasing mode appear similar in RBigHowever, the relative difference
between the two modes is larger than in the localized casg,= 14.5%. Fig. 10
shows the cross-section of the spatial intensity of bothesadongx = 2.75. In spite



FIGURE 10. (Color online). The intensityE|? of the diffusive QB state (blue
dashed line) and lasing mode (red solid line)xer 2.75 andn| = 1.25.

of the resemblance, the two profile display visible dissanities. This suggests, in the
diffusive case, that QB states and lasing modes are notlgxhetsame though they
exhibit quite similar features. These results are consistéth the findings presented
in section2.2.

3.2.c. Transition case

FIGURE 11 .(Color online) The intensityE|? of a QB state (a) and a lasing mode
(b) calculated using multipole method for the same randamfigoration as above
but with the refractive index of the cylindens= 1.75.

It is both informative and interesting to follow the evoturii of the lasing modes
and QB states spatial profile when the index of refractioneirelased progressively,
allowing to compare systematically the QB states and theéaiarlasing modes (TLM)
in regime ranging from localized to diffusive. The QB statel dasing modes calcu-
lated for intermediate cylinder refractive indicgs= 1.75 andn; = 1.5 are displayed
in Figs.11and12. We note that the highly spatially localized mode fibe= 2 (Fig. 8)
is replaced fon| = 1.75 by a mode formed by two spatially localized peaks and séver
smaller peaks. For a refractive indexmjf= 1.5, the mode is still spatially localized
although on a larger area, but is now formed with a large numbeverlapping peaks.



FIGURE 12. (Color online) The same as in Higjbut forn = 1.5.

A more systematic exploration of the nature of the lasing esoat the transition be-
tween localized states and extended resonances can beifd@8l There, a scenario
for the transition has been proposed based on the existénexklace states which
form chains of localized peaks, resulting from the coupliegween localized modes.
The modes shown here support this scenario. It is importambtie that the decreasing
scattering and increasing leakage not only affect the @egfrepatial extension of the
mode but also the nature of the QB states. Indeed, it was sho)28] that because
of leakage, extended QB states have a non-vanishing imggdaat associated with a
progressive component, in contrast to the purely statjoloaalized states. We present
in [58] animations of the time oscillation of the real part of thddigl [ exp(—icwt)]

of the QB state and of the corresponding TLM fbe= 2 andr’ = 1.25. The QB state
is exponentially decaying in contrast to the lasing modee diifusive lasing mode
clearly exhibit a progressive component, which does natterithe localized lasing
mode.

n 2.0 1.75 15 1.25

A" (nm) (QB) | 446.339 | 451.60 | 456.60 | 456.79
Q 8047 161.28| 87.8 | 29.2

A7 (nm) (laser)| 446.335 | 451.60| 456.5 | 455.827
7 -1.967<10°% | -0.0055| -0.0124| -0.0378
(0q) (%) 0.05 3 8.4 145

TABLE 1. WavelengthA” and quality factoQ of the QB states; lasing frequency
A" and imaginary part of the refractive indek obtained for the threshold lasing
modes; relative index differencey) between QB states and TLM, for four index
valuesn’ of the scatterers.

The values of wavelengths and quality factors of the QB stdésing frequencies
of the corresponding threshold lasing modes and assodiatgginary part of the re-
fractive index are summarized in Tatlletogether with the relative differencdey) as
defined in EP.

In order to visualize the increasing difference between Tdrid QB states, the cross-
section of their spatial intensity profile at= 2.75 is plotted in Fig13. In Fig. 13(a)
one cannot distinguish between the lasing mode and the @Bfstan’ = 1.75, while
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FIGURE 13.The intensity|E|? of QB state (blue dashed line) and lasing mode
(red solid line) ak = 2.75 forn] = 1.75 (a),n’ = 1.5 (b) andn’ = 1.25 (c).

for ' = 1.5 (Fig. 13(b)) differences begin to emerge, becoming more pronoufmed
the case ofY = 1.25 (Fig.13(c)). This is seen also in the increase of the relative dif-
ference from 5% to 14.5%. Clearly, there is a systematiceimse of the discrepancy
between QB states and lasing modes when index contrast atidrsty decrease and
leakage increases. For very low scatterimg= 1.05, we could not find the QB state
corresponding to the TLM. Although we may have missed a potee complex plane,
this raises however a serious question on the validity oftimeparison of the threshold
laser mode with QB states when weakly scattering systemsoa®dered. In the next
section, we will argue that, in principle, QB states canrethe support of the TLM.
Section5 will introduce a different class of states, which offer aigddasis on which
the TLMs can be described.

