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Markovian traffic equilibrium∗

J-B. Baillon† and R. Cominetti‡

Abstract

We analyze a stochastic dynamic programming model for traffic equilibrium on networks. In
this model passengers move towards their destinations by a sequential process of arc selection
based on a discrete choice model at every intermediate node in their trip. Route selection is
therefore the outcome of a sequential process of arc choices while network flows correspond to the
invariant measures of the corresponding Markov chains. The approach may handle different dis-
crete choice models at every node, including the possibility of mixing deterministic and stochastic
distribution rules. It can also be used over a multi-modal network in order to model the simulta-
neous selection of mode and route, as well as to treat the case of elastic demands. We establish
the existence of a unique equilibrium, which is characterized as the solution of an unconstrained
strictly convex minimization problem of low dimension. We report some numerical experiences
comparing the performance of the method of successive averages and Newton’s method on one
small and one large network, and we prove the convergence of the former.

1 Introduction

Traffic assignment models describe the way in which the transportation demands flow through a given
network. Users are supposed to behave rationally and to travel along the shortest available paths
[17, Wardrop’s principle]. However, because of congestion the path costs are themselves influenced
by the flows and therefore the models give rise to equilibrium or fixed point problems.

Assignment models can be classified as deterministic or stochastic depending whether all users
perceive the same costs or there is some variability among the population. In the first case the
shortest paths connecting a given origin-destination pair (OD) are the same for all users and the
flow distribution rule is deterministic, while in a stochastic setting the shortest paths depend on
the particular user under consideration leading to a flow distribution principle based on random
utility theory. Despite the similarity of both situations, the mathematical formulations found in
the literature are rather different and both approaches remain somewhat disconnected. In this
paper we describe a unifying framework for deterministic and stochastic traffic assignment, in the
form of an unconstrained convex minimization problem that encompasses both types of assignment
simultaneously. In this approach, the deterministic assignment becomes a particular instance of the
stochastic assignment.

∗Partially supported by ECOS-Conicyt program under grant No. C00E05
†Université de Paris I.
‡Departamento de Ingenieŕıa Matemática and Centro de Modelamiento Matemático, Universidad de Chile. Partially

supported by Fondap Matemáticas Aplicadas, CONICYT-Chile.
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Stochastic route choice models can be traced back to Dial [6] where the demand on each OD pair
is distributed among routes according to a logit discrete choice model. To reduce the computational
burden of path enumeration, the choices are restricted to a smaller set of efficient routes, namely
those for which each arc leads farther away from the origin and gets closer to the destination.
This approach, further investigated in [16, Trahan] and [14, Sheffi and Powell], was conceived for
the flow-independent case and assumes route costs to be independent Gumbel random variables.
Since independence is an unlikely assumption when dealing with overlapping routes, Daganzo and
Sheffi [5] proposed an alternative model based on a probit stochastic assignment which was solved by
Montecarlo simulation. On a different direction, Dial’s logit-based model was extended to the case of
flow-dependent arc costs in [7, Fisk], where an equivalent optimization problem was found. The latter
was formulated in the high dimensional space of route flows and the method of successive averages
was proposed as a practical numerical scheme. Alternative methods based on a dual formulation
and which do not require path enumeration were investigated in [11, Larrson, Liu and Patrickson].
Finally, we mention an attempt to extend the stochastic assignment to the case of transit networks
in [12, Nguyen et al]. For a more complete account on deterministic and stochastic traffic assignment
we refer to the surveys of Florian and Hearn [8, 9].

A common feature of all the mentioned works is that each user on a given OD pair directly selects
an optimal route by comparing it with all the available routes. From a modelling perspective this
has several drawbacks. Firstly, partial information and limited discrimination capacity of the users
suggest that the choices should be restricted to a few “reasonable” routes, but then defining a priori
which routes should be considered is not obvious specially since travel times are flow-dependent. On
the other hand, as already mentioned the logit-based models assume the independence of route costs
which is unreasonable when dealing with overlapping routes, and also both logit and probit models
distribute flows among all the available routes no matter how large their travel times are. Finally,
models requiring path enumeration are computationally impractical for large networks.

In this paper we consider an alternative approach which is still based on discrete choice models
but imbedded in a dynamic programming framework: route choice is no longer seen as an issue to
be solved once and for all at the origin of each trip, but instead we consider it as the outcome of
a sequential process of selection of arcs at every intermediate node. Passenger movements are then
governed by an embedded Markov chain and therefore we call this type of assignment a Markovian
Traffic Equilibrium or MTE. The idea is similar to the logit Markovian assignment of [2, Akamatsu]
except that we consider general discrete choice models and at the same time we provide a compact
dual characterization which seems more easily amenable to large scale computations. This approach
does not require independence of the random route costs, and the number of alternative arcs to be
considered at each node remains within the discrimination capabilities of the users with no need
for arbitrarily reducing the set of possible routes. Moreover, by appropriately choosing the discrete
choice models one can force the equilibrium assignments to use only nearly optimal routes and not
every route as in the logit or probit route-based setting. Finally, the model avoids path enumeration
and leads to computational procedures which are effective even for large networks.

An additional advantage of the MTE model is its flexibility to deal with different discrete choice
models at every node, and even to mix deterministic and stochastic assignment rules within the same
model. In particular, by considering multi-modal networks the approach applies directly to model
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the simultaneous selection of mode and route. Also, the case of elastic demands may be treated as
usual by adding no-trip arcs connecting directly each OD pair with travel cost equal to the inverse
of the demand function.

The paper is structured as follows. Section §2 sets the notation and reviews the basics of de-
terministic traffic equilibrium, describing its equivalent formulation in terms of a primal and a dual
optimization problems. Section §3 then introduces the MTE model and establishes an analog char-
acterization which has exactly the same form as the deterministic dual characterization, providing a
unified framework for both types of equilibrium. This dual program is unconstrained, strictly convex
and coercive, implying the existence and uniqueness of an MTE. In the stochastic case the dual turns
out to be smooth, and since it is also low dimensional (one variable per arc) it opens the way to
solve large networks. Some extensions of the basic MTE model are briefly described in section §4,
while section §5 reports some preliminary numerical results comparing the performance of the well
known method of successive averages (which is interpreted as a variable metric gradient scheme)
and Newton’s method. These experiments show that the model is solvable even for large networks.
We conclude the paper in §6 by giving sufficient conditions for the convergence of the method of
successive averages. Appendix A at the end of the paper provides an analytical characterization of
discrete choice models which plays an essential role in our analysis, while Appendix B computes the
Hessians required to implement Newton’s method.

