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In conventional lasers, the optical cavity that confines thephotons
also determines essential characteristics of the lasing modes such as
wavelength, emission pattern, directivity, and polarization. In random
lasers, which do not have mirrors or a well-defined cavity, light is
confined within the gain medium by means of multiple scattering.
The sharp peaks in the emission spectra of semiconductor powders,
first observed in 1999, has therefore lead to an intense debate about
the nature of the lasing modes in these so-called lasers withresonant
feedback. In this paper, we review numerical and theoretical studies
aimed at clarifying the nature of the lasing modes in disordered
scattering systems with gain. The last decade has witnessedthe
emergence of the idea that even the low-Q resonances of such open
systems could play a role similar to the cavity modes of a conven-
tional laser and produce sharp lasing peaks. We will focus here
on the near-threshold single-mode lasing regime where nonlinear
effects associated with gain saturation and mode competition can
be neglected. We will discuss in particular the link betweenrandom
laser modes near threshold and the resonances or quasi-bound (QB)
states of the passive system without gain. For random lasersin
the localized (strong scattering) regime, QB states and threshold
lasing modes (TLM) were found to be nearly identicalwithin the
scattering medium. These studies were later extended to thecase of
more lossy systems such as random systems in the diffusive regime
where it was observed that increasing the openness of such systems
eventually resulted in measurable and increasing differences between
quasi-bound states and lasing modes. Very recently, a theory able
to treat lasers with arbitrarily complex and open cavities such as
random lasers established that the threshold lasing modes are in fact
distinct from QB states of the passive system and are better described
in terms of a new class of states, the so-called constant-fluxstates.
The correspondence between QB states and lasing modes is found
to improve in the strong scattering limit, confirming the validity of
initial work in the strong scattering limit.© 2010 Optical Society of
America
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1. Introduction

The investigation of laser action in complex media with disorder has a long history go-
ing back to the early days of laser physics (for a review, see [1–5]). Beginning in the mid
1990’s there was a resurgence of interest in this topic both for its intrinsic interest and
because of a possible relation to the phenomenon of Andersonlocalization [6] previ-
ously studied mainly in the context of electronic systems. Random lasers are disordered
media with gain that do not possess a light-trapping cavity beyond the confinement pro-
vided by multiple-scattering from the disorder itself. Hence they are usually extremely
open, low finesse lasers. Initially it was unclear whether such systems could produce
narrow lasing lines without any well-confined electromagnetic modes, and while initial
experimental studies did find strong amplification near the transition frequency deter-
mined by the gain medium, discrete lines were not observed [7–9]. Subsequent studies
in smaller systems with focused pumping did find discrete lasing lines not necessar-
ily located at the center of the gain curve and photon statistics characteristic of gain
saturation [10–14], demonstrating that in some cases random lasers (RLs) behave very
much like conventional multimode lasers except for their relatively high thresholds and
their pseudo-random emission patterns in space. The experimental observations of laser
peaks have naturally called for the search for a feedback mechanism leading to light
trapping within the scattering medium. There is in fact a case where light can be well-
confined inside an open disordered medium. Such confinement occurs when the scatte-
ring is extremely strong and the system is in the regime of Anderson localization [15].
However, except in quasi-1D geometries [16], the vast majority of experiments on RLs
do not appear to be in the localized regime, so the question ofwhether laser action in a
diffusive (L ≫ ℓ) or quasi-ballistic(L ∼ ℓ) medium has a qualitatively different nature
and origin with respect to conventional lasers remained open for some time (hereL is



the system size andℓ is the optical elastic mean free path).
With the renewed experimental interest in RLs came also a number of attempts to

generalize laser theory to describe such a system. Early on amajor distinction was made
between conventional lasers which operate on resonant feedback and RLs which at least
in some cases were supposed to operate only on non-resonant feedback (NRF) [4]. In
the case of NRF the light intensity in the laser was describedby a diffusion equation
with gain but the phase of the light field and hence interference did not play a role. A
key finding is that there is a threshold for amplification whenthe diffusion length for
escapeLD ∼ dL2/ℓ became longer than the gain length (hered = 2,3 is the dimen-
sionality). The spatial distribution of intensity above threshold would be given by the
solution of a diffusion equation. In this approach there would be no frequency selec-
tivity and the amplified light would be peaked at the gain center. Clearly such a de-
scription would be inadequate to describe RLs based on Anderson localized modes, as
such modes are localized in space precisely due to destructive interference of diffusing
waves arising from multiple scattering.

This question itself is related to a basic question in non-linear optics: can a system,
disordered or not, which is so leaky that it has no isolated linear scattering resonances
nonetheless have sharp laser lines due to the addition of gain? And if so, how are the
modes associated with these lines related to the broad and difficult to observe reso-
nances of the passive cavity? For an open diffusive or quasi-ballistic medium in two
or three dimensions the resonance spacing in wavevector will decrease asλ d−1/Ld,
whereas the linewidth will scale asℓ/L2 (diffusive) or as 1/L (ballistic). Therefore
(unlessℓ ≈ λ in d = 2) the disordered passive cavity resonances strongly overlap and
cannot be directly observed in linear scattering.

In the search for a feedback mechanism responsible for the sharp laser peaks ob-
served experimentally [17], different scenarios have been proposed. As an alternative
to the early picture of closed scattering loops, the probability of having ring-shaped
resonators with index of refraction larger than average in the diffusive regime was
calculated and shown to be substantially increased by disorder correlation due to finite-
size scatterers [18,19]. Another scenario was put forward where spontaneously emitted
photons accumulate gain along very long trajectories. Thisfollows the observation of
random spikes in the emission spectrum of weakly active scattering systems in single
shot experiments [20,21]. These “lucky photons” accumulate enough gain to activatea
new lasing mode with a different wavelength after each excitation shot. The experimen-
tal study of the modal decay rates in microwave experiments leading to the observation
of anomalous diffusion has brought forward the existence oflonger-lived prelocalized
modes in an otherwise diffusive system [22]. An experimental indication of the coexis-
tence of extended and localized lasing modes has been presented recently [23]. It was
suggested that these longer lived-modes could be responsible for lasing. However, al-
though they are possibly achieved in some specific situations, those different scenarios
cannot explain the whole set of experimental observations

In this paper, we present recent work, both numerical and analytical, which has
shown that within semiclassical laser theory, in which the effects of quantum noise
are neglected, definite answers to these questions can be given, without resorting to ex-



otic scenarios. Sharp laser lines based on interference (coherent feedback) do exist not
only in strongly scattering random lasers where the localized regime is reached [24–26]
but also in diffusive random lasers (DRLs) [27,28], and even for weak scattering [29].
Numerical studies have shown that they are associated with threshold lasing modes
(TLMs), which, inside the cavity, are similar to the resonances or quasi-bound (QB)
states of the passive system (also called quasi-normal modes). The resemblance is ex-
cellent in the localized case [25, 26] and deteriorates as scattering is reduced. A new
theoretical approach based on a reformulation of the Maxwell-Bloch equations to ac-
cess the steady state properties of arbitrarily complex andopen cavities allows one to
calculate the lasing modes in diffusive and even in weakly scattering random lasers
(ℓ∼ L) [30–34]. A major outcome of this approach is the demonstration thatalthough
lasing modes and passive modes can be very alike in random systems with moder-
ate openness in agreement with the above numerical results,they feature fundamental
differences. Their distinctness increases with the openness of the random system and
becomes substantial for weakly scattering systems. Constant-flux (CF) states are in-
troduced which better describe TLMs both inside and outsidethe scattering medium
for any scattering strength. In addition this theoretical approach allows one to study
the multimode regime in DRLs and get detailed information about the effects of mode
competition through spatial hole-burning, which appear todiffer from conventional
lasers.

In this last decade, different types of random lasers (semiconductor powders, pi-
conjugated polymers, scattering suspension in dyes, random microcavities, dye-doped
nematic liquid crystals, random fiber lasers, ...) have beenconsidered in the literature.
We will focus throughout this review mostly on two dimensional (2D) random lasers
which consist of randomly distributed dielectric nanoparticles as scatterers. This choice
makes possible the numerical and theoretical exploration of 2D finite-sized opened
samples where transport can be ballistic, diffusive (in contrast to 1D) or localized [35],
by adjusting the index contrast between the scatterers and the background medium.

The outline of this review is as follows: In section 2 we review early numerical
explorations of localized and diffusive random lasing demonstrating the existence of
threshold lasing modes (TLMs) in all regimes. In section 3 wepresent recent numeri-
cal work based on a time-independent model, which indicatesthe difference between
passive cavity resonances and threshold lasing modes, discussing only single-mode
random lasing. The following section will explain why in principle, quasi-bound (QB)
states cannot describe TLMs. The last section will introduce the concept of constant-
flux (CF) states and describe the self-consistent time-independent approach to describe
random lasing modes at threshold as well as in the multimode regime.