4. Threshold lasing states vs. passive cavity resonances

Semiclassical laser theory treats classical electroniagfields coupled to quantized
matter and yields the thresholds, frequencies and eldiglits of the lasing modes, but



not their linewidths or noise properties. In order to tréat$patial dependence of lasing
modes one must go beyond rate equation descriptions antheis®tpled non-linear
Maxwell-Bloch (MB) equations for light coupled to homogensly broadened two-
level “atoms” or multilevel generalizations thereof. Thexjuations will be presented
in section5 below. While the MB description has been used since the tramepf laser
theory b9,60], in almost all cases simplifications to these equationseweade, most
notably a neglect of the openness of the laser cavity. Asaanksers are strongly
open systems, it is necessary to treat this aspect of théepnodorrectly to obtain a
good description of them.

Historically a first breakthrough in describing Fabry-Rerge lasers with open
sides was the Fox-Li methodtZ], which is an integral equation method of finding
the passive cavity resonances of such a structure. It islyvadsumed and stated that
these resonances or quasi-bound (QB) states are the celeetbmagnetic modes of
a laser, at least at threshold. Often the non-linear lasgates are studied with her-
mitian cavity modes with phenomenological damping coristeepresenting the cavity
outcoupling loss obtained, e.g. from a Fox-Li calculatitins worth noting that there
are two kinds of cavity loss that occur in lasers; there isoiliieoupling loss just men-
tioned and also the internal absorption of the cavity whigh be taken into account
via the imaginary part of the passive cavity index of refi@ct These are very different
processes as the former describes the usable coherenttighdy emitted from the
laser and the latter simply energy lost, usually as heahandser cavity.

The QB states of an arbitrary passive cavity described hyealidielectric function
(X, w) can be rigorously defined in terms of an electromagneti¢esag matrixSfor
the cavity. This matrix relates incoming waves at wavevektrequencyw = ck) to
outgoing waves in all of the asymptotic scattering chanaetscan be calculated from
the wave equation. Note that while we speak of the frequehttyedncoming wave in
fact the S-matrix is &ime-independent quantiygepending on the wavevectkr This
is the wavevector outside the cavity; in random lasers wkbiinterested in spatially
varying dielectric functions so that in the “cavity” thererio single wavevector of the
field. For any laser, including the random laser, the ca\aty loe defined as simply the
surface of “last scattering” beyond which no backscattedocurs. The QB states are
then the eigenvectors of the passive cavity S-matrix wileralue equal to infinity; .
e. one has outgoing waves with no incoming waves. Becausbalindary condition is
incompatible with current conservation these eigenvecdt@ave complex wavevector,
Ru; these complex frequencies are the poles of the S-matrixtaidimaginary parts
must always be negative to satisfy causality conditiongré&lare normally a countably
infinite set of such QB states. Due to their complex waveveetsymptotically the
QB states vary as™(@1/2exp(+|Im[k,]|r) and diverge at infinity, so they are not
normalizable solutions of the time-independent wave eguaT herefore we see that
QB states cannot represent the lasing modes of the cavity, avthreshold, as the
lasing modes have real frequency and wavevector outsideaity with conserved
photon flux.

When gain is added to the cavity the effect is to add anothaetribation to the
dielectric functiongyg(x, w) which in general has a real and imaginary part. The imag-
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FIGURE 14. Shift of the poles of the S-matrix in the complex plane onto
the real axis to form threshold lasing modes when the imagiqart of
the dielectric functions = & + &4 varies for a simple 1d edge-emitting cav-
ity laser B3. The cavity is a region of lengtih and uniform indexn; =
1.5(a),1.05(b)(&; = 2.25,1.0025 terminated in vacuum at both ends. The cal-
culations are based on the MB model discussed in seé&iamith parameters
kaL = 39 andy, = 2. (a) nc = 1.5, the squares of different colors represent
Im[gg] = 0,—0.032 —0.064 —0.096 —0.128 (b)nc = 1.05,the squares of differ-
ent colors represent Ijgy] = 0, —0.04, —0.08,—0.12, —0.16, note the increase in
the frequency shift in the complex plane for the leakier gaviihe center of the
gain curve is akL = 39 which determines the visible line-pulling effect.