2 Deterministic traffic equilibrium

Let G = (N, A) be a directed graph representing a traffic network, and D ⊆ N a set of destinations.
Given the demands gd

i ≥ 0 from each node i �= d to each destination d ∈ D, a traffic assignment
model seeks to predict how these demands flow throughout the network. More precisely, if we let
Rd

i denote the set of simple paths connecting i to d (assumed nonempty) and writing R for the
union of the Rd

i ’s, the problem is to determine an “efficient” path-flow assignment h=(hr)r∈R with
non-negative entries hr≥0 and satisfying the flow conservation constraints

gd
i =

∑
r∈Rd

i
hr ∀ d ∈ D, i �= d. (1)

The efficiency of a path r ∈ R is measured by its generalized cost

cr =
∑

a∈r ta (2)

where ta = sa(wa) represents the travel time or generalized cost of arc a as a strictly increasing
continuous function of the total flow on that arc, namely sa : [0,∞) → [0,∞) and

wa =
∑

r�a hr. (3)

A deterministic model assumes that all users perceive the exact costs cr, and then an efficient
assignment is characterized by the fact that only shortest paths are used [17, Wardrop].
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Definition 1 Let H denote the set of all (w, h) satisfying (1) and (3) with h≥0. A pair (w, h)∈H
is a deterministic traffic equilibrium iff for each destination d∈D and every i �=d one has

(∀ r∈Rd
i ) hr > 0 ⇒ cr = τd

i

where cr is given by (2) and τd
i = minr∈Rd

i
cr, with ta = sa(wa).

These equilibria are characterized [4, Beckman et al.] as the optimal solutions of the convex program

(PH) min
(w,h)∈H

∑
a∈A

∫ wa

0
sa(z) dz.

Since H is compact there exist optimal solutions, while strict convexity implies that the optimal w∗

is unique, although there may exist several path-flow assignments h which correspond to this w∗.
We loosely refer to w∗ as being “the” equilibrium flow.

2.1 Arc-flow formulation

As the number of paths is usually very large, the formulation (PH) is computationally inefficient.
An alternative formulation is obtained by considering variables vd

a ≥ 0 representing the flow on
arc a heading to destination d, and the set V of pairs (w, v) ≥ 0 satisfying the flow conservation
constraints

gd
i +

∑
a∈A−

i

vd
a =

∑
a∈A+

i

vd
a ∀ d∈D, i �=d (4)

as well as the total flow relations

wa =
∑
d∈D

vd
a ∀ a ∈ A. (5)

Clearly, to every feasible assignment (w, h)∈H it corresponds a unique pair (w, v)∈ V by setting
vd
a =

∑{hr :a∈r, r∈Rd
i , i �=d}. However, not all elements in V are of this form since the latter allows

flow along cycles which may be forbidden in H. In any case, the convex program

(PV ) min
(w,v)∈V

∑
a∈A

∫ wa

0
sa(z) dz

is a relaxation of (PH) with the same optimal w∗. Moreover, any v with (w∗, v)∈V is optimal and
the sets {a∈A :vd

a >0} are cycle-free so that v may be decomposed into path-flows hr satisfying (1)
and (3) (see e.g. [1, Theorem 2.1]). Any such decomposition gives an equilibrium and, conversely,
every equilibrium is of this form.
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2.2 Dual formulation

The main point when computing a traffic equilibrium is then to find the optimal arc-flow vector
w∗. A dual problem which provides an alternative for this was described in [10, Fukushima]. We
slightly re-formulate the latter in a form which is more convenient for comparison with the MTE
model to be presented in the next section. For the sake of completeness we provide a short proof of
the equivalence. The dual variables are the arc travel times ta for a ∈ A and the time-to-destination
variables τd

i for d ∈ D and i �= d. For notational convenience we set τd
d = 0 (considered as a constant

rather than a constrained variable) and we let T denote the set of all vectors (t, τ) satisfying

τd
ia ≤ ta + τd

ja
∀ a ∈ A, d ∈ D (6)

where ia and ja are the initial and terminal nodes of arc a. We also extend the functions sa(·) to
R− by setting sa(wa)=sa(0)+wa for wa < 0.

Theorem 1 The convex program

(D) min
(t,τ)∈T

∑
a∈A

∫ ta

0
s−1
a (y) dy −

∑
d∈D
i�=d

gd
i τd

i

has optimal solutions, and any such solution (t, τ) satisfies w∗
a=s−1

a (ta).

Proof. Let (t, τ) be an optimal solution. Since the constraints of (D) are linear, there exist multipliers
vd
a≥0 satisfying the Kuhn-Tucker conditions

(a) vd
a[τd

ia
−ta−τd

ja
] = 0 ∀ a ∈ A

(b) s−1
a (ta) =

∑
d∈D vd

a ∀ a ∈ A

(c) gd
i +

∑
a∈A−

i
vd
a =

∑
a∈A+

i
vd
a ∀ d ∈ D, i �= d.

Setting wa =
∑

d∈D vd
a, the pair (w, v) turns out to be feasible for (PV ), while conditions (a), (b) and

(6) imply that ta and τd
i are Lagrange multipliers for the constraints (5) and (4) respectively. Hence

(w, v) is a stationary point for (PV ) and since the latter is a convex program it follows that (w, v)
is optimal. Therefore w=w∗ and the equality w∗

a =s−1
a (ta) results from (b).

The existence of optimal solutions for (D) follows by proceeding in the other direction: take
(w∗, v) optimal for (PV ) and let ta and τd

i be corresponding multipliers. Then (t, τ) is a stationary
point for (D), hence an optimal solution.