2. Early numerical explorations: Time-dependent model

2.1. Localized case

From a modal point of view, Anderson localization means thatfor strong disorder, the
eigenmodes of the wave equation are spatially localized in avolume of finite size 2ξ ,
whereξ is the localization length. More precisely, they are spatially localized solutions



of the Maxwell equations with tails, which decay exponentially from their center,ξ
being the decay length. In the case of scattering particles,the value of the localization
length is controlled by the index contrast between the particles and the background
medium, the size of the particles, the optical wavelength and the amount of disorder.
In practice, when finite-size systems in the localization regime are considered, two
opposite cases may occur : (1)ξ > L and (2)ξ < L where L is the system size. In
the first case, the system is not large enough for the light to be confined by disorder
within the volume of the system. In case (2), light is localized since it cannot escape
domains larger thanξ . More precisely, localized modes are coupled to the boundaries
via their exponential tails. The leakage rate of an exponentially localized quasi-bound
(QB) state varies as exp(−2r/ξ ) with r the distance to the boundaries [36] . Hence, in
sufficiently large systems QB states located far from the boundaries (which constitutes
majority of the QB states except a fraction proportional toξ/L) feature a very small
leakage i.e. a good quality factor.

In this subsection, we will consider case (2). Localized modes in a disordered scat-
tering system are quite alike the modes of standard optical cavities, such as the Fabry-
Perot. [37]. Hence, one can expect that in the presence of gain, the lasing modes in
this regime of strong disorder will be close to the localizedQB states of the passive
system without gain, in the same way as the lasing modes of a conventional cavity are
built with the QB states of the passive cavity. In order to verify that this is really the
case one must have access to the individual modes of both the passive system and the
active system. Experimentally, such a demonstration has not been achieved yet, essen-
tially because the regime of Anderson localization is difficult to reach and to observe
in optics. Besides, until recently there was no fully developed theory describing ran-
dom lasing modes and their relationship with the eigenstates of the passive system. The
easiest way to check this conjecture has been to resort to numerical simulations.

Historically, most of the early numerical studies of randomlasers were based on
the diffusion equation (see references in [4]). However, it is not possible to take into
account under the diffusion approximation the interference phenomena which are at
the heart of Anderson localization. This is why Jiang and Soukoulis [24] proposed to
solve the time-dependent Maxwell equations coupled with the population equations of
a four-level system [38]. The populationsNi, i = 1 to 4 satisfy the following equations

dN1/dt = N2/τ21−WpN1 (1)

dN2/dt = N3/τ32−N2/τ21− (E/h̄ωa)dP/dt (2)

dN3/dt = N4/τ43−N3/τ32+(E/h̄ωa)dP/dt (3)

dN4/dt =−N3/τ43+WpN1 (4)

whereWp is the rate of an external mechanism which pumps electrons from the fun-
damental level (1) to the upper level (4). The electrons in level 4 relax quickly with
time constantτ43 to level 3. The laser transition occurs from level 3 to level 2at fre-
quencyωa. Hence, electrons in level 3 can jump to level 2 either spontaneously with
time constantτ32 or through stimulated emission with the rate(E/h̄ωa)dP/dt. E andP
are the electric field and the polarization density respectively. Eventually, electrons in



level 2 relax quickly with time constantτ21 from level 2 to level 1. In these equations,
the populationsNi, the electric fieldE and the polarization densityP are functions of
the positionr and the timet.

The polarization obeys the equation

d2P/dt2+∆ωadP/dt+ω2
aP = κ .∆N.E (5)

where∆N = N2−N3 is the population density difference. Amplification takes place
when the rateWp of the external pumping mechanism produces inverted population
difference∆N< 0. The line width of the atomic transition is∆ωa = 1/τ32+2/T2 where
the collision timeT2 is usually much smaller than the lifetimeτ32. The constantκ is
given byκ = 3c3/2ω2

aτ32 [38].
Finally, the polarization is a source term in the Maxwell equations,

∂H/∂ t =−c∇×E (6)

ε(r)∂E∂ t = c∇×H−4π∂P/∂ t. (7)

The randomness of the system arises from the dielectric constantε(r), which depends
on the positionr. This time-dependent model has been used in random 1D systems
consisting of a random stack of dielectric layers separatedby gain media [24] and in
random 2D systems consisting of a random collection of circular particles embedded
in a gain medium (Fig.1) [25]. In both cases, a large optical index contrast has been as-
signed between the scatterers and the background medium to make sure that the regime
of Anderson localization was reached. The Maxwell equations are solved using the
finite-difference time-domain method (FDTD) [39]. To simulate an open system, per-
fectly matched layers are introduced at the boundaries of the system [40]. The pumping
rateWp is adjusted just above lasing threshold in order to remain inthe single-mode
regime.

In 1D, the QB states of the passive system were obtained independently using a time-
independent transfer matrix method [41]. In 2D, the Maxwell equations were solved
without the polarization term in (7) using again the FDTD method. First, the spectrum
of eigenfrequencies was obtained by Fourier transform of the impulse response of the
system. Next, QB states were excited individually by a monochromatic source at each
of the eigenfrequencies.

Finally, in 1D systems [41] as well as in 2D systems [26], lasing modes obtained by
the full time-dependent model with gain and localized QB states of the corresponding
passive system without gain were compared and found to be identical with a good pre-
cision. This was verified for all modes obtained by changing the disorder configuration.
An example of a 2D lasing mode and the corresponding QB state of the same system
(Fig. 1) without gain are displayed in Fig.2. These results confirmed that the QB states
of a localized system play a role similar to the eigenmodes ofthe cavity of a conven-
tional laser. The only difference is the complicated and system-dependent nature of the
localized modes as opposed to the well-known modes of a conventional cavity. These
results are in good agreement with the theoretical results described in Section5, which
show that inside systems in the localized regime, the singlelasing modes just above
threshold are close to the high-Q resonances of the passive system.



FIGURE 1.(Color online). Example of a random realization of 896 circular scat-
terers contained in a square box of size L=5 microns and optical index n=1. The
radius and the optical index of the scatterers are respectively r=60 nm and n=2 .
The total system of size 9 microns is bounded by perfectly matched layers (not
shown) in order to simulate an open system

2.2. Diffusive case

We have seen in the previous section that random lasers in theAnderson localization
regime should behave like conventional lasers. They shouldexhibit discrete laser peaks
above threshold in agreement with the experimental observations of laser action with
resonant feedback. However, subsequent measurements of the mean free path showed
that none of the experimental cases that displayed discretelaser peaks were in the
localized regime. Instead, they were found to be in the diffusive regime and some even
in the quasi-ballistic regime [29]. In such systems, there are no localized modes so that
the observation of laser action with resonant feedback has been the subject of much
debate.

Only very recently, numerical evidence was given that even diffusive systems with
low Q resonances could exhibit lasing with resonant feedback [27]. The random 2D
systems described in the previous section consisting of random collections of circu-
lar particles embedded in a gain medium have been investigated with the same time-
dependent model. To be in the diffusive regime instead of thelocalized regime, a
smaller optical index contrastδn = 0.25 instead ofδn = 1.0 has been assigned between
the scatterers and the background medium. Solving the Maxwell equations coupled to
the population equations, laser action characterized by a sharp peak in the emission
spectrum was observed just above a threshold, albeit high. An example of the corre-
sponding lasing mode is displayed in Fig.3a. In contrast to the localized case, the las-
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FIGURE 2.(Color online). (a) Spatial distribution of the amplitude of a lasing
mode in the localized regime (n= 2) and (b) that of the corresponding QB states of
the same random system without gain. The square delimits thescattering medium.
The amplitude rather than the intensity is represented for abetter display of the
small values of the field.

ing mode is now extended over the whole system. Moreover thisis a complex mode in
the sense that it contains a substantial traveling wave component [27]. However, in this
work comparison of the lasing modes with the QB states of the passive cavity could not
be carried out by using the time domain method as it was done inthe localized regime.
Due to strong leakage through the boundaries, resonances are strongly overlapping in
the frequency domain and one cannot excite them individually by a monochromatic
source.