inary part ofeg has amplifying sign when the gain medium is inverted and dege
on the pump strength; it compensates the outcoupling loggelsas any cavity loss
from the cavity dielectric functiorg.. The specific form of this function for the MB
model will be given in sectiod below. The threshold lasing modes (TLMSs) are the so-
lutions of the wave equation withotal (X) = £(X) + £4(X) with only outgoing waves of
real wavevectoik,, (we neglect henceforth for simplicity the frequency-degesrce of
&:(X)). Thek, are the wavevectors of the TLMs with real lasing frequenfigs= ck,,.
These lasing wavevectors are clearly different from thepdem?u; moreover they are
not equal td?e[Rp] as often supposed. This can be seen by the following cotyiatH
gument. Assume that(x) is purely real for simplicity, so that the S-matrix is unijtar
and all of its poles are complex and lie in the negative hahgl Turn on the pump,
which we will call Dy anticipating our later notation, so that the inversiongisteadily
from zero, continuously increasing the amplifying paregfThe S-matrix is no longer
unitary, and its poles move continuously “upward” towarls teal axis until each of
them crosses the axis at a particular pump vdgdgsee Figl14); the place where each
pole crosses is the real lasing frequekgyfor that particular TLM. Note that the poles
do not move vertically to reach the real axis but always haweesshift of the lasing
frequency from the passive cavity frequency, mainly duerte-pulling towards the
gain center. As the Q-value of the cavity increases, thawmist the poles need to move
to reach the real axis decreases so that the frequency shiitFie[Rp] can become
very small and the conventional picture becomes more doidregeneral the poles of
the S-matrix are conserved quantities even in the presdnioss so that the TLMs
are in one to one correspondence with the QB states and tAusoantably infinite,
but for any cavity the pole which reaches the real axis first éit lowest pumDy) is



the actual first lasing mode. At higher pump values the nogali effects of saturation
and mode competition will affect the behavior; so only thedst threshold TLM de-
scribes an observable lasing mode for fixed pumping comdifithefirst lasing mode
at threshold. Which pole gets there first depends not onljherx of the passive cav-
ity resonance before gain is added, but also on the parasnefteg(x) which include
the atomic transition frequency, the gain linewidth andpgbep conditions as will be
discussed below.

5. Self-consistent time-independent approach to random la sing

In section4 we gave a general argument based on the scattering mathxiveitaddi-
tion of gain to show that in general the QB states (passivitycesonances) are never
exactly the same as the threshold lasing modes (TLMs), ex@de the cavity. How-
ever the same argument indicated that inside a high-Q cthatywo sets of functions
become very similar since the poles of the S-matrix are vkrsecto the real axis and
only a small amount of gain is required to move them to the ag&, which maps
QB states onto TLMs. For localized states in the center ofsdmaple the Q-values
should be exponentially large and, as found numericallys @Bd TLMs should be
indistinguishable (again, inside the cavity, outside thH& $pates have an unphysical
growth). As already noted, the set of TLMs only defines tho&simodes, as soon as
the first TLM has turned on it will alter the gain medium for thiher potential modes
through spatial hole-burning and a non-linear approachiséz be considered. Very
recently such an approach has been developed which has joeadeantage of be-
ing time-independent and partially analytic, providinglbease of computation and
greater physical insight. The approach, due to Turear&Be, is known as Ab Initio
Self-consistent Laser Theory (AISC laser theoB(), B3, 34]. It finds the stationary so-
lutions of the MB semiclassical lasing equations in the imdtle regime, for cavities
of arbitrary complexity and openness, and to infinite ordethie non-linear interac-
tions. As such it is ideal for treating diffusive or quasitiséic random lasers which
are extremely open and typically highly multimode eventtligabove threshold. In
this section we present the basic ideas with emphasis oshiblcklasing modes, which
is the focus of this review. The non-linear theory has beerewed in some detail
elsewhere34], and we just present a brief introduction to it here.

5.1. Maxwell-Bloch threshold lasing modes

The MB semiclassical laser equations describe a gain mediudentical two-level
“atoms” with energy level spacinigw, = hck, and relaxation ratg|, being pumped by
an external energy sourcBg (which can vary in space), contained in a cavity which
can be described by a linear dielectric functieg(x). This leads to a population inver-
sion of the atomsD(x,t) which in the presence of an electric field creates a nonslinea
polarization of the atomic mediur®(x,t), which itself is coupled non-linearly to the
inversion through the electric fiel&(x,t). The electric field and the non-linear polar-
ization are related linearly through Maxwell's wave eqoiatialthough above the first
lasing threshold the polarization is implicitly a non-laxdunction of the electric field.



The induced polarization also relaxes at a gatevhich is typically much greater than
the ratey; at which the inversion relaxes, and this is a key assumptiaur treatment
of the non-linear regime, but will not be needed in the ihdiigcussion of TLMSs.