Notice that given any t, a corresponding optimal τ = τ̄(t) may be found by solving shortest paths
for each OD pair (i, d), so that problem (D) is equivalent to the unconstrained, non-smooth, and
strictly convex program

(D̄) min
t∈R|A|

Φ̄(t) �
∑
a∈A

∫ ta

0
s−1
a (y) dy −

∑
d∈D
i�=d

gd
i τ̄d

i (t)

with unique optimal solution t∗a =sa(w∗
a).
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3 Markovian traffic equilibrium

A critical assumption in the deterministic model is the fact that all users perceive the same costs cr.
Now, the difficulty to discriminate paths with similar costs, as well as small variations in the percep-
tion of travel time among different users, suggest the necessity to relax this assumption. Stochastic
models approach this question by assuming that users are randomly drawn from a large population
having a variable perception of routes: the costs c̃r become random variables and the demand gd

i

splits among the paths r ∈ Rd
i according to

hr = gd
i P(c̃r ≤ c̃p, ∀ p ∈ Rd

i ). (7)

For instance, in the popular logit model the c̃r’s are taken as independent Gumbel variables with
expectation cr and shape parameter β, leading to hr = gd

i e−βcr/
∑

p∈Rd
i
e−βcp . Except for very

small networks, this approach is impractical as it requires path enumeration. More importantly, the
independence assumption is unrealistic when dealing with overlapping paths. For instance, in the
small example below with 3 routes from i to d, all of them with the same expected cost cr = 1,
the logit rule assigns one third of the demand to each route. However, since both routes using the
lower arc are almost identical the assignment (1

2 , 1
4 , 1

4) seems more natural. The latter is the solution
obtained if we focus on arc choices rather than path choices: at node i there are only two arc options
(upper and lower), both offering the same travel time so that one may reasonably expect that each
one gets roughly one half of the demand. The half taking the lower arc faces a second choice at the
intermediate node j where it splits again giving 1

4 of the demand on each of the two lower routes.

i

j

d

1

1

ε

ε

ε

Figure 1: path v/s arc choices on a small network

In this paper we pursue the latter idea by looking at route selection as a recursive decision process
based on arc choices. The variability within the population is introduced by modelling the cost of
each arc as a continuous random variable t̃a = ta + εa with E(εa) = 0. Consequently, the route costs
c̃r =

∑
a∈r t̃a, and therefore the optimal costs τ̃d

i = minr∈Rd
i
c̃r as well as the cost z̃d

a = t̃a + τ̃d
ja

of an
arc a in regard to destination d, become random variables which we write in the form τ̃d

i = τd
i + θd

i

and z̃d
a = zd

a + εd
a with τd

i = E(τ̃d
i ) and zd

a = E(z̃d
a). Each user travelling towards d and reaching node

i observes the variables z̃d
a and then selects the arc a ∈ A+

i with the lowest cost (the probability
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of a tie is supposed to be zero). This process is repeated at each subsequent node giving rise to a
recursive discrete choice model. Hence, for each destination d ∈ D we have an underlying finite-state
Markov chain on the graph G with transition probabilities

P d
ij =

{
P(z̃d

a ≤ z̃d
b ,∀ b∈A+

i ) if i= ia, j =ja

0 otherwise.

for i �= d; and P d
dd = 1, P d

dj = 0 for j �= d (i.e. destination d is an absorbing state of the chain). The
distribution rule (7) is therefore replaced by a recursive scheme where the expected flow xd

i entering
a node i �= d and directed towards d splits among the arcs a∈A+

i according to

vd
a = xd

i P(z̃d
a ≤ z̃d

b , ∀ b∈A+
i ). (8)

Denoting P̂ d = (P d
ij)i,j �=d the restriction of the transition matrix to N \{d} and letting gd = (gd

i )i�=d,
the expected flow xd = (xd

i )i�=d for destination d is given by xd =
∑∞

k=0[(P̂
d)′]kgd. This can also be

expressed as xd = gd + (P̂ d)′xd, that is to say

xd
i = gd

i +
∑

i∈A−
i

vd
a. (9)

Before stating a formal definition, we make a short detour to show that all the relevant informa-
tion for building a stochastic model is encapsulated in the functions

ϕd
i (z

d) � E( min
a∈A+

i

[zd
a + εd

a]),

which we take as the primary modelling objects. We denote by E the class of functions that can
be expressed in this form, and which are completely characterized in Appendix A at the end of the
paper. For the moment it suffices to mention that these functions are componentwise non-decreasing,
concave and smooth, and the transition probabilities may be expressed as

P(z̃d
a ≤ z̃d

b , ∀ b∈A+
i ) =

∂ϕd
i

∂zd
a

(zd)

so that the flow distribution equations (8) and (9) can be restated as⎧⎨
⎩

vd
a = xd

i
∂ϕd

i

∂zd
a
(zd) ∀ a ∈ A+

i

xd
i = gd

i +
∑

a∈A−
i

vd
a.

(10)

On the other hand, since z̃d
a = t̃a + τ̃d

ja
we may write Bellman’s equations of dynamic programming

in the form τ̃d
i = mina∈A+

i
z̃d
a, and by taking expectation we get

{
zd
a = ta + τd

ja

τd
i = ϕd

i (z
d)
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which can be expressed solely in terms of the variables zd
a’s as

zd
a = ta + ϕd

ja
(zd) (11)

or in terms of the variables τd
i as

τd
i = ϕd

i (ta + τd
ja

: a ∈ A). (12)

We stress that (11) and (12) are totally equivalent: if zd
a solves (11) then τd

i � ϕd
i (z

d) is a solution
for (12), and conversely if τd

i solves (12) then zd
a � ta + τd

ja
solves (11). With these preliminary

remarks we proceed to formalize the notion of stochastic equilibrium. Throughout we assume that

(H0)

{
we are given a family ϕd

i ∈ E with ϕd
d ≡ 0 and strictly increasing continuous travel time

functions sa : R+ → R with lim
wa↑∞

sa(wa) = ∞, t0a =sa(0)≥0 and ϕd
i (t

0)>0 for all i �=d

and as before we extend sa(·) to R− by setting sa(wa)=sa(0)+wa for wa < 0.

Definition 2 A pair (w, v) ≥ 0 is a Markovian Traffic Equilibrium (MTE) iff wa =
∑

d∈D vd
a where

the vd
a’s satisfy the flow distribution equations (10) with zd solving (11) for ta = sa(wa).

Although this notion looks rather different from the deterministic one in Definition 1, we will show
that they are in fact closely related. Before we proceed, let us check that the equations (10)-(12)
uniquely define v, x, z and τ as implicit functions of t. In order to fix the notations used in the
sequel we set τd = (τd

i )i�=d, xd = (xd
i )i�=d, vd = (vd

a)a∈A, gd = (gd
i )i�=d, and we consider the matrices

P̂ d(zd) = (P d
ij)i,j �=d and Q̂d(zd) = (Qd

ia)i�=d,a∈A with entries

P d
ij =

{
∂ϕd

i

∂zd
a
(zd) if i = ia and j = ja

0 otherwise

Qd
ia =

{
∂ϕd

i

∂zd
a
(zd) if i = ia

0 otherwise.