To circumvent this difficulty, an indirect method has been used to compare the lasing
modes with the resonances of the passive system. This methodis inspired by the Fox-Li
modes, which in conventional laser physics are modes of an open cavity [38, 42, 43].
The Fox-Li modes are field distributions whose profile is self-repeating in a complete
round trip within the Fabry-Perot laser cavity while decaying because of the diffraction
losses due to finite surface area of the end mirrors. Analogously, if the lasing modes of
the diffuse system are related to the resonances of the passive system, they should decay
by self-repeating themselves when pumping and population inversion are turned off.
To study the evolution of the mode profile with time, the following spatial correlation
function was introduced [27]

CE (t0, t) =
∫ ∫

D

d2~rE (~r , t0)E (~r, t) (8)

which compares the mode profileE (~r , t) at time t with the mode profile at the
initial time t0. Here, D is the scattering medium. The field has been normalized
E (~r , t) = E(~r, t)/[

∫ ∫

D
d2~rE2(~r , t)]1/2 to counterbalance the decay due to the leakage

through the boundaries. This correlation function oscillates at the laser frequency be-
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FIGURE 3.(Color online). (a) Spatial distribution of the amplitude of a lasing
mode in the diffusive regime. (b) Spatial distribution of the field amplitude after
the pump has been stopped and the polarization term has been set to zero. The
spatial distribution of scatterers is the collection shownin Fig. 1 but here, the
optical index of the scatterers isn= 1.25 instead ofn= 2 in Fig.2

tween -1 and +1 if the normalized mode profile is recovered at each period (Fig.4).
Otherwise, the amplitude of the oscillations should decay with time. This correlation
function was used in [27] to check whether the first lasing mode at threshold for dif-
fusive random laser indeed corresponds to a Fox-Li mode of the passive system. The
pumping is set to zero after the lasing mode has been established so that at later times
the field can evolve by itself. The long time evolution of the spatial correlation function
associated with this free field is displayed in Fig.5a. The decay of the total energy of
the system is also shown. While energy decay is observed over6 orders of magnitude,
the spatial correlation function is seen to oscillate between values close to -1 and +1
meaning that the initial lasing mode profileE (~r , t0) is reproduced at each period with a
good accuracy. The decaying field amplitude has the spatial distribution which is shown
in Fig. 3b until eventually, the correlation function decays to zerowhen the decaying
field reaches the noise level. This result demonstrates thatthe TLM is very close to
a resonance of the passive system, when measuredinside the scattering medium. For
comparison, the evolution of the spatial correlation function for an initial field created
by an arbitrary distribution of monochromatic sources at the laser frequency is dis-
played in Fig.5b. The fast decay ofCE (t0, t) after the sources have been turned off
indicates that this field distribution is not a QB state of thepassive system.

The decay rate observed corresponds to a quality factor of 30, to be compared with
the value 104 found in the localized case. This result shows that a “bad” resonance in
a leaky disordered system can nevertheless turn into a lasing mode in the presence of
an active medium. This result is in stark contrast with the common belief that random
lasing with resonant feedback involves the presence of resonances with high quality
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FIGURE 4.(Color online). Short time behavior over a few cycles of the correla-
tion function,CE (t0, t), for (a) a localized lasing mode as in Fig.2 and for (b) a
diffusive lasing mode as in Fig.3. The periodic square function in (a) is typical of
a standing wave while the sinus-like function in (b) is characteristics of a traveling
wave. [27]

factors. It provides a consistent explanation for the experimental observation of random
lasing with resonant feedback even far from the localized regime, without resorting to
other scenarios such as those reviewed in the introduction [17–21].

The comparison of patterns between Fig.3a and Fig.3b shows that the lasing mode
and the QB modes are close to each other inside the scatteringsystem as confirmed
by the evolution of the correlation function, which has beendefined only inside the
system. However, one also notices that outside the scattering medium, the field dis-
tributions differ substantially. The free propagating field outside the scattering system
in Fig. 3b reproduces the laser field distribution in Fig.3a with significant distortions
due to the enhancement of the amplitude towards the externalboundaries of the total
system. Hence, the comparison between both figures indicates that if the lasing modes
and the QB modes are similar inside the scattering system, they differ noticeably out-
side. Moreover, a careful examination of the correlation function in Fig.5a shows that
it oscillates between two extremal values, which slowly depart from -1 and +1 well
prior to the ultimate fast decay. This is in contrast with thelong time behavior of the
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FIGURE 5. (Color online). Correlation function (full line) and energy decay
(dashed line) vs time of (a) the lasing mode when the pump is turned off and
(b) an arbitrary field distribution at the frequency of the lasing mode

correlation function in the localized regime (not shown), which displays oscillations
between -1 and +1 with a very good precision for time scales much longer than the
time scale in Fig.5a. This result indicates also that inside the scattering system, the
lasing mode is close to but not identical to a QB state.

In conclusion, the time dependent model has provided directevidence of the close-
ness of lasing modes and passive cavity resonances at least in the localized case. In the
diffusive regime, the lasing modes are also found rather close to the QB modes although
small discrepancies manifest themselves. We also found that this holds inside the scat-
tering medium. Outside the scattering system however, differences become more sig-
nificant. The advantage of the time dependent model is that one has access in principle
to the full non-linear dynamics of the laser system. HoweverQB states with low qual-
ity factors are not accessible with this approach. Hence, the measure of the difference
between TLM and QB states has been indirectly achieved by using the spatial correla-
tion function. Another limitation of this method is relatedto the various time constants
involved in this model which lead to time consuming computations, particularly when
one wishes to vary disorder and study an ensemble of disorderconfigurations. To over-
come these limitations, different approaches such as solving the wave equation in the



frequency domain have been used. Several approaches of thiskind will be described in
the next section [13,44–46]. The recent theoretical approach based on a different class
of states, the so-called constant flux (CF) states, and taking into account non-linear
interactions will be described in section5.

3. Numerical simulations: Time-independent models

Different models have been proposed in the frequency domainto solve the wave equa-
tion. In 1D, it is possible to employ the transfer matrix method similar to that used
in [41] for studying the lasing modes in an active layered random system. A direct
comparison between TLMs and quasi-bound states of the corresponding passive ran-
dom system is proposed in the first part of this section. In 2D,the multipole method
has been used, which also provides a direct comparison of theQB states and the las-
ing modes of a 2D-disordered open system. The comparison presented in the second
part of this section has been carried out for refractive index of the scatterers ranging
from n′l = 2.0, (localized regime) ton′l = 1.25 (diffusive regime). We alternatively used
a different approach based on the finite element method to obtain the passive modes,
which turned out to be much less computationally demanding in the weakly scattering
regime. A brief description of both methods is provided in AppendicesA andB.

3.1. One-dimensional random lasers

Employing the transfer matrix method, similar to that used in [41], we study the lasing
modes in a one-dimensional (1D) random system and compare them with the QB states
of the passive random system. The random system is composed of 161 layers. Dielec-
tric material with index of refractionn1 = 1.05 separated by air gaps (n2 = 1) results in
a spatially modulated index of refractionn(x). Outside the random mediumn0 = 1. The
system is randomized by specifying thicknesses for each layer asd1,2 = 〈d1,2〉(1+ηζ ),
where〈d1〉 = 100 nm and〈d2〉 = 200 nm are the average thicknesses of the layers,
η = 0.9 represents the degree of randomness, andζ is a random number in (-1,1). The
length of the random structureL is normalized to〈L〉= 24100 nm. Linear gain is sim-
ulated by appending an imaginary part to the dielectric function ε(x) = ε ′(x)+ iε ′′(x),
whereε ′(x) = n2(x). This approximation is valid at or below threshold [46]. The com-
plex index of refraction is given by ˜n(x) =

√

ε(x) = n′(x) + in′′, wheren′′ < 0. We
considern′′ to be constant everywhere within the random system. This yields a gain
length lg = |1/k′′| = 1/|n′′|k (k = 2π/λ is the vacuum frequency of a lasing mode)
which is the same in the dielectric layers and the air gaps. The real part of the index of

refraction is modified by the imaginary part asn′(x) =
√

n2(x)+n′′2.

We find the frequencyk and threshold gaink
′′

of each lasing mode within the wave-
length range 500 nm< λ < 750 nm. The results are shown in Fig.6. Finding ‘match-
ing’ QB states for lasing modes with large thresholds (large|k

′′
|) is challenging due to

large shifts of the solution locations [Fig.6(region c)]. However, there is a clear one-
to-one correspondence with QB states for the lasing modes remaining [Figs.6(region
a) and (region b)]. It is straightforward to find the matchingQB states for these las-
ing modes and calculate their differences. The average percent difference between QB
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FIGURE 6.The frequenciesk of quasi-bound modes (crosses) and lasing modes
with linear gain (open diamonds) together with the decay ratesk

′′

0 of QB states
and the lasing thresholdsk

′′
of lasing modes. The horizontal dashed lines separate

three different regions of behavior: (a) lasing modes are easily matched to QB
states, (b) clear differences appear but matching lasing modes to QB states is still
possible, (c) lasing modes have shifted so much it is difficult to match them to
QB states. The QB state with the largest decay rate and the lasing mode with the
largest threshold are circled, though they may not be a matching pair.

state frequencies and lasing mode frequencies in Fig.6(region a) is 0.013% while it
is 0.15% in Fig.6(region b). The average percent difference between QB statedecay
ratesk

′′

0 and lasing thresholdsk
′′

in Fig. 6(region a) is 2.5% and in Fig.6(region b) is
21%.