The resulting system of non-linear coupled partial difféie equations for the three
fieldsE(x,t),P(x,t),D(x,t) are € = 1):

T T SE

Et = sc(x)D Et ec(x)P+ (10)
pr = —(iwa+vl)F’++%E+D (11)
D — w<Do—D)—%(E*(P*)*—P*(E*)*)- (12)

Hereg is the dipole matrix element of the atoms and the units forpilmp are cho-
sen so thaDy is equal to the time-independent inversion of the atomitesysn the
absence of an electric field. This pump can be non-unif@g= Do(x) based on the
experimental pump conditions, but we will not discuss tleaechere. The electric field,
polarization and inversion are real functiors P are vector functions in general, but
we assume a geometry where they can be treated as scalasgiting the equations
above we have written these fields in the usual manner in tefrtigeir positive and
negative frequency componenis=E" +E~, P=P" +P~, and then made the ro-
tating wave approximation (RWA) in which the coupling of aége to positive com-
ponents is neglected. There is no advantage in our treattoentking the standard
slowly-varying envelope approximation and we do not make it

5.2. Self-consistent steady-state lasing equations

The starting point of our formulation is to assume that tlestists a steady state multi-
periodic solution of equationd.()-(12) above, i. e., we try a solution of the form:

ET(x,t) = % W, (x)e kit Pr(xt) = % P (x)e (13)
p=1 p=1

Having takenc = 1 we do not distinguish between frequency and wavevectoe. Th
functionsW,(x) are the unknown lasing modes and the real numkgrare the un-
known lasing frequencies; these functions and frequerariesnot assumed to have
any simple relationship to the QB states of the passive cawit will be determined
self-consistently. As the pump increases from zero the rmurobterms in the sum will
vary, N=0,1,2,... at a series of thresholds each new mode will appear. The gener
non-linear theory is based on a self-consistent equatidohadtetermines how many
modes there are at a given pump, and solves for these modebandrequencies.
However in this section we will discuss threshold lasing eodTLMs) and so we
need only consider one term in the sum. Furthermore, at thtdliireshold the electric
field is negligibly small and so the inversion is equal to tkeemal pump profile, as-
sumed uniform in spac®(x,t) = Dp. Assuming single-mode lasing the equation for



the polarization becomes:

(14)

_ —iDogPWy(X)
P = B e — ko)

Having foundP, (x) in terms of¥(x), Do, we substitute this result into the right hand
side of Maxwell’s equation along wit#, (x) for the electric field on the left hand side.
The result is: 22w, ()
iDo4mg ks, Wy (X
2 4+ (XKW, (X) = ~_H , 15
[ C( ) [J] IJ( ) ﬁ(VJ_—l(ku—ka)) ( )

which can be written in the form:
(02 + (£6(X) + £5(X)) K] Wu(x) =0, (16)

wheregy(x) is the dielectric function of the gain medium, which only iearin space
if the external pump or the gain atoms are non-uniform. Defjraionvenient units of
pumpDy. = Ry, /41k2g? and replacinddo = Do/Dqc, We find that

E(X):%[ VJ_(ku—ka) _in
’ ke y2 +(ku—ka)? Vi + (K —ka)?

Equation (.6) is to be solved with the boundary condition that at infinityechas
only an outgoing wave at frequeney, i.e., ;W (x) = +ik, W, (x) whenr — co. In
general this equation with this boundary condition caneadived for arbitrary choice
of the lasing frequency, and for arbitrary values of the punipy; it is necessary to

vary k, and the pump strengfBy to find the countably infinite set of valugk,, Dé‘”)

at which a solution exists. This variation is equivalentte pulling of the S-matrix
poles onto the real axis discussed in secncabove;Dém defines the threshold pump,
for that pole andk, the point at which it crosses the real axis. As noted, while al
of these solutions can be classified as TLMs, only the salutigh the lowest value
of Dé‘” will actually be a physical lasing state, as higher lasinglesoare altered by
non-linear modal interactions.

Equation (6) shows that the TLMs are the solutions of the original Maxwgua-
tion with the addition of a complex, pump and frequency deleen dielectric function
which is uniform in space (for the assumed uniform pumpiige imaginary and real
parts of the gain dielectric function have the familiar syetric and anti-symmetric
two-level resonance form respectively. The dependencéheratomic frequencka
encodes the usual atomic line-pulling effect. In the linfitaovery broad gain curve
(yL — ) the line-pulling effects can be neglected and we find thekmesult

+ ] (a7)

gg— —iDo/KZ, (18)

i.e. a constant imaginary (amplifying) part ef proportional to the pump strength.
Such linear gain models have been studied before, althgymtatly with a constant
imaginary part of the index of refraction instead of a consimaginary part of the



dielectric function. Our results show that in order to rejuce the TLMs of the MB
equations one needs to take

N(X) = /&) + £9(Do. ky — ka,¥1) (19)
so that the pump changes both the real and imaginary pate afidex of refraction.