We begin by stating a technical Lemma.

Lemma 1 Assume (H0) and let t=(ta)a∈A with ta≥ t0a. If (zd, τd) solves (11)-(12) then
(a) for each i �= d there is j ∈ N with P d

ij >0 and τd
j <τd

i ,
(b) the matrix [I − P̂ d(zd)] is invertible,
(c) equation (10) has a unique solution vd = Q̂d(zd)′xd with xd = [I − P̂ d(zd)′]−1gd.

Proof. (a) Let us set ẑd
a = ta + τd

i for all a ∈ A. Since ϕd
i is concave and smooth we have

ϕd
i (ẑ

d) ≤ ϕd
i (z

d) +
∑

a∈A
∂ϕd

i

∂zd
a
(zd)(ẑd

a − zd
a)

= τd
i +

∑
a∈A+

i
P d

ija
(τd

i − τd
ja

).
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Now, Proposition A.2(b) in the appendix gives ϕd
i (ẑ

d) = τd
i + ϕd

i (t), while assumption (H0) implies
ϕd

i (t) ≥ ϕd
i (t

0) > 0, so that
0 <

∑
a∈A+

i
P d

ija
(τd

i − τd
ja

)

from which (a) follows at once.
(b) Using (a) inductively, for all i �= d we may find a sequence of nodes i0, i1, . . . , im with i0 = i, im =d
and P d

ikik+1
> 0. Hence the Markov chain started from i has a positive probability of reaching the

absorbing state d, so that P̂ d(zd)k is strictly sub-markovian for k large enough and then [I − P̂ d(zd)]
is invertible.
(c) The first equation of (10) gives vd = Q̂d(zd)′xd, which substituted into the second equation yields
the linear system xd = gd + P̂ d(zd)′xd so that xd = [I − P̂ d(zd)′]−1gd.

Proposition 1 Assume (H0) and let t = (ta)a∈A with ta ≥ t0a. Then, for each destination d ∈ D,
the equations (10)-(12) have unique solutions vd = vd(t), xd = xd(t), zd = zd(t) and τd = τd(t).
Moreover, the functions t 
→ τd

i (t) and t 
→ zd
a(t) are concave and smooth.

Proof. According to Lemma 1(c) and since zd
a = ta + τd

ja
, it suffices to analyze τd(t). Let us then

examine (12) for a fixed d.

Existence. Consider the sequence generated inductively by τk+1
i =ϕd

i (ta+τk
ja

) started from τ0
i =0.

Since the ϕd
i ’s are componentwise non-decreasing, using (H0) we get τ1 ≥ τ0 and then it follows

inductively that τk+1 ≥ τk. Denoting τ̄i the shortest distance from i to d, Proposition A.1 in the
appendix yields

ϕd
i (ta + τ̄ja) ≤ min

a∈A+
i

[ta + τ̄ja ] = τ̄i

and since we obviously have τ0 ≤ τ̄ , it follows inductively that τk ≤ τ̄ for all k. Therefore the
non-decreasing sequences τk

i have a limit τd
i satisfying τd

i =ϕd
i (ta+τd

ja
), i.e. a solution of (12).

Uniqueness. Let τ1, τ2 be 2 solutions, and denote α = maxi∈N [τ1
i − τ2

i ] and N∗ the set of nodes
i ∈ N where this maximum is attained. Since τ1

ja
≤τ2

ja
+α, for all i ∈ N∗ we have

τ1
i = ϕd

i (ta + τ1
ja

) ≤ ϕd
i (ta + τ2

ja
+ α)

= ϕd
i (ta + τ2

ja
) + α

= τ2
i + α

= τ1
i .

A contradiction argument based on strict monotonicity then shows that whenever ∂ϕd
i

∂zd
a
(ta + τ1

ja
) > 0

one must also have τ1
ja

= τ2
ja

+ α, that is ja ∈ N∗. Hence, using Lemma 1(a) we deduce that for all
i ∈ N∗ \ {d} we may find j ∈ N∗ with τ1

j < τ1
i . Proceeding inductively we eventually reach j = d

proving that d ∈ N∗ and therefore α = τ1
d − τ2

d = 0. It follows that τ1 ≤ τ2 and exchanging the
roles we obtain τ1 = τ2 proving uniqueness.
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Concavity. Let τ1 =τ(t1) and τ2 =τ(t2), and set tα =αt1+(1−α)t2 and τα =ατ1+(1−α)τ2 with
α ∈ (0, 1). Since the functions ϕd

i are concave, we obtain

ϕd
i (t

α
a +τα

ja
) ≥ αϕd

i (t
1
a+τ1

ja
)+(1−α)ϕd

i (t
2
a+τ2

ja
)

= ατ1
i + (1 − α)τ2

i

= τα
i .

Hence, the recursion τk+1
i = ϕd

i (t
α
a + τk

ja
) started from τ0 = τα generates a non-decreasing sequence.

Moreover, proceeding as in the existence part of the proof we may show inductively that τk
i ≤ τ̄α

i

with τ̄α
i the shortest distance from i to d with arc travel times tαa . Hence τk converges and by

continuity the limit is a solution of (12) so that τk → τ(tα). Moreover, since τk is non-decreasing
this limit is greater than τ0, that is to say

τd
i (tα) ≥ τ0

i = ατd
i (t1) + (1 − α)τd

i (t2)

which proves that τd
i (·) is concave.

Smoothness. This is a direct consequence of the Implicit Function Theorem. Indeed, noting that
τd
d = 0 we may reduce (12) to a system in the variables (τd

i )i�=d. The Jacobian of this reduced system
is [I − P̂ d] which is invertible according to Lemma 1(b), so the conclusion follows.

To simplify the notation, in the sequel we denote P̂ d(t) = P̂ d(zd(t)) and Q̂d(t) = Q̂d(zd(t)), so
that xd(t) = [I − P̂ d(t)′]−1gd and vd(t) = Q̂d(t)′xd(t).