The normalized intensities of the QB statesIQB and lasing modes with linear gain
ILG are also compared. Figure7 shows representative ‘pairs’ of modes from the three
regions shown in Fig.6. The spatially averaged relative difference between each pair
of modes is calculated by

〈σd〉=

∫

|IQB− ILG|dA
∫

ILGdA
×100%. (9)

For small thresholds [Fig.7(a)], the difference between the lasing modes and the
matching QB states is very small. The average percent difference between all pairs of
modes in this region is〈σd〉 = 4.2%. For lasing modes with slightly larger thresholds
[Fig. 7(b)], there are clear differences. Nevertheless, we may confidently match each
lasing mode in this region with its corresponding QB state. The average percent differ-
ence between all pairs of modes in this region is〈σd〉= 24%. As mentioned earlier, it
is challenging to find matching pairs of lasing modes and QB states for large thresh-
olds. Figure7(c) compares the lasing mode with the largest threshold and the QB state
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FIGURE 7.(Color online) Spatial intensity distributions of quasi-bound modes
IQB(x) (red solid lines) and lasing modesILG(x) (black dashed lines) from each of
the three regions in Fig.6. Representative samples were chosen for each case. (a)
The lasing mode intensity is nearly identical to the QB stateintensity withσd =
1.7%. (b) A clear difference appears between the lasing mode and the QB state,
with σd = 21.8%, but they are still similar. (c) The lasing mode with the largest
threshold and QB state with the largest decay rate are compared, withσd = 198%.
Though these two modes are fairly close to each other [circled in Fig. 6(region
c)], their intensity distributions are quite different.

with the largest decay rate [circled in Fig.6(region c)]. Though these two modes are
fairly close to each other in terms ofk, k

′′

0, andk
′′
, their intensity distributions are quite

different. Indeed, there may be no correspondence between the two.
The deviation of the lasing modes from the QB states can be explained by the mod-

ification of the transfer matrix. In the passive system,k
′′

0 is constant, butk
′′
i = k

′′

0n(x)
varies spatially. With the introduction of gain,k

′′
becomes constant within the random

system, and feedback due to the inhomogeneity ofk
′′

is removed. However, introducing
gain generates additional feedback inside the random system caused by the modifica-
tion in the real part of the wave vectork′ = kn′(x). Neglecting this effect results in some
correspondence between lasing modes and QB states even at large thresholds [47]. Fur-
thermore, since there is no gain outside the random system,k

′′
suddenly drops to zero

at the system boundary. This discontinuity ofk
′′

generates additional feedback for the
lasing modes. In this weakly scattering system, the threshold gain is high. The large
drop ofk

′′
at the system boundary makes the additional feedback stronger.

3.2. Two-dimensional random lasers

We turn now to the 2D case. A different approach based on the multipole method
has been used. The multipole method is best suited to characterize multiple scattering



problems involving scatterers with circular cross-section. This method has been used
to compute the scattering of a plane wave by a random collection of cylinders [29,48],
to calculate the defect states in photonic crystals [49], to construct the exact Green’s
function of a finite system [50], or to calculate the local density of states [51]. This
method has also been used to explain the anomalously large Lamb shift that occurs
in photonic crystals by calculating the QB states in such structure [52]. Finally, The
multipole method can be used to characterize the modes of three dimensional structures
composed of cylinders [53] and in particular to find the modes of the phothonic crystal
fibers [54–56]. It will be used here to calculate the QB states and the lasing modes of
the 2D-disordered scattering systems of the kind shown in Fig. 1 and studied in the
previous section for different regimes of scattering. Details about this method can be
found in AppendixA.

This method is based essentially on a search for the poles of ascattering matrix.
Because the system is open, the problem is not Hermitian and hence there are no modes
occurring for real wavelengths. The poles of the QB states all occur in the complex
plane at wavelengthsλ = λ ′+ iλ ′′, with causality requiring thatλ ′′ > 0. The real part
of the wavelengthλ ′ determines the resonance wavelength of the QB state, while the
imaginary partλ ′′ determine the quality factorQ= λ ′/(2λ ′′) of the mode [52].

The same method is used to find the lasing modes (TLM) at threshold. It is necessary
to find this time the poles of the scattering matrix in the two-dimensional space(λ ′,ε ′′

b )
of real wavelengths (λ ′′ = 0) and imaginary component of the complex dielectric con-
stant outside the scatterers where the gain is distributed.It can also be used to find the
lasing modes when gain is localized inside of the scatterers. In this case the poles of
the scattering matrix are searched in the space of real wavelengths (λ ′′ = 0) and the
imaginary part of the dielectric constant of cylindersε ′′

l )
The multipole method is both accurate and efficient: the boundary conditions are

analytically satisfied, thus providing enhanced convergence, particularly when the re-
fractive index contrast is high. However, in the case of large systems the method can
be slow (given that field expansions are global, rather than local) when it is neces-
sary to locate all poles within a sizable wavelength range. An other extremely efficient
time-independent numerical method based on Finite ElementMethod [57] has been
tested. This method is briefly described in theB. We checked that the results obtained
by both methods, the (purely numerical) finite element method and the (semi-analytic)
multipole method were identical with a good precision.

3.2.a. Localized case

We first consider the localized case (n′l = 2.0) for which a complete comparison of the
QB states and the lasing modes was possible with the time-dependent FDTD-based
method (section2.1), thus providing a reference comparison for the multipole calcu-
lations. The lasing mode is found at a wavelengthλ ′ = 446.335 nm for a value of the
imaginary part of the refractive indexn′′l = −1.967×10−4, representing the pumping
threshold for this mode. The spatial distribution of its amplitude is shown in Fig.8(b).
The QB states of the passive system are calculated in the spectral vicinity of the lasing
mode. The number of required multipoles wasNmax= 4 (seeA). Figure8(a) shows the



FIGURE 8. (Color online) The intensity|E|2 of the localized QB state (a)
(Media 1) and corresponding lasing mode (b) (Media 2) calculated using multi-
pole method for a 2D-disordered scattering system of the kind shown in Fig.1
with the refractive index of the cylindersn′l = 2.0.

QB state which best resembles the lasing mode. Its wavelength and quality factor are
respectivelyλ ′ = 446.339 nm andQ= 8047. The relative difference between the two
modes is〈σd〉= 0.05%. These calculations provide confirmation that the lasing modes
and the QB states are the same inside the scattering region for high Q-valued states.

FIGURE 9. (Color online). The intensity|E|2 of the diffusive QB state (a)
(Media 3) and the lasing mode (b) (Media 4) calculated using the multipole
method for the same random configuration as in Fig.8 but with the refractive
index of the cylinders ofn′l = 1.25.

3.2.b. Diffusive case

We next consider the diffusive case and choosen′l = 1.25. This is where the time-
independent method becomes interesting since, in contrastto the FDTD approach, it
gives a direct access to the QB states. They are accurately calculated in this regime for
Nmax= 2 multipoles. Figure9 shows a lasing mode and its corresponding QB state.
The lasing mode is found atλ ′ = 455.827 nm for an imaginary part of the refractive
indexn′′l = −3.778×10−2. The wavelength and the quality factor of the QB state are
respectivelyλ ′ = 456.79 nm andQ = 29.2. The lasing mode is therefore red-shifted
relative to the QB state’s wavelength, as a result of the mode-pulling effect. The QB
state and the lasing mode appear similar in Fig.9. However, the relative difference
between the two modes is larger than in the localized case,〈σd〉 = 14.5%. Fig. 10
shows the cross-section of the spatial intensity of both modes alongx= 2.75. In spite
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FIGURE 10. (Color online). The intensity|E|2 of the diffusive QB state (blue
dashed line) and lasing mode (red solid line) forx= 2.75 andn′l = 1.25.

of the resemblance, the two profile display visible dissimilarities. This suggests, in the
diffusive case, that QB states and lasing modes are not exactly the same though they
exhibit quite similar features. These results are consistent with the findings presented
in section2.2.

3.2.c. Transition case

FIGURE 11.(Color online) The intensity|E|2 of a QB state (a) and a lasing mode
(b) calculated using multipole method for the same random configuration as above
but with the refractive index of the cylindersn′l = 1.75.

It is both informative and interesting to follow the evolution of the lasing modes
and QB states spatial profile when the index of refraction is decreased progressively,
allowing to compare systematically the QB states and the random lasing modes (TLM)
in regime ranging from localized to diffusive. The QB state and lasing modes calcu-
lated for intermediate cylinder refractive indicesn′l = 1.75 andn′l = 1.5 are displayed
in Figs.11 and12. We note that the highly spatially localized mode forn′l = 2 (Fig.8)
is replaced forn′l = 1.75 by a mode formed by two spatially localized peaks and several
smaller peaks. For a refractive index ofn′l = 1.5, the mode is still spatially localized
although on a larger area, but is now formed with a large number of overlapping peaks.



FIGURE 12. (Color online) The same as in Fig.11but forn′l = 1.5.

A more systematic exploration of the nature of the lasing modes at the transition be-
tween localized states and extended resonances can be foundin [28]. There, a scenario
for the transition has been proposed based on the existence of necklace states which
form chains of localized peaks, resulting from the couplingbetween localized modes.
The modes shown here support this scenario. It is important to note that the decreasing
scattering and increasing leakage not only affect the degree of spatial extension of the
mode but also the nature of the QB states. Indeed, it was shownin [28] that because
of leakage, extended QB states have a non-vanishing imaginary part associated with a
progressive component, in contrast to the purely stationary localized states. We present
in [58] animations of the time oscillation of the real part of the field ℜ[Ψexp(−iωt)]
of the QB state and of the corresponding TLM forn′ = 2 andn′ = 1.25. The QB state
is exponentially decaying in contrast to the lasing mode. The diffusive lasing mode
clearly exhibit a progressive component, which does not exist in the localized lasing
mode.

n′l 2.0 1.75 1.5 1.25
λ ′ (nm) (QB) 446.339 451.60 456.60 456.79

Q 8047 161.28 87.8 29.2
λ ′ (nm) (laser) 446.335 451.60 456.5 455.827

n′′l -1.967×10−4 -0.0055 -0.0124 -0.0378
〈σd〉 (%) 0.05 3 8.4 14.5

TABLE 1. Wavelengthλ ′ and quality factorQ of the QB states; lasing frequency
λ ′ and imaginary part of the refractive indexn′′l obtained for the threshold lasing
modes; relative index difference〈σd〉 between QB states and TLM, for four index
valuesn′ of the scatterers.