5.3. Solution for TLMs and CF states

FIGURE 15.Typical values of the threshold matrix elemen®&® in a two-
dimensional random laser schematized in the insetlligsing sixteen CF states.
The off-diagonal elements are one to two orders of magnisutdler than the di-
agonal ones.

The differential equationl) is self-consistent in the sense that the boundary condi-
tions depend on the eigenvaliggthat one is solving for and so some form of non-linear
search is required. The required search turns out to be moch convenient if one
writes an equivalent integral form of the equation transiiog it into a self-consistent
eigenvalue problem. For this purpose we rewrite it in thenfor

2
—&gky,

[ec() TP+ KEWp(x) = )

LIJH (X)7 (20)

and then, treating the right hand side as a source, inveddghation with the appropri-
ate Green function to obtain:

|Doyl G(x, X5k )W, (X)
ka/ ) FuX) 21)

yL —i ku &(X)

Wu(x) =

Here the integral is over the gain region which we will asswaiacides with the cavity
regionZ. The appropriate Green function satisfies

lec(x) 102+ K] G(x, X [K) = 8% (x — X)), (22)
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FIGURE 16.(a) False color plot of one TLM in a 2D random laser modeled as

an aggregate of sub-wavelength particles of index of rérac = 1.2 and ra-

diusr = R/30 against a background index= 1 imbedded in a uniform disk of

gain material of radius R(see inset, Panel (d)). The frequeiithe lasing mode

is kR=59.9432, which is pulled from the real part of the dominating G#tes

knR=59.8766— 0.8593 (b) towards the transition frequenkyR = 60. The spa-

tial profile of the TLM and CF state agree very well, whereasdbrresponding

QB statekynR = 59.8602— 0.8660 (c) differs from that of the TLM and the CF

state noticeably, as can be seen in Panel (d) where we plattdr@al intensity

along thed = 200 direction (white line in panel (a)).

and is non-hermitian due to the outgoing wave boundary tiomdi
0, G, X [K) [r =00 = Or/G(X, X' |K) |10 = IkG(X,X'|K), where[J; is the radial derivative.
It has the spectral representation:

(23)

Gl = 5 i,

We refer to the functiongn(x, k) in (23) as the constant-flux (CF) states. They satisfy
[e(X) 0% + ki) $m(x. k) = 0 (24)

with the corresponding non-hermitian boundary conditibpuwely outgoing spherical
waves of fixed frequenci (eventually set equal to the lasing frequency) at infinity.
Their dual (biorthogonal) partnetn(X',k) satisfy the complex conjugate differential
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FIGURE 17.(a) False color plot of one TLM in a 2D random laser similar to
that in the Fig.16 but with particles of radius = R/60 corresponding to weaker
scattering (see inset, Panel (d)). The frequency of thedasode ikR= 29.9959,
which is very close to the CF stakgR = 30.0058— 1.3219 (b) but shifted from
the corresponding QB statg,R = 29.8813— 1.3790 (c). In Panel (d) we show
the internal intensity of the three states in the- T direction (white line in panel
(a)); due to weaker scattering the QB state now differs subisilly from the CF
and TLM, which still agree quite well with each other

equation with purely incoming wave boundary conditionse§éndual sets satisfy the
biorthogonality relation:

/@ AX Prn(X, K) B (%, K) = S (25)

with appropriate normalization.

The CF states satisfy the standard wave equationZ2}.lfut with the non-hermitian
boundary condition already mentioned; hence their eigaas?, are complex, with
(it can be shown) negative imaginary part, correspondingniplification within the
cavity. However outside the cavity, by construction, thayenthe real wavevectd,
and a conserved photon flux. They are a complete basis setdoiasing frequendy,
and hence they are a natural choice to represent the TLMsglhasithe lasing modes



above threshold. Hence we make the expansion
Wu(x) = 3 ahgh(x) (26)
m=1

Substituting this expansion into EQ1), using biorthogonality, and truncating the ex-
pansion alN terms leads to the eigenvalue problem:

P (X)3hapdp (X)
&(X')

N
p

whereAm(K) = iy (K2/K2)/[(y. —i(k—ka)) (k2 — K3 (K))].