Corollary 1 We have ∂τd

∂t = [I − P̂ d(t)]−1Q̂d(t). Moreover, the function ψd(t) =
∑

i�=d gd
i τd

i (t) is
concave and smooth with ∇ψd(t) = vd(t).

Proof. An implicit differentiation of (12) yields ∂τd

∂ta
= Q̂d·a(t) + P̂ d(t)∂τd

∂ta
, from which we easily get

the expression for ∂τd

∂t . Then, using the formula of ψd(t) we deduce

∇ψd(t) =
(

∂τd

∂t

)′
gd = Q̂d(t)′[I − P̂ d(t)′]−1gd = Q̂d(t)′xd(t) = vd(t).

We are ready to establish our main result for the stochastic traffic equilibrium. We will prove that,
with the new meaning of the functions τd

i (·), the characterization (D̄) of a deterministic assignment
remains valid for the stochastic assignment. This provides a unified framework for both approaches.

Theorem 2 Under (H0) there exists a unique MTE which is given by

(C)

{
wa = s−1

a (t∗a)

vd
a = vd

a(t∗)

where t∗ denotes the unique optimal solution of the smooth strictly convex program

(S) min
t∈R|A|

Φ(t) �
∑
a∈A

∫ ta

0
s−1
a (z) dz −

∑
d∈D
i�=d

gd
i τd

i (t).

10



Proof. From Definition 2 and Proposition 1 it follows that a pair (w, v) ≥ 0 is a stochastic equilibrium
if and only if wa =

∑
d∈D vd

a with vd = vd(t) and ta = sa(wa). This is equivalent to say that (w, v)
may be written as wa = s−1

a (ta) and vd = vd(t) with t satisfying s−1
a (ta) =

∑
d∈D vd

a(t). Now, using
Corollary 1 we observe that the latter corresponds to ∇Φ(t) = 0, and therefore (w, v) is a stochastic
equilibrium iff it is of the form (C) with t∗ an optimal solution of (S). To conclude we observe
that since the τd

i (·)’s are concave and the s−1
a (·)’s are strictly increasing with s−1

a (ta) → ±∞ when
ta → ±∞, then Φ(·) is strictly convex and coercive so that (S) has a unique optimal solution t∗.

We stress the fact that (S) is a smooth and strictly convex unconstrained problem, and the
dimension of the space R

|A| is very low compared to the models based on route flows. These nice
features must be weighted against the difficulty in computing the implicit functions τd

i (·). Notice
however that the existence proof in Proposition 1 provides a constructive algorithm for this, which
will be exploited in section §5 to obtain numerical schemes for computing the MTE. Alternatively,
introducing variables τd

i and zd
a one may rewrite (S) as a constrained program

(S̃)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
(t,τ,z)

∑
a∈A

∫ ta
0 s−1

a (z) dz − ∑
d∈D
i�=d

gd
i τd

i

s.t.
τd
i = ϕd

i (z
d)

zd
a = ta + τd

ja

The latter may be dualized to obtain a primal characterization of MTE which is the analog of the
primal characterization (PV ) for the deterministic equilibrium, namely

Theorem 3 The MTE is the unique optimal solution of the problem

(P ) min
(w,v)∈V

∑
a∈A

∫ wa

0
sa(z) dz +

∑
d∈D

χd(vd)

where χd(vd) = supzd

∑
a∈A(ϕd

ia
(zd) − zd

a)vd
a is positively homogeneous and convex.

Proof. Let us check that the stationarity conditions for (P ) correspond to the conditions for MTE.
We begin by noting that the constraints (w, v) ≥ 0 are implicit in the flow conservation constraints
and the fact that χd(vd) = ∞ whenever vd

a < 0 for some a ∈ A. Hence, we may consider (4) and (5)
as the only constraints in (P ) so that taking multipliers τd

i and ta and forming the lagrangian

L =
∑
a∈A

∫ wa

0 sa(z) dz +
∑
d∈D

χd(vd) +
∑
d∈D
i�=d

τd
i

[∑
A+

i
vd
a − gd

i − ∑
A−

i
vd
a

]
+

∑
a∈A

ta
[∑

d∈D vd
a − wa

]

stationarity amounts to the conditions sa(wa) = ta and νd ∈ ∂χd(vd) where νd
a = τd

ia
− ta − τd

ja
(with

τd
d = 0). By subdifferential calculus the latter means that there exists zd an optimal solution of

χd(vd) such that ϕd
ia

(zd)− zd
a = νd

a . From Proposition A.2(b) we observe that (zd
a : a ∈ A+

i ) may be
modified by a constant without affecting its optimality, and therefore we may assume with no loss of
generality that ϕd

i (z
d) = τd

i . The equality ϕd
ia

(zd)− zd
a = τd

ia
− ta − τd

ja
then becomes zd

a = ta + τd
ja

so

11



that the subdifferential condition is equivalent to (11)-(12). Finally, we observe that the optimality
of zd is equivalent to

vd
a =

∂ϕd
ia

∂zd
a

∑
a∈A+

i
vd
a

which corresponds to (10). Therefore the stationarity conditions for (P ) correspond to (10) and (11)
with ta = sa(wa), which are precisely the conditions that define the MTE.

We observe that χd(vd) =
∑

i�=d χd
i (v

d) with

χd
i (v

d) = sup
zd

∑
a∈A+

i

(ϕd
i (z

d) − zd
a)vd

a.

In particular, in the deterministic case where we have ϕd
i (z

d) = mina∈A+
i

zd
a it follows that χd

i (v
d) ≡ 0

and therefore (P ) reduces exactly to (PV ). Also, in the case of a logit Markov model where

ϕd
i (z

d) = − 1
βd

i
ln(

∑
a∈A+

i
e−βd

i zd
a)

a straightforward computation yields

χd
i (v

d) = 1
βd

i

[∑
a∈A+

i
vd
a ln(vd

a) − (
∑

a∈A+
i

vd
a) ln(

∑
a∈A+

i
vd
a)

]
so that (P ) coincides with Akamatsu’s logit Markovian model [2] where the case βd

i ≡ θ is considered.