The values of wavelengths and quality factors of the QB states, lasing frequencies
of the corresponding threshold lasing modes and associatedimaginary part of the re-
fractive index are summarized in Table1, together with the relative difference〈σd〉 as
defined in Eq.9.

In order to visualize the increasing difference between TLMand QB states, the cross-
section of their spatial intensity profile atx= 2.75 is plotted in Fig.13. In Fig. 13(a)
one cannot distinguish between the lasing mode and the QB state for n′ = 1.75, while
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FIGURE 13.The intensity|E|2 of QB state (blue dashed line) and lasing mode
(red solid line) atx= 2.75 forn′l = 1.75 (a),n′ = 1.5 (b) andn′ = 1.25 (c).

for n′ = 1.5 (Fig. 13(b)) differences begin to emerge, becoming more pronouncedfor
the case ofn′ = 1.25 (Fig.13(c)). This is seen also in the increase of the relative dif-
ference from 5% to 14.5%. Clearly, there is a systematic increase of the discrepancy
between QB states and lasing modes when index contrast and scattering decrease and
leakage increases. For very low scatteringn′ = 1.05, we could not find the QB state
corresponding to the TLM. Although we may have missed a pole in the complex plane,
this raises however a serious question on the validity of thecomparison of the threshold
laser mode with QB states when weakly scattering systems areconsidered. In the next
section, we will argue that, in principle, QB states cannot be the support of the TLM.
Section5 will introduce a different class of states, which offer a valid basis on which
the TLMs can be described.

4. Threshold lasing states vs. passive cavity resonances

Semiclassical laser theory treats classical electromagnetic fields coupled to quantized
matter and yields the thresholds, frequencies and electricfields of the lasing modes, but



not their linewidths or noise properties. In order to treat the spatial dependence of lasing
modes one must go beyond rate equation descriptions and use the coupled non-linear
Maxwell-Bloch (MB) equations for light coupled to homogeneously broadened two-
level “atoms” or multilevel generalizations thereof. These equations will be presented
in section5 below. While the MB description has been used since the inception of laser
theory [59,60], in almost all cases simplifications to these equations were made, most
notably a neglect of the openness of the laser cavity. As random lasers are strongly
open systems, it is necessary to treat this aspect of the problem correctly to obtain a
good description of them.

Historically a first breakthrough in describing Fabry-Perot type lasers with open
sides was the Fox-Li method [42], which is an integral equation method of finding
the passive cavity resonances of such a structure. It is widely assumed and stated that
these resonances or quasi-bound (QB) states are the correctelectromagnetic modes of
a laser, at least at threshold. Often the non-linear laser equations are studied with her-
mitian cavity modes with phenomenological damping constants representing the cavity
outcoupling loss obtained, e.g. from a Fox-Li calculation.It is worth noting that there
are two kinds of cavity loss that occur in lasers; there is theoutcoupling loss just men-
tioned and also the internal absorption of the cavity which can be taken into account
via the imaginary part of the passive cavity index of refraction. These are very different
processes as the former describes the usable coherent lightenergy emitted from the
laser and the latter simply energy lost, usually as heat, in the laser cavity.

The QB states of an arbitrary passive cavity described by a linear dielectric function
εc(x,ω) can be rigorously defined in terms of an electromagnetic scattering matrixSfor
the cavity. This matrix relates incoming waves at wavevector k (frequencyω = ck) to
outgoing waves in all of the asymptotic scattering channelsand can be calculated from
the wave equation. Note that while we speak of the frequency of the incoming wave in
fact the S-matrix is atime-independent quantitydepending on the wavevectork. This
is the wavevector outside the cavity; in random lasers we will be interested in spatially
varying dielectric functions so that in the “cavity” there is no single wavevector of the
field. For any laser, including the random laser, the cavity can be defined as simply the
surface of “last scattering” beyond which no backscattering occurs. The QB states are
then the eigenvectors of the passive cavity S-matrix with eigenvalue equal to infinity; i.
e. one has outgoing waves with no incoming waves. Because this boundary condition is
incompatible with current conservation these eigenvectors have complex wavevector,
k̃µ ; these complex frequencies are the poles of the S-matrix andtheir imaginary parts
must always be negative to satisfy causality conditions. There are normally a countably
infinite set of such QB states. Due to their complex wavevector, asymptotically the
QB states vary asr−(d−1)/2 exp(+|Im[k̃µ ]|r) and diverge at infinity, so they are not
normalizable solutions of the time-independent wave equation. Therefore we see that
QB states cannot represent the lasing modes of the cavity, even at threshold, as the
lasing modes have real frequency and wavevector outside thecavity with conserved
photon flux.

When gain is added to the cavity the effect is to add another contribution to the
dielectric functionεg(x,ω) which in general has a real and imaginary part. The imag-
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FIGURE 14. Shift of the poles of the S-matrix in the complex plane onto
the real axis to form threshold lasing modes when the imaginary part of
the dielectric functionε ≡ εc + εg varies for a simple 1d edge-emitting cav-
ity laser [33]. The cavity is a region of lengthL and uniform indexnc =
1.5(a),1.05(b)(εc = 2.25,1.0025) terminated in vacuum at both ends. The cal-
culations are based on the MB model discussed in section5, with parameters
kaL = 39 andγ⊥ = 2. (a) nc = 1.5, the squares of different colors represent
Im[εg] = 0,−0.032,−0.064,−0.096,−0.128 (b)nc = 1.05,the squares of differ-
ent colors represent Im[εg] = 0,−0.04,−0.08,−0.12,−0.16, note the increase in
the frequency shift in the complex plane for the leakier cavity. The center of the
gain curve is atkL= 39 which determines the visible line-pulling effect.

inary part ofεg has amplifying sign when the gain medium is inverted and depends
on the pump strength; it compensates the outcoupling loss aswell as any cavity loss
from the cavity dielectric functionεc. The specific form of this function for the MB
model will be given in section5 below. The threshold lasing modes (TLMs) are the so-
lutions of the wave equation withεtotal(x) = εc(x)+εg(x) with only outgoing waves of
real wavevectorkµ (we neglect henceforth for simplicity the frequency-dependence of
εc(x)). Thekµ are the wavevectors of the TLMs with real lasing frequenciesΩµ = ckµ .
These lasing wavevectors are clearly different from the complex k̃µ ; moreover they are
not equal toRe[k̃µ ] as often supposed. This can be seen by the following continuity ar-
gument. Assume thatεc(x) is purely real for simplicity, so that the S-matrix is unitary
and all of its poles are complex and lie in the negative half plane. Turn on the pump,
which we will callD0 anticipating our later notation, so that the inversion rises steadily
from zero, continuously increasing the amplifying part ofεg. The S-matrix is no longer
unitary, and its poles move continuously “upward” towards the real axis until each of
them crosses the axis at a particular pump value,D0 (see Fig.14); the place where each
pole crosses is the real lasing frequencykµ for that particular TLM. Note that the poles
do not move vertically to reach the real axis but always have some shift of the lasing
frequency from the passive cavity frequency, mainly due to line-pulling towards the
gain center. As the Q-value of the cavity increases, the distance the poles need to move
to reach the real axis decreases so that the frequency shift from Re[k̃µ ] can become
very small and the conventional picture becomes more correct. In general the poles of
the S-matrix are conserved quantities even in the presence of loss, so that the TLMs
are in one to one correspondence with the QB states and thus are countably infinite,
but for any cavity the pole which reaches the real axis first (i.e. at lowest pumpD0) is



the actual first lasing mode. At higher pump values the non-linear effects of saturation
and mode competition will affect the behavior; so only the lowest threshold TLM de-
scribes an observable lasing mode for fixed pumping conditions, thefirst lasing mode
at threshold. Which pole gets there first depends not only on the Q of the passive cav-
ity resonance before gain is added, but also on the parameters of εg(x) which include
the atomic transition frequency, the gain linewidth and thepump conditions as will be
discussed below.