One sees that the TLMs in the CF basis are determined by thditiconthat an
eigenvalue of the matriBo.7© (k) is equal to unity. Since the matriZ (¥ (k) is
independent oDy it is natural to focus on this object, which we call ttieeshold
matrix. It is a complex matrix with no special symmetries, implythgt its eigenvalues
Ay are all complex for a general value kf. If the real control parametedg (the
pump) is set equal to/IA,| then the matrixDo.7 © (k,) will have an eigenvalue of
modulus unity, but not a real eigenvalue equal to unity aslired and no solution
for the TLMs exists for this choice d{,. It is the phase condition, that,(k,) must
be real that determines the allowed lasing frequenciesrdatige one orders tha,
in decreasing modulus based on an initial approximatiorn¢olasing frequency,,,
and then tunek, slowly until each eigenvalue flows through the real axis @hhs
guaranteed by the dominant k-dependence contained in ¢her fan(k)). Normally
the eigenvalues do not switch order during this flow and tingekt eigenvalue,

will determine the lowest threshold TLM, with threshd) = 1/, (k,,), wherek,,

is the frequency which makes the largest eigenvm@)(kp) real. The eigenvector
corresponding to\, gives the coefficients for the CF expansion of the TLM of the
first modeW, (x). TLMs with higher thresholds can be found by imposing thditsea
condition on smaller eigenvalues of % (k). This approach has been described in
detail elsewhere32,34], and provides a much more efficient method for finding TLMs
than solving the self-consistent differential equatidr) (

We immediately see from Eq2%) and @7) that for an arbitrarily shaped cavity of
uniform dielectric constant. the matrix. 7 (% (k) is diagonal due to biorthogonality
of the CF states. Thus each TLM is a single CF state, correspprio one of the
k, which satisfies the reality condition. In this case the espanof ¥, (x) consists
of just one term and the threshold lasing equation is ecgnaio the Eq.24 with
appropriate relabeling. Whesy varies in space, as for random lasers, the threshold
matrix is not diagonal and there can in principle be many @gestcontributing to one
TLM. However sincepm(x), ¢p(x) are uncorrelated fluctuating functions of space, it
turns out that the threshold matrix in RLs is approximategdnal and the threshold
modes are dominated by one, pseudo-random CF state dederimnsolving Eq24
for the appropriate random dielectric functigg(x). This is shown in Fig15 below.

In summary, the theory leading to the threshold equatii gives an efficient time-
independent method for finding the TLMs of random lasers indisorder regime. In



general these TLMs are very close to a single CF state detediy the Eq24 at the
lasing frequency,,.With this new method TLMs of random lasers can be found for
complex two and even three-dimensional geometries. In. Ei§and17 we compare
TLMs, CF states and QB states for the two-dimensional ran@er model used in
ref. [32], illustrating the agreement of TLMs with CF states evenvieak scattering,
while a significant deviation from the closest QB state igifihu

This AISC laser theory is well-suited to describe not justVidLbut to find the true
multimode lasing spectrum of Rlabove thresholdThis will not be treated in detail
here, but in the next section we briefly explain the basic @ggr in the non-linear
theory and show one representative result.

5.4. Non-linear AISC laser theory

The key to generalizing this theory to the multi-mode nawedir regime is to return
to the fundamental MB equations and go beyond the assumttatnthe inversion
D(x,t) is equal to the constant threshold pump. Once lasing modes have turned
on their spatially varying electric fields cause varyingréeg of stimulated emission
from the gain atoms and hence tends to reduce the inveisisam the pump value
Do in a manner which varies in space and in principle in time. E\mv it has been
shown that ify; >y, then the time-dependence of the inversion is weak andwtho
D is varies in space, it is a good approximation to tBK&,t) = D(X). This stationary
inversion approximation (SIA) has been used in laser theEmmnany years, going back
to Haken B0], but has not been incorporated into an ab initio method sschAISC
laser theory. We will not review the details of the derivata the non-linear multimode
theory of Tureci-Stone-Ge, which have been given elsesv[8); 34]. Instead we just
state that the net effect of the non-linear interactionsiwithe SIA is just to replace
the uniform inversion as follows:

Do
1+ 3, (k) [WPu(X)[?)

in all of the equations of the theory of the TLMs. Hardabels all above threshold
modes andl (k, ) is a Lorentzian centered at the lasing frequency of modéth width
y.. If we make this substitution into the EQ1) we arrive at the fundamental integral
equation of AISC laser theory:

Do — (28)

Doy / G(x, X' Ky )Wy (X')
k

. 29
iR LS, L ep &)

Wu(x) =

Note that this equation shows that each lasing modes it$angih itself (saturation)
and all other lasing modes (mode competition) via the “Hmleing” denominator of
Eqg. (28). This set of coupled non-linear equations is still coneetly solved in the
basis of CF states for each modal frequekgyas for the TLMs; the details have been
given elsewhere32, 34].