4 Extensions

4.1 Arc capacities and saturation

So far, the volume-delay functions sa(·) were assumed to be defined over [0,∞). Since very often
the arcs have a maximal saturation capacity, it is useful to extend the model by considering strictly
increasing continuous functions sa : [0, w̄a) → [0,∞). The saturation capacity w̄a is supposed strictly
positive and may be infinite for those arcs which are not subject to saturation. To ensure feasibility
we must assume that these capacities are large enough for the given demands, namely

Theorem 4 Assume (H0) with sa : [0, w̄a) → [0,∞) such that limwa→w̄a sa(wa) = ∞, and suppose
that there is a vector (ŵ, v̂) satisfying (4) and (5) with ŵa < w̄a for all a ∈ A. Then the conclusions
of Theorem 2 remain valid.

Proof. It suffices to establish the coercivity of the objective function Φ(t), for which we prove that
the recession function Φ∞(t) � limλ→∞

Φ(λt)
λ satisfies Φ∞(t)>0 for all t �=0. The recession function

of
∑

a∈A

∫ ta
0 s−1

a (z) dz is equal to
∑

a∈A w̄ata if t ≥ 0 and +∞ otherwise. In order to compute the
recession functions of the τd

i (·)’s we exploit equation (12) to obtain

(τd
i )∞(t) = (ϕd

i )
∞(ta + (τd

ja
)∞(t)). (13)

12



Now, the definition of the class E and Lebesgue’s theorem imply that (ϕd
i )

∞(zd) = min{zd
a : a ∈ A+

i },
and therefore (13) shows that (τd

i )∞(t) is the shortest distance from i to d, namely (τd
i )∞(t) = τ̄d

i (t).
Combining these facts we deduce that

Φ∞(t) =

{ ∑
a∈A w̄ata −

∑
d∈D
i�=d

gd
i τ̄d

i (t) if t ≥ 0

+∞ otherwise.

Multiplying the inequalities τ̄d
ia

≤ ta + τ̄d
ja

by v̂d
a and adding over all the arcs a �∈ A+

d we get∑
i�=d gd

i τ̄d
i ≤ ∑

a∈A tav̂
d
a. Then, summing over all d ∈ D and assuming that t ≥ 0, t �= 0 we obtain

∑
d∈D
i�=d

gd
i τ̄d

i (t) ≤ ∑
a∈A taŵa <

∑
a∈A taw̄a

which implies Φ∞(t)>0 as was to be proved.

4.2 Mixed deterministic/stochastic assignment

The functions ϕd
i ∈ E in the stochastic model are used to describe the flow distribution rule (10), and

may differ from node to node: at some nodes one could consider logit distribution, while other nodes
may be governed by probit or other discrete choice models. On the other hand, the deterministic
model assumes that the flow entering each node is distributed among optimal arcs, which may also
be written in the form (10) by taking ϕd

i (z
d) = max{zd

a : a ∈ A+
i } and replacing the gradient by the

subdifferential. This further explains the analogy between the characterizations (D̄) and (S), and
leads naturally to consider the possibility of a hybrid model where some nodes have a stochastic
distribution rule while other nodes are deterministic. The analysis carries over to this more general
setting with (S) characterizing the traffic equilibrium, though Φ(·) will no longer be smooth.

4.3 Simultaneous mode/route selection and elastic demands.

Noting that the graph G = (N, A) need not be limited to a single mode, the previous framework
turns out to be flexible enough to handle more complex decision processes such as the simultaneous
choice of mode and route. To this end it suffices to apply the model over a multi-modal graph built
by connecting every origin and destination to one or several corresponding nodes on the subgraphs
representing the basic transportation modes (car, bus, metro, walk, etc.). Combined modes such
as car-metro-walk may be easily included by connecting the nodes on the corresponding subgraphs
through additional transfer arcs. At every origin node one may adopt a particular distribution rule
based on a logit or probit model, while at other nodes (e.g. the metro sub-network) one may use
a deterministic rule. A further extension concerns the modelling of elastic demands. The option of
not making a trip for a given OD pair may be simulated as usual by adding a no-trip arc which
connects directly the origin to the destination, with cost equal to the inverse of the demand function
(see [8]).
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5 Numerical experiments

In this short section we describe some numerical tests for solving the minimization problem (S).
According to Corollary 1 the derivatives of the objective function Φ(t) in problem (S) are given by

∂Φ
∂ta

= s−1
a (ta) − w̃a(t)

with w̃a(t) =
∑

d∈D vd
a(t). The computation of these derivatives requires solving first the system (12)

in order to find the functions τd
i (t) and then solving (10) to find vd

a(t). As seen from the existence
proof of Proposition 1 this may be done for each destination d ∈ D by a fixed point iteration

FP (t)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

- Iterate τd,n+1
i = ϕd

i (ta + τd,n
ja

) to find an estimate τd
i ∼ τd

i (t)

- Compute ∂ϕd
i

∂zd
a
(zd) with zd

a = ta + τd
ja

and build the matrices P̂ d and Q̂d

- Compute xd = [I − (P̂ d)′]−1gd and vd = (Q̂d)′xd

- Aggregate w̃ =
∑

d∈D vd

A gradient method would use the above to estimate w̃k ∼ w̃(tk) and then use the update

(Gt) tk+1
a = tka − αk[s−1

a (tka) − w̃k
a ]

with αk a suitably chosen stepsize. Since performing a linesearch is too expensive, a normalized
gradient stepsize was implemented by taking αk = λk/‖hk‖ with hk

a = [s−1
a (tka) − w̃k

a ] and λk > 0
such that λk → 0 and

∑
k λk = ∞. Although [15, Theorem 2.3] guarantees that tk → t∗, in our

numerical tests the convergence was extremely slow (as usual for a gradient method).
An alternative method is obtained by using the change of variables ta = sa(wa) to transform (S)

into a strictly convex program in the total flow variables wa, that is to say, minimizing the function
Ψ(w) = Φ(s(w)). The derivatives of the latter are given by ∂Ψ

∂wa
= [wa − w̃(s(w))]s′a(wa) so that the

gradient iteration now becomes

(Gw) wk+1
a = wk

a − αk[wk
a − w̃k

a ]s′a(w
k
a).

This was also implemented with a normalized stepsize but the convergence was again too slow. A
more efficient variant is the method of successive averages which slightly modifies the latter as

(MSA) wk+1
a = wk

a − αk[wk
a − w̃k

a ]

and which may be interpreted as a variable metric gradient method.
A Matlab implementation of MSA with constant stepsize αk ≡ α was tested on the traffic network

of Siouxfalls, a small network of 24 nodes and 76 arcs with travel times sa(wa) = t0a[1 + ba(wa
ca

)pa ]. A
recursive logit discrete choice model was considered by taking ϕd

i (z
d) = − ln[

∑
a∈A+

i
exp(−βd

i zd
a)]/βd

i .