5. Self-consistent time-independent approach to random la sing

In section4 we gave a general argument based on the scattering matrix with the addi-
tion of gain to show that in general the QB states (passive cavity resonances) are never
exactly the same as the threshold lasing modes (TLMs), even inside the cavity. How-
ever the same argument indicated that inside a high-Q cavitythe two sets of functions
become very similar since the poles of the S-matrix are very close to the real axis and
only a small amount of gain is required to move them to the realaxis, which maps
QB states onto TLMs. For localized states in the center of thesample the Q-values
should be exponentially large and, as found numerically, QBs and TLMs should be
indistinguishable (again, inside the cavity, outside the QB states have an unphysical
growth). As already noted, the set of TLMs only defines threshold modes, as soon as
the first TLM has turned on it will alter the gain medium for theother potential modes
through spatial hole-burning and a non-linear approach needs to be considered. Very
recently such an approach has been developed which has the major advantage of be-
ing time-independent and partially analytic, providing both ease of computation and
greater physical insight. The approach, due to Türeci-Stone-Ge, is known as Ab Initio
Self-consistent Laser Theory (AISC laser theory) [30,33,34]. It finds the stationary so-
lutions of the MB semiclassical lasing equations in the multimode regime, for cavities
of arbitrary complexity and openness, and to infinite order in the non-linear interac-
tions. As such it is ideal for treating diffusive or quasi-ballistic random lasers which
are extremely open and typically highly multimode even slightly above threshold. In
this section we present the basic ideas with emphasis on threshold lasing modes, which
is the focus of this review. The non-linear theory has been reviewed in some detail
elsewhere [34], and we just present a brief introduction to it here.

5.1. Maxwell-Bloch threshold lasing modes

The MB semiclassical laser equations describe a gain mediumof identical two-level
“atoms” with energy level spacinḡhωa = h̄cka and relaxation rateγ‖, being pumped by
an external energy source,D0 (which can vary in space), contained in a cavity which
can be described by a linear dielectric function,εc(x). This leads to a population inver-
sion of the atoms,D(x, t) which in the presence of an electric field creates a non-linear
polarization of the atomic medium,P(x, t), which itself is coupled non-linearly to the
inversion through the electric field,E(x, t). The electric field and the non-linear polar-
ization are related linearly through Maxwell’s wave equation, although above the first
lasing threshold the polarization is implicitly a non-linear function of the electric field.



The induced polarization also relaxes at a rateγ⊥ which is typically much greater than
the rateγ‖ at which the inversion relaxes, and this is a key assumption in our treatment
of the non-linear regime, but will not be needed in the initial discussion of TLMs.

The resulting system of non-linear coupled partial differential equations for the three
fieldsE(x, t),P(x, t),D(x, t) are (c= 1):

Ë+ =
1

εc(x)
∇2E+−

4π
εc(x)

P̈+ (10)

Ṗ+ = −(iωa+ γ⊥)P++
g2

ih̄
E+D (11)

Ḋ = γ‖ (D0−D)−
2
ih̄

(

E+(P+)∗−P+(E+)∗
)

. (12)

Hereg is the dipole matrix element of the atoms and the units for thepump are cho-
sen so thatD0 is equal to the time-independent inversion of the atomic system in the
absence of an electric field. This pump can be non-uniform:D0 = D0(x) based on the
experimental pump conditions, but we will not discuss that case here. The electric field,
polarization and inversion are real functions (E,P are vector functions in general, but
we assume a geometry where they can be treated as scalars). Inwriting the equations
above we have written these fields in the usual manner in termsof their positive and
negative frequency components,E = E++E−, P = P++P−, and then made the ro-
tating wave approximation (RWA) in which the coupling of negative to positive com-
ponents is neglected. There is no advantage in our treatmentto making the standard
slowly-varying envelope approximation and we do not make it.

5.2. Self-consistent steady-state lasing equations

The starting point of our formulation is to assume that thereexists a steady state multi-
periodic solution of equations (10)-(12) above, i. e., we try a solution of the form:

E+(x, t) =
N

∑
µ=1

Ψµ(x)e−ikµ t , P+(x, t) =
N

∑
µ=1

Pµ(x)e−ikµ t . (13)

Having takenc = 1 we do not distinguish between frequency and wavevector. The
functionsΨµ(x) are the unknown lasing modes and the real numberskµ are the un-
known lasing frequencies; these functions and frequenciesare not assumed to have
any simple relationship to the QB states of the passive cavity and will be determined
self-consistently. As the pump increases from zero the number of terms in the sum will
vary, N = 0,1,2, . . . at a series of thresholds each new mode will appear. The general
non-linear theory is based on a self-consistent equation which determines how many
modes there are at a given pump, and solves for these modes andtheir frequencies.
However in this section we will discuss threshold lasing modes (TLMs) and so we
need only consider one term in the sum. Furthermore, at the first threshold the electric
field is negligibly small and so the inversion is equal to the external pump profile, as-
sumed uniform in space,D(x, t) = D0. Assuming single-mode lasing the equation for



the polarization becomes:

Pµ(x) =
−iD0g2Ψµ(x)

h̄(γ⊥− i(kµ −ka))
(14)

Having foundPµ(x) in terms ofΨµ(x),D0, we substitute this result into the right hand
side of Maxwell’s equation along withΨµ(x) for the electric field on the left hand side.
The result is:

[∇2+ εc(x)k2
µ ]Ψµ(x) =

iD04πg2k2
µΨµ(x)

h̄(γ⊥− i(kµ −ka))
, (15)

which can be written in the form:

[∇2+(εc(x)+ εg(x))k2
µ ]Ψµ(x) = 0, (16)

whereεg(x) is the dielectric function of the gain medium, which only varies in space
if the external pump or the gain atoms are non-uniform. Defining convenient units of
pumpD0c = h̄γ⊥/4πk2

ag2 and replacingD0 ⇒ D0/D0c, we find that

εg(x) =
D0

k2
a
[

γ⊥(kµ −ka)

γ2
⊥+(kµ −ka)2

+
−iγ2

⊥

γ2
⊥+(kµ −ka)2

]. (17)

Equation (16) is to be solved with the boundary condition that at infinity one has
only an outgoing wave at frequencykµ , i. e.,∇rΨµ(x) = +ikµΨµ(x) whenr → ∞. In
general this equation with this boundary condition cannot be solved for arbitrary choice
of the lasing frequencykµ and for arbitrary values of the pumpD0; it is necessary to

vary kµ and the pump strengthD0 to find the countably infinite set of values(kµ ,D
(µ)
0 )

at which a solution exists. This variation is equivalent to the pulling of the S-matrix
poles onto the real axis discussed in section4 above;D(µ)

0 defines the threshold pump,
for that pole, andkµ the point at which it crosses the real axis. As noted, while all
of these solutions can be classified as TLMs, only the solution with the lowest value
of D(µ)

0 will actually be a physical lasing state, as higher lasing modes are altered by
non-linear modal interactions.

Equation (16) shows that the TLMs are the solutions of the original Maxwell equa-
tion with the addition of a complex, pump and frequency dependent dielectric function
which is uniform in space (for the assumed uniform pumping).The imaginary and real
parts of the gain dielectric function have the familiar symmetric and anti-symmetric
two-level resonance form respectively. The dependence on the atomic frequencyka

encodes the usual atomic line-pulling effect. In the limit of a very broad gain curve
(γ⊥ → ∞) the line-pulling effects can be neglected and we find the simple result

εg →−iD0/k2
a, (18)

i.e. a constant imaginary (amplifying) part ofεg proportional to the pump strength.
Such linear gain models have been studied before, although typically with a constant
imaginary part of the index of refraction instead of a constant imaginary part of the



dielectric function. Our results show that in order to reproduce the TLMs of the MB
equations one needs to take

n(x) =
√

εc(x)+ εg(D0,kµ −ka,γ⊥) (19)

so that the pump changes both the real and imaginary parts of the index of refraction.

5.3. Solution for TLMs and CF states
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FIGURE 15.Typical values of the threshold matrix elementsT (0) in a two-
dimensional random laser schematized in the inset Fig.18using sixteen CF states.
The off-diagonal elements are one to two orders of magnitudesmaller than the di-
agonal ones.

The differential equation (16) is self-consistent in the sense that the boundary condi-
tions depend on the eigenvaluekµ that one is solving for and so some form of non-linear
search is required. The required search turns out to be much more convenient if one
writes an equivalent integral form of the equation transforming it into a self-consistent
eigenvalue problem. For this purpose we rewrite it in the form

[εc(x)−1∇2+k2
µ ]Ψµ(x) =

−εgk2
µ

εc(x)
Ψµ(x), (20)

and then, treating the right hand side as a source, invert theequation with the appropri-
ate Green function to obtain:

Ψµ(x) =
iD0γ⊥

γ⊥− i(kµ −ka)

k2
µ

k2
a

∫

D

dx′
G(x,x′;kµ )Ψµ(x′)

εc(x′)
. (21)

Here the integral is over the gain region which we will assumecoincides with the cavity
regionD . The appropriate Green function satisfies

[εc(x)−1∇2+k2]G(x,x′|k) = δ d(x−x′), (22)
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FIGURE 16.(a) False color plot of one TLM in a 2D random laser modeled as
an aggregate of sub-wavelength particles of index of refraction n = 1.2 and ra-
dius r = R/30 against a background indexn = 1 imbedded in a uniform disk of
gain material of radius R(see inset, Panel (d)). The frequency of the lasing mode
is kR= 59.9432, which is pulled from the real part of the dominating CF state
kmR= 59.8766−0.8593i (b) towards the transition frequencykaR= 60. The spa-
tial profile of the TLM and CF state agree very well, whereas the corresponding
QB statek̃mR= 59.8602−0.8660i (c) differs from that of the TLM and the CF
state noticeably, as can be seen in Panel (d) where we plot theinternal intensity
along theθ = 200◦ direction (white line in panel (a)).