The first results of the AISC laser theory for the modal propsrof multimode
random lasers in weak-scattering two-dimensional medi& w&en in B2]. We will
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FIGURE 18.(a) CF (dots) and QB (crosses) frequencies in a 2D random lase
modeled as an aggregate of sub-wavelength particles of ofdefractionn = 1.2
against a background index= 1 imbedded in a uniform disk of gain material
(see inset). The two sets of complex frequencies are gtatlgtsimilar but dif-

fer substantially. The solid curve shows the gain curyk) with y, = 1. (b)
Lasing frequencies of the same random system well abovshbie (coloured
lines). Coloured circles denote the CF state dominatingtimeespondingly col-
ored modes at threshold.

not present a full picture of these results here, but jusivsdmme properties of the RL
lasing frequencies in FidL8 below. The model is explained in the figure caption (see
inset). The complex CF and QB frequencies are shown to bimatisind the lasing
frequencies are subject to very strong line-pulling effect

The new tool of AISC laser theory allows one to study randosetg with full non-
linear interactions in 2D and even in 3D. The eliminationiofd-dependence in this
theory makes larger and more complex cavities computdljotractable. The theory
also provides a new language based on CF states to desceillesihg modes. Now
detailed statistical studies as well as comparisons tisttall models based on random
matrix theory, disordered media theory and wave chaosytaermneeded. Such studies
are in progress.

6. Conclusion

A decade of theoretical study of random lasers has clarifiednature of the lasing
modes in disordered systems with multiple scattering arid. ddost importantly it
has been established that high-Q passive cavity modes subbse created by Ander-
son Localization or by rare fluctuations of various kinds raoénecessary in order to
have self-organized laser oscillation at a frequencyristrom the atomic transition
frequency (gain center). In addition this study has empleasa point of general impor-
tance in laser theory, that threshold lasing modes are eatihl to the quasi-bound
states (resonances) of the passive cavity. This point i@dstrated by a number of nu-
merical calculations presented above and also can be todeérsom the realization
that the QB states are eigenvectors of the unitary S-matiiteocavity without gain,
but at complex frequency, whereas the threshold lasing madeeigenvectors of the
non-unitary S-matrix of the cavitwith gain and with real frequency. The difference
between these eigenvectors (within the cavity), which rigdan the weak scattering



limit, becomes small in the diffusive regime as the Q of theitgaincreases and is
negligible, e.g. for Anderson localized modes and for Higlmodes of conventional
cavities. The new basis set obnstant fluxstates provides a better approximation for
finding the threshold lasing modes of random lasers and icl@gaaevith the exact lasing
modes of uniform index cavities. Further statistical andlyical study is necessary to
characterize the properties of random lasers in the differeggimes, weak scattering,
diffusive and localized, and to understand the effects oflifeear interactions.
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A. The multipole method

This appendix details the principle of the multipole metlasdised in this paper and its
implementation. Although we describe here the method fordimensional systems,
it can be also applied to three-dimensional structures.

We consider a random collection df; non-overlapping cylinders with arbitrary
complex dielectric constart = g’ +ig” = n|2 and arbitrary radig located in a uni-
form medium with complex dielectric constagg = &’ +i&,” = n2 (Fig. 19), where
n = n{ +in, andn, = n, + in,, are the refractive indices of the cylinders and the back-
ground. The complex dielectric permittivities of the cgars and the background can
be arbitrary and may be frequency dependent.

In two dimensions, the solution of the electromagnetic figloblem decouples into
two fundamental polarizations, in each of which the field rbaycharacterized by a
single field componen¥/ (r) = E; (for TM polarization) and/(r) = H; (for TE polar-
ization). In the co-ordinate system that is used, Z2la&is is aligned with the cylinder
axes.

The field componer¥ satisfies the Helmholtz equation

O2V(r) + K22 (r)V(r) = 0. (30)

For TM polarization, bothV/(r) and its normal derivatives - OV (r) are continuous
across all boundaries, while for TE polarization the cqroesling boundary conditions
are the continuity o¥ (r) and its weighted normal derivatiwe- OV /n?(r). Here,n(r)
denotes the refractive index of the relative medium and an unit outward normal
vector.

In the vicinity of thel™ cylinder, we may represent the exterior field in the back-
ground medium (refractive index) in local coordinates; = (r;,8) =r — ¢ wherec



FIGURE 19. The geometry and local co-ordinate systems.

represents the center of the cylinder and write

V(D= 3 [ Adn(knon) + B (k)| €™, (31)
m=—oo
This local expansion is valid only in an annulus extendirmrirthe surface of the
cylinderl to the surface of the nearest adjacent cylinder.