Figure 2 plots the precision log(‖w̃k−wk‖) along the iterations showing a linear rate of convergence.
The method attains high absolute accuracy1 but the number of iterations is large. However, the
cost per iteration is low and the overall CPU time on a 1.6Mhz processor was 3.7 [s].

1The relative accuracy ‖w̃k − wk‖/‖wk‖ is even higher reaching 10−14.
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Figure 2: MSA iterations — Siouxfalls

In order to speed up convergence, the MSA iteration was combined with a Newton method which
was activated after MSA reached a 10% relative precision, i.e. ‖w̃k − wk‖ ≤ 0.1‖wk‖. Figure 3
illustrates the performance of this variant. The faster convergence compensates the additional work
involved in computing Newton’s direction, with a significant reduction in CPU time to 0.7 [s].
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Figure 3: MSA-Newton iterations — Siouxfalls

Additional tests were carried out on the larger network of Chicago which comprises 2950 arcs
and 933 nodes (387 of which are destinations). The performance of both methods was very similar
to the case of Siouxfalls reaching a precision ‖w̃k − wk‖ ≤ 10−9 after 234 iterations and 29 [min] of
CPU for the case of MSA, and 14 iterations and 11 [min] of CPU for Newton. In the latter case
the Newton direction was computed by a conjugate gradient method that does not require explicitly
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the Hessian (whose computation becomes expensive for large networks, see Appendix B) but only to
evaluate products of this Hessian by vectors which can be done much more efficiently. The advantage
of Newton’s method over MSA is less clear for medium precision computation. For instance, MSA
takes 6.3 [min] to reach a 0.1% relative accuracy, while Newton requires 4.3 [min] for this precision.

6 Convergence of MSA

We conclude the paper by establishing a sufficient condition for the convergence of MSA. This result
can be seen as a discrete analog of the convergence analysis for continuous Riemannian gradient
flows presented in [3, Alvarez, Bolte and Brahic].

Theorem 5 Assume (H0) with sa : [0,∞) → [0,∞) of class C2. If λk > 0 is such that
∑

k λk = ∞
and

∑
k λ2

k < ∞, then the sequence (wk)k∈N generated by the MSA iteration wk+1 = (1−λk)wk+λkw̃
k

converges to the MTE w∗.

Proof. We begin by noting that w̃k satisfies flow conservation so that the sequences w̃k and wk

remain bounded. Proceeding as in §5 we rewrite MSA as the variable metric subgradient scheme
wk+1−wk

λk
∈ −D(wk)−1∂Ψ(wk)

where D(w) = diag[s′a(wa) : a ∈ A]. The convexity inequality then gives

Ψ(wk) + 〈D(wk)wk+1−wk

λk
, wk − w∗〉 ≤ Ψ(w∗)

which we may rewrite as

[Ψ(wk) − Ψ(w∗)]λk + 〈∇h(wk), wk+1 − wk〉 ≤ 0 (14)

with h(w) =
∑

a∈A

∫ wa

w∗
a
s′a(z)(z − w∗

a) dz. We notice that h(w∗) = 0 and h(w) > 0 for w �= w∗. Now,
by the mean value theorem there exists ξk ∈ [wk, wk+1] such that

h(wk+1) = h(wk) + 〈∇h(wk), wk+1 − wk〉 + 1
2〈∇2h(ξk)(wk+1 − wk), wk+1 − wk〉

and since the wk’s are bounded we may find α ≥ 0 such that

h(wk+1) ≤ h(wk) + 〈∇h(wk), wk+1 − wk〉 + α‖wk+1 − wk‖2.

But then, since ‖wk+1 − wk‖ = λk‖w̃k − wk‖ ≤ βλk for some constant β ≥ 0, using (14) we deduce

[Ψ(wk+1) − Ψ(w∗)]λk + [h(wk+1) − h(wk)] ≤ αβ2λ2
k.

In particular we get 0 ≤ h(wk+1) ≤ h(wk) + αβ2λ2
k which implies that h(wk) converges. On the

other hand, summing these inequalities we obtain∑∞
k=0[Ψ(wk+1) − Ψ(w∗)]λk ≤ h(w0) + αβ2

∑∞
k=0 λ2

k < ∞
and then the condition

∑
λk = ∞ implies lim inf Ψ(wk) ≤ Ψ(w∗). Since w∗ is the unique minimum

of Ψ(·) it follows that we may find a subsequence wkj → w∗, and then limk h(wk) = limj h(wkj ) = 0
from which we conclude that wk → w∗ as claimed.
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7 Appendix A

Let E denote the class of functions ϕ : R
n → R which can be expressed in the form

ϕ(x) = E( min
i=1...n

[xi + εi]) (15)

for random variables εi’s such that E(εi) = 0 and

P(εi − εj = α) = 0 ∀α ∈ R, i �= j. (16)

Example. The logit model assumes that the εi’s are independent Gumbel variables with parameter β, which
gives ϕ(x) = − 1

β ln(e−βx1 + · · ·+ e−βxn). In the probit model with normally distributed εi’s there is no simple
analytical expression for ϕ(x).

Proposition A.1 Every ϕ ∈ E is concave and C1 with ϕ(x) ≤ m(x) � min{x1, . . . , xn} and

∂ϕ

∂xi
(x) = P(xi + εi ≤ xj + εj ,∀ j �= i). (17)

Proof. The inequality ϕ(x) ≤ m(x) follows at once by taking expectation in the inequality mini=1...n[xi +εi] ≤
xj + εj . Let F (ε) be the joint distribution of ε = (ε1, . . . , εn) so that

ϕ(x) =
∫

Rn

m(x + ε) dF (ε).

Since m is concave the same holds for ϕ. To compute ∂ϕ
∂xi

we consider the differential quotient

ϕ(x + tei) − ϕ(x)
t

=
∫

Rn

qt(ε) dF (ε)

where qt(ε)=[m(x+ε+tei)−m(x+ε)]/t. Denoting

A = {ε ∈ R
n : xi + εi < xj + εj ,∀j �= i}

B = {ε ∈ R
n : xi + εi ≤ xj + εj ,∀j �= i}

it follows that limt↓0+ qt(ε)=1A(ε) and limt↑0− qt(ε)=1B(ε). Since the convergence is monotone we may use
Lebesgue’s theorem to deduce

D+
i ϕ(x) =

∫
Rn1A(ε) dF (ε) = P(A),

D−
i ϕ(x) =

∫
Rn1B(ε) dF (ε) = P(B).

