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Enlarging the functional space of decay estimates on semigroups

C. MOUHOT∗

CNRS & DMA, ÉNS Paris,
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This note briefly presents a new method for enlarging the functional space of a
“spectral-gap-like” estimate of exponential decay on a semigroup. A particular
case of the method was first devised in Ref. 1 for the spatially homogeneous
Boltzmann equation, and a variant was used in Ref. 2 in the same context
for inelastic collisions. We present a generalized abstract version of it, a short
proof of the algebraic core of the method, and a new application to the Fokker-
Planck equation. More details and other applications shall be found in the work
in preparation Ref. 3 (another application to quantum kinetic theory can be
found in the work in preparation Ref. 4).
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1. The “space enlargement” issue

Consider a Hilbert space H, a (possibly unbounded) linear operator T on H

which generates a strongly continuous semigroup etT with spectrum Σ(T ).

Assume that for some Hilbert subspace H ⊂ H the restricted operator

T := T
∣

∣

H
generates a strongly continuous semigroup et T with spectrum

Σ(T ) in H .

Assume some “spectral-gap-like” information on Σ(T ), typically when

T is self-adjoint assume

∀ f ∈ H, f ⊥Null(T ),
∥

∥et T f
∥

∥

H
≤ eλ t ‖f‖H, λ < 0.

An important class of applications is the following: T is a partial dif-

ferential operator (acting on a large class of function on Rd, say L1), with

equilibrium µ and detailed spectral information available in a much smaller

space H = L2(µ−1) where it is symmetric. The latter space is much smaller

than H in the sense that it requires a stronger decay condition, e.g. when

µ is a gaussian in statistical mechanics.
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The question addressed here is: can one deduce from the spectral-gap

information in the space H some spectral-gap information in the larger

space H, and if possible in a quantitative way? More explicitly, does etT

have the same decay property as et T above?

We give a positive answer for a class of operators T which split into a

part A “regularizing” H into H and a coercive part B. We then show that,

under some assumption on the potential force, the Fokker-Planck equation

belongs to