The global field expansion (also referred to as a Wijngaapaesion), which is valid
everywhere in the background matrix, comprises only ougaiylindrical harmonic
terms: N

VN =Y Y BIHR (K — cqf)gmadr—c), (32)
q

—1Mm=—o0

Correspondingly, the field inside any cylindes written in an interior expansion:
V()= Y Crm(kn|r —g)emadr=a), (33)
mM=—oo

Then, applying Graf’s addition theorer(] to the terms on the right hand side of
(32) (see Fig.19), we may express the global field expansion in terms of thalloc
coordinate system for tH& cylinder. Equating this with the local expansidi), we
deduce the field identity (also known as the Rayleigh idgntit

N co
Am = Y Y HiBE (34)
g=L0#l p=—

where _
Hi9, = HY (kag)e (M Pta, (35)

m-p



Here, (cq, 6q) are the polar coordinates of the vectyy = ¢y — ¢, the position of
cylinder g relative to cylindell.

This is the first connection between the standing wéé,{) and outgoing {Bl,})
multipole coefficients, one which follows solely from thestgm geometry. Eq. 3¢)
indicates that the local field in the vicinity of cylindeiis due to sources on all other
cylinders ¢ # 1), the contributions of which to the multipole term of ordar p at
cylinderl are given bwmp

The second relation between thal } and{B],} multipole coefficients is obtained
from the field continuity equations (i.e., the boundary dtiads) at the interface of
cylinder| and the local exterior3(l) and interior field 83) expansions. From these, we
obtain:

Bn = RrAmn (36)
Ch = TvAm 37)

where the interface reflection and transmission coeffisjeiotr bothE, andH, polar-
ization are given by

— npJm(kniay) I, (knoay )

B EnlJ’(knaa)Jm(krba
End(kna)Ha (knva) — npdm(kna) Hy (knay)
ik

)
Tno= - (1) . (1) ’ 39)
EmJh(mka )Hm’ (Knay ) — Npdm(knay )Hm” (Knpay)

in which & = 1 for TM polarization and = n2(r)/n?(r) for TE polarization.

To derive a simple closed form expression for the solutiothefproblem, we use
partitioned matrix notation, introducing vectaks= [Al, ] andB' = [Bl,] and expressing
(34) in the form

; (38)

R =

Z H'9BY, (40)

whereA! andB' denote vectors of muIt|PoIe coefficients for cylindeihe matrixH
is block partitioned according td'9 = [Hnf] for | # q (35), andH'" = [0], each block
of which is a matrix of Toeplitz form. Correspondingly, theimx forms of Equations
(36) and @7) are

B = RA, (41)

C = TA, (42)
whereR = diagR' is a block diagonal matrix of diagonal matricRS = diagR),,, and
with corresponding definitions applying for the transnmissinatrices.

Then, with the introduction of the partitioned vectaks= [A!], B = [B'] and the
partitioned matrixH = [H'9], we form the system of equations

(I —RH)B =0, (43)

The problem has now been reduced to the solution of a geredasiigenvalue prob-
lem for the matrix equationd@). The nontrivial solutions of the secular equatidi3)(



determines modes of the random system. Finding the naatsgeiutions of the linear
system of equationstB) requires that the determinant of the system matrix vagishe
(44)

D = 0, whereD=detS™) with (44)
SYA) = (I1-RH). (45)

Equivalently, this problem may be recast as a search fordlespf the scattering ma-
trix S(A) (i.e., solutions of de8~%(A) = 0). Once the pole is located, the corresponding
null vectorsB of (43) are the multipole coefficients of the scattered field whiehused

to calculate the QB state profiles exterior to the scattarsirsg 82). The field inside

a cylinder is calculated according to the interior expansi@2) and@3). The TLM
poles must be searched in the, &) domain, given the pump changes not only the
imaginary part of the refractive index but the real part ali (v@.

The formal system44) is of infinite dimension and so must be truncated in order to
generate a computational solution, the accuracy of whigbverned by the number of
retained multipole coefficients,, = 2Nmax+ 1, whereNpax is the truncation order of
the multipole series, i.e., only the terms correspondintpéocylindrical harmonics of
ordern = —Nmax --., Nmax are retained.

B. Finite Element Method

We have also used the Finite Element Method (FEBT],[implemented in a commer-
cial software (Comsol™), to solve the wave equatidf) @nd calculate the complex
eigenvalues and eigenfunctions of the passive modes ofyitenss that were calcu-
lated by the multipole method. The method suitably applesniodeling passive or
active modes in a cavity, which is surrounded by perfectlyomed layers§1] to sim-
ulate open boundaries. It is possible to obtain all the leakges, even the resonances
characterized by a very small quality factor (as small a3 reasonable computation
time with a commercial PC, provided the size of the geometigmaller than hundred
times the wavelength. This is in contrast with the other mashdescribed in this paper,
which require much heavier computation.

One of the most important step of the Finite Element Methothés creation of
the mesh which describes the system. FigReshows a close up on a typical mesh
calculated for the 2D random system of F2gThe maximum size of elements must be
smaller than 7 times the waveleng6?].
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