(18)

Assumption (16) gives P(A) = P(B) and therefore the partial derivative ∂ϕ
∂xi

exists and satisfies (17). The C1

character then follows since ϕ is concave.

The following result of San Mart́ın [13], provides a useful characterization of the class E .

Proposition A.2 ϕ ∈ E iff the following properties hold:
(a) ϕ is C1 and componentwise non-decreasing.
(b) ϕ(x1 + c, . . . , xn + c) = ϕ(x1, . . . , xn) + c.
(c) ϕ(x) → xi when xj → ∞ for all j �= i.
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(d) for xi fixed, the function ∂ϕ
∂xi

(x1, . . . , xn) is a distribution on the remaining variables, i.e. it is componen-
twise non-decreasing with respect to xj for j �= i and

∂ϕ

∂xi
(c, . . . , c, xi, c, . . . , c) →

{
1 if c → +∞
0 if c → −∞.

Proof. For ϕ ∈ E the properties (a) through (d) follow easily from (15) and Proposition A.1. To establish the
converse let us consider a random vector η = (η2, . . . , ηn) with distribution

Fη(x2, . . . , xn) = ∂ϕ
∂x1

(0, x2, . . . , xn).

We begin by noting that property (b) implies

ϕ(x) = x1 −
∫ x1

a

[1− ∂ϕ
∂x1

(y, x2, . . . , xn)] dy

+ ϕ(0, x2−a, . . . , xn−a)

so that letting a → −∞ and using (c) we get

ϕ(x) = x1 −
∫ x1

−∞
[1− ∂ϕ

∂x1
(y, x2, . . . , xn)] dy.

Now, property (b) also implies

∂ϕ

∂x1
(y, x2, . . . , xn) =

∂ϕ

∂x1
(0, x2−y, . . . , xn−y)

= Fη(x2−y, . . . , xn−y)
= P(y ≤ Y )

with Y =min{x2−η2, . . . , xn−ηn}, and therefore

ϕ(x) = x1 −
∫ x1

−∞
FY (y) dy.

Integration by parts allows to further work out this expression as

ϕ(x) = x1 −
∫ x1

−∞
[x1 − y] dFY (y)

= x1[1 − P(Y≤x1)] +
∫ x1

−∞
y dFY (y)

=
∫ ∞

−∞
min{x1, y} dFY (y)

= E(min{x1, Y })
= E(min{x1, x2−η2, . . . , xn−ηn})

and then we may conclude by taking ε1 = 0 and εi =−ηi for i=2, . . . , n. Notice that E(εi)=0 follows from
(c) by using Lebesgue’s theorem, while (16) is obtained from (18) using the fact that ϕ is differentiable.

Remark. We observe that condition (d) may be weakened to ∂ϕ
∂x1

(0, x2, . . . , xn) being a distribution on R
n−1.

18



8 Appendix B

This short appendix provides analytic expressions for the Hessians of the functions Φ(t) and Ψ(w) = Φ(s(w)),
which are required to implement Newton’s method. We denote

Bd(t) = [I + Jd ∂τd

∂t ]

where Jd = (Jaj)a∈A,j �=d with Jd
aj = 1 if j = ja and Jd

aj = 0 otherwise. Recall from Corollary 1 that

∂τd

∂t
= [I − P̂ d(t)]−1Q̂d(t)

Proposition B.1 If the functions ϕd
i (·) are of class C2 then we have

∇2Φ(t) = diag[1/s′a(s−1
a (ta))] −

∑
d∈D

Bd(t)′[
∑

i�=d xd
i (t)∇2ϕd

i (z
d(t))]Bd(t).

Proof. Setting ψd(t) =
∑

i�=d gd
i τd

i (t) as in Corollary 1, the formula for ∇2Φ(t) follows easily if we show that

∇2ψd(t) = (Bd)′[
∑

i�=d xd
i ∇2ϕd

i (z
d)]Bd. (19)

To prove the latter we exploit the equality [I − P̂ d]∂τd

∂ta
= Q̂d

·a which gives

∂2τd

∂tb∂ta
= [I − P̂ d]−1

{
∂Q̂d

·a
∂tb

+
∂P̂ d

∂tb

∂τd

∂ta

}
.

Then, using the fact that xd = [I − (P̂ d)′]−1gd and the chain rule we get

∂2ψd

∂tb∂ta
= (gd)′[I − P̂ d]−1

{
∂Q̂d

·a
∂tb

+
∂P̂ d

∂tb

∂τd

∂ta

}

= (xd)′
{

∂Q̂d
·a

∂tb
+

∂P̂ d

∂tb

∂τd

∂ta

}

=
∑
i�=d

xd
i

⎧⎨
⎩∂Qd

ia

∂tb
+

∑
j �=d

∂P d
ij

∂tb

∂τd
j

∂ta

⎫⎬
⎭

= xd
ia

∂

∂tb
(
∂ϕd

ia

∂zd
a

) +
∑
i�=d

xd
i

∑
c∈A+

i

∂

∂tb
(
∂ϕd

i

∂zd
c

)
∂τd

jc

∂ta

=
∑
i�=d

xd
i

∑
c∈A+

i

∂

∂tb
(
∂ϕd

i

∂zd
c

)

[
δca +

∂τd
jc

∂ta

]

=
∑
i�=d

xd
i

∑
c,e∈A+

i

∂2ϕd
i

∂zd
e∂zd

c

[
δeb +

∂τd
je

∂tb

][
δca +

∂τd
jc

∂ta

]

where δca = 1 if c = a and δca = 0 otherwise. This corresponds precisely to (19) as was to be proved.

Using the chain rule and the equality ∇[
∑

d∈D ψd(t)] =
∑

d∈D vd(t) = w̃(t) one may easily deduce
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Proposition B.2 If the functions ϕd
i (·) are of class C2 then we have

∇2Ψ(w) = M(w) + Γ(w)∇2Φ(s(w))Γ(w)

with

M(w) = diag[s′′a(wa)(wa − w̃a(s(w)) : a ∈ A]

Γ(w) = diag[s′a(wa) : a ∈ A].
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