and is non-hermitian due to the outgoing wave boundary conditions:
∇rG(x,x′|k)|r→∞ = ∇r ′G(x,x′|k)|r ′→∞ = ikG(x,x′|k), where∇r is the radial derivative.
It has the spectral representation:

G(x,x′|k) = ∑
m

ϕm(x,k)ϕ̄∗
m(x

′,k)
(k2−k2

m)
. (23)

We refer to the functionsϕm(x,k) in (23) as the constant-flux (CF) states. They satisfy

[εc(x)−1∇2+k2
m]ϕm(x,k) = 0 (24)

with the corresponding non-hermitian boundary condition of purely outgoing spherical
waves of fixed frequencyk (eventually set equal to the lasing frequency) at infinity.
Their dual (biorthogonal) partners̄ϕm(x′,k) satisfy the complex conjugate differential
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FIGURE 17.(a) False color plot of one TLM in a 2D random laser similar to
that in the Fig.16 but with particles of radiusr = R/60 corresponding to weaker
scattering (see inset, Panel (d)). The frequency of the lasing mode iskR= 29.9959,
which is very close to the CF statekmR= 30.0058−1.3219i (b) but shifted from
the corresponding QB statẽkmR= 29.8813− 1.3790i (c). In Panel (d) we show
the internal intensity of the three states in theθ = π direction (white line in panel
(a)); due to weaker scattering the QB state now differs substantially from the CF
and TLM, which still agree quite well with each other

equation with purely incoming wave boundary conditions. These dual sets satisfy the
biorthogonality relation:

∫

D

dx ϕm(x,k)ϕ̄∗
n(x,k) = δmn (25)

with appropriate normalization.
The CF states satisfy the standard wave equation Eq. (24), but with the non-hermitian

boundary condition already mentioned; hence their eigenvaluesk2
m are complex, with

(it can be shown) negative imaginary part, corresponding toamplification within the
cavity. However outside the cavity, by construction, they have the real wavevectorkµ
and a conserved photon flux. They are a complete basis set for each lasing frequencykµ
and hence they are a natural choice to represent the TLMs, as well as the lasing modes



above threshold. Hence we make the expansion

Ψµ(x) =
∞

∑
m=1

aµ
mϕ µ

m(x) (26)

Substituting this expansion into Eq. (21), using biorthogonality, and truncating the ex-
pansion atN terms leads to the eigenvalue problem:

aµ
m = D0Λm(kµ)

∫

D

dx′
ϕ̄ µ∗

m (x′)∑N
p aµ

pϕ µ
p (x′)

εc(x′)
≡ D0

N

∑
p

T
(0)

mp aµ
p , (27)

whereΛm(k)≡ iγ⊥(k2/k2
a)/[(γ⊥− i(k−ka))(k2−k2

m(k))].
One sees that the TLMs in the CF basis are determined by the condition that an

eigenvalue of the matrixD0T
(0)(kµ ) is equal to unity. Since the matrixT (0)(kµ) is

independent ofD0 it is natural to focus on this object, which we call thethreshold
matrix. It is a complex matrix with no special symmetries, implyingthat its eigenvalues
λµ are all complex for a general value ofkµ . If the real control parameterD0 (the
pump) is set equal to 1/|λµ | then the matrixD0T

(0)(kµ) will have an eigenvalue of
modulus unity, but not a real eigenvalue equal to unity as required and no solution
for the TLMs exists for this choice ofkµ . It is the phase condition, thatλµ(kµ) must
be real that determines the allowed lasing frequencies. In practice one orders theλµ
in decreasing modulus based on an initial approximation to the lasing frequency,kµ ,
and then tuneskµ slowly until each eigenvalue flows through the real axis (which is
guaranteed by the dominant k-dependence contained in the factor Λm(k)). Normally
the eigenvalues do not switch order during this flow and the largest eigenvalueλµ

will determine the lowest threshold TLM, with thresholdD(µ)
0 = 1/λµ(kµ), wherekµ

is the frequency which makes the largest eigenvalueT (0)(kµ) real. The eigenvector
corresponding toλµ gives the coefficients for the CF expansion of the TLM of the
first modeΨµ(x). TLMs with higher thresholds can be found by imposing the reality
condition on smaller eigenvalues ofT (0)(kµ). This approach has been described in
detail elsewhere [32,34], and provides a much more efficient method for finding TLMs
than solving the self-consistent differential equation, (16).

We immediately see from Eqs. (25) and (27) that for an arbitrarily shaped cavity of
uniform dielectric constantεc the matrixT (0)(kµ ) is diagonal due to biorthogonality
of the CF states. Thus each TLM is a single CF state, corresponding to one of the
kµ which satisfies the reality condition. In this case the expansion of Ψµ(x) consists
of just one term and the threshold lasing equation is equivalent to the Eq.24 with
appropriate relabeling. Whenεc varies in space, as for random lasers, the threshold
matrix is not diagonal and there can in principle be many CF states contributing to one
TLM. However sinceϕm(x), ϕ̄p(x) are uncorrelated fluctuating functions of space, it
turns out that the threshold matrix in RLs is approximately diagonal and the threshold
modes are dominated by one, pseudo-random CF state determined by solving Eq.24
for the appropriate random dielectric functionεc(x). This is shown in Fig.15 below.
In summary, the theory leading to the threshold equation (27) gives an efficient time-
independent method for finding the TLMs of random lasers in any disorder regime. In



general these TLMs are very close to a single CF state determined by the Eq.24 at the
lasing frequencykµ .With this new method TLMs of random lasers can be found for
complex two and even three-dimensional geometries. In Figs. 16 and17 we compare
TLMs, CF states and QB states for the two-dimensional randomlaser model used in
ref. [32], illustrating the agreement of TLMs with CF states even forweak scattering,
while a significant deviation from the closest QB state is found.

This AISC laser theory is well-suited to describe not just TLMs but to find the true
multimode lasing spectrum of RLsabove threshold. This will not be treated in detail
here, but in the next section we briefly explain the basic approach in the non-linear
theory and show one representative result.

5.4. Non-linear AISC laser theory

The key to generalizing this theory to the multi-mode non-linear regime is to return
to the fundamental MB equations and go beyond the assumptionthat the inversion
D(x, t) is equal to the constant threshold pumpD0. Once lasing modes have turned
on their spatially varying electric fields cause varying degrees of stimulated emission
from the gain atoms and hence tends to reduce the inversionD from the pump value
D0 in a manner which varies in space and in principle in time. However it has been
shown that ifγ⊥ ≫ γ‖, then the time-dependence of the inversion is weak and although
D is varies in space, it is a good approximation to takeD(x, t) = D(x). This stationary
inversion approximation (SIA) has been used in laser theoryfor many years, going back
to Haken [60], but has not been incorporated into an ab initio method suchas AISC
laser theory. We will not review the details of the derivation of the non-linear multimode
theory of Türeci-Stone-Ge, which have been given elsewhere [30,34]. Instead we just
state that the net effect of the non-linear interactions within the SIA is just to replace
the uniform inversion as follows:

D0 →
D0

1+∑ν Γ(kν)|Ψν(x)|2)
(28)

in all of the equations of the theory of the TLMs. Hereν labels all above threshold
modes andΓ(kν) is a Lorentzian centered at the lasing frequency of modeν with width
γ⊥. If we make this substitution into the Eq. (21) we arrive at the fundamental integral
equation of AISC laser theory:

Ψµ(x) =
iD0γ⊥

γ⊥− i(kµ −ka)

k2
µ

k2
a

∫

D

dx′
G(x,x′;kµ )Ψµ(x′)

εc(x′)(1+∑ν Γν |Ψν(x′)|2)
. (29)

Note that this equation shows that each lasing modes interacts with itself (saturation)
and all other lasing modes (mode competition) via the “hole-burning” denominator of
Eq. (28). This set of coupled non-linear equations is still conveniently solved in the
basis of CF states for each modal frequencykµ , as for the TLMs; the details have been
given elsewhere [32,34].

The first results of the AISC laser theory for the modal properties of multimode
random lasers in weak-scattering two-dimensional media were given in [32]. We will



FIGURE 18.(a) CF (dots) and QB (crosses) frequencies in a 2D random laser
modeled as an aggregate of sub-wavelength particles of index of refractionn= 1.2
against a background indexn = 1 imbedded in a uniform disk of gain material
(see inset). The two sets of complex frequencies are statistically similar but dif-
fer substantially. The solid curve shows the gain curveΓ(k) with γ⊥ = 1. (b)
Lasing frequencies of the same random system well above threshold (coloured
lines). Coloured circles denote the CF state dominating thecorrespondingly col-
ored modes at threshold.

not present a full picture of these results here, but just show some properties of the RL
lasing frequencies in Fig.18 below. The model is explained in the figure caption (see
inset). The complex CF and QB frequencies are shown to be distinct and the lasing
frequencies are subject to very strong line-pulling effects.

The new tool of AISC laser theory allows one to study random lasers with full non-
linear interactions in 2D and even in 3D. The elimination of time-dependence in this
theory makes larger and more complex cavities computationally tractable. The theory
also provides a new language based on CF states to describe the lasing modes. Now
detailed statistical studies as well as comparisons to statistical models based on random
matrix theory, disordered media theory and wave chaos theory are needed. Such studies
are in progress.

6. Conclusion

A decade of theoretical study of random lasers has clarified the nature of the lasing
modes in disordered systems with multiple scattering and gain. Most importantly it
has been established that high-Q passive cavity modes such as those created by Ander-
son Localization or by rare fluctuations of various kinds arenot necessary in order to
have self-organized laser oscillation at a frequency distinct from the atomic transition
frequency (gain center). In addition this study has emphasized a point of general impor-
tance in laser theory, that threshold lasing modes are not identical to the quasi-bound
states (resonances) of the passive cavity. This point is demonstrated by a number of nu-
merical calculations presented above and also can be understood from the realization
that the QB states are eigenvectors of the unitary S-matrix of the cavity without gain,
but at complex frequency, whereas the threshold lasing modes are eigenvectors of the
non-unitary S-matrix of the cavitywith gain and with real frequency. The difference
between these eigenvectors (within the cavity), which is large in the weak scattering



limit, becomes small in the diffusive regime as the Q of the cavity increases and is
negligible, e.g. for Anderson localized modes and for high-Q modes of conventional
cavities. The new basis set ofconstant fluxstates provides a better approximation for
finding the threshold lasing modes of random lasers and coincides with the exact lasing
modes of uniform index cavities. Further statistical and analytical study is necessary to
characterize the properties of random lasers in the different regimes, weak scattering,
diffusive and localized, and to understand the effects of non-linear interactions.
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A. The multipole method

This appendix details the principle of the multipole methodas used in this paper and its
implementation. Although we describe here the method for two-dimensional systems,
it can be also applied to three-dimensional structures.

We consider a random collection ofNc non-overlapping cylinders with arbitrary
complex dielectric constantεl = εl

′+ iεl
′′ = n2

l and arbitrary radiial located in a uni-
form medium with complex dielectric constantεb = εb

′ + iεb
′′ = n2

b (Fig. 19), where
nl = n′l + in

′′

l andnb = n′b+ in
′′

b are the refractive indices of the cylinders and the back-
ground. The complex dielectric permittivities of the cylinders and the background can
be arbitrary and may be frequency dependent.

In two dimensions, the solution of the electromagnetic fieldproblem decouples into
two fundamental polarizations, in each of which the field maybe characterized by a
single field component:V(r) = Ez (for TM polarization) andV(r) = Hz (for TE polar-
ization). In the co-ordinate system that is used, thez axis is aligned with the cylinder
axes.

The field componentV satisfies the Helmholtz equation

∇2V(r)+k2n2(r)V(r) = 0. (30)

For TM polarization, bothV(r) and its normal derivativeν · ∇V(r) are continuous
across all boundaries, while for TE polarization the corresponding boundary conditions
are the continuity ofV(r) and its weighted normal derivativeν ·∇V/n2(r). Here,n(r)
denotes the refractive index of the relative medium andν is an unit outward normal
vector.

In the vicinity of thel th cylinder, we may represent the exterior field in the back-
ground medium (refractive indexnb) in local coordinatesrl = (r l ,θl ) = r−cl wherecl
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FIGURE 19. The geometry and local co-ordinate systems.

represents the center of the cylinder and write

V(r) =
∞

∑
m=−∞

[

Al
mJm(knbr l )+Bl

mH(1)
m (knbr l )

]

eimθl . (31)

This local expansion is valid only in an annulus extending from the surface of the
cylinder l to the surface of the nearest adjacent cylinder.

The global field expansion (also referred to as a Wijngaard expansion), which is valid
everywhere in the background matrix, comprises only outgoing cylindrical harmonic
terms:

V(r) =
Nc

∑
q=1

∞

∑
m=−∞

Bq
mH(1)

m (k|r− cq|)e
imarg(r−cq). (32)

Correspondingly, the field inside any cylinderl is written in an interior expansion:

V(r) =
∞

∑
m=−∞

Cl
mJm(knl |r− cl |)e

imarg(r−cl ). (33)

Then, applying Graf’s addition theorem [50] to the terms on the right hand side of
(32) (see Fig.19), we may express the global field expansion in terms of the local
coordinate system for thel th cylinder. Equating this with the local expansion (31), we
deduce the field identity (also known as the Rayleigh identity):

Al
m =

Nc

∑
q=1,q6=l

∞

∑
p=−∞

H lq
mpB

q
p, (34)

where
H lq

mp= H(1)
m−p(kclq)e

−i(m−p)θlq. (35)



Here, (clq,θlq) are the polar coordinates of the vectorclq = cq − cl , the position of
cylinderq relative to cylinderl .

This is the first connection between the standing wave ({Al
m}) and outgoing ({Bl

m})
multipole coefficients, one which follows solely from the system geometry. Eq. (34)
indicates that the local field in the vicinity of cylinderl is due to sources on all other
cylinders (q 6= l ), the contributions of which to the multipole term of orderm− p at
cylinder l are given byH lq

mp.
The second relation between the{Al

m} and{Bl
m} multipole coefficients is obtained

from the field continuity equations (i.e., the boundary conditions) at the interface of
cylinder l and the local exterior (31) and interior field (33) expansions. From these, we
obtain:

Bl
m = Rl

mAl
m, (36)

Cl
m = T l

mAl
m, (37)

where the interface reflection and transmission coefficients, for bothEz andHz polar-
ization are given by

Rl
m = −

ξ nlJ′m(knl al )Jm(knbal )−nbJm(knl al )J′m(knbal )

ξ nl J′m(knl al )H
(1)
m (knbal )−nbJm(knl al )H

(1)′
m (knbal )

, (38)

T l
m = −

2i/(πkaL)

ξ nl J′m(nl kal )H
(1)
m (knbal )−nbJm(knl al )H

(1)′
m (knbal )

, (39)

in which ξ = 1 for TM polarization andξ = n2
b(r)/n2

l (r) for TE polarization.
To derive a simple closed form expression for the solution ofthe problem, we use

partitioned matrix notation, introducing vectorsAl = [Al
m] andBl = [Bl

m] and expressing
(34) in the form

Al =∑
q

HlqBq, (40)

whereAl andBl denote vectors of multipole coefficients for cylinderl . The matrixH
is block partitioned according toHlq = [H lq

mp] for l 6= q (35), andHll = [0], each block
of which is a matrix of Toeplitz form. Correspondingly, the matrix forms of Equations
(36) and (37) are

B = RA, (41)

C = TA, (42)

whereR = diagRl is a block diagonal matrix of diagonal matricesRl = diagRl
m, and

with corresponding definitions applying for the transmission matrices.
Then, with the introduction of the partitioned vectorsA = [Al ], B = [Bl ] and the

partitioned matrixH = [Hlq], we form the system of equations

(I−RH)B = 0. (43)

The problem has now been reduced to the solution of a generalized eigenvalue prob-
lem for the matrix equation (43). The nontrivial solutions of the secular equation (43)



determines modes of the random system. Finding the nontrivial solutions of the linear
system of equations (43) requires that the determinant of the system matrix vanishes:
(44)

D = 0, where D = det(S−1) with (44)

S−1(λ ) = (I−RH). (45)

Equivalently, this problem may be recast as a search for the poles of the scattering ma-
trix S(λ ) (i.e., solutions of detS−1(λ ) = 0). Once the pole is located, the corresponding
null vectorsB of (43) are the multipole coefficients of the scattered field which are used
to calculate the QB state profiles exterior to the scatterersusing (32). The field inside
a cylinder is calculated according to the interior expansions (42) and(33). The TLM
poles must be searched in the(λ ,εc) domain, given the pump changes not only the
imaginary part of the refractive index but the real part as well (4).

The formal system (44) is of infinite dimension and so must be truncated in order to
generate a computational solution, the accuracy of which isgoverned by the number of
retained multipole coefficientsNm = 2Nmax+1, whereNmax is the truncation order of
the multipole series, i.e., only the terms corresponding tothe cylindrical harmonics of
ordern=−Nmax, ...,Nmax are retained.

B. Finite Element Method

We have also used the Finite Element Method (FEM) [57], implemented in a commer-
cial software (Comsol™), to solve the wave equation (30) and calculate the complex
eigenvalues and eigenfunctions of the passive modes of the systems that were calcu-
lated by the multipole method. The method suitably applies for modeling passive or
active modes in a cavity, which is surrounded by perfectly matched layers [61] to sim-
ulate open boundaries. It is possible to obtain all the leakymodes, even the resonances
characterized by a very small quality factor (as small as 5),in a reasonable computation
time with a commercial PC, provided the size of the geometry is smaller than hundred
times the wavelength. This is in contrast with the other methods described in this paper,
which require much heavier computation.

One of the most important step of the Finite Element Method isthe creation of
the mesh which describes the system. Figure20 shows a close up on a typical mesh
calculated for the 2D random system of Fig.2. The maximum size of elements must be
smaller than 7 times the wavelength [62].



FIGURE 20.Close up on a typical mesh created by Comsol™to describe the 2D
random system of Fig.2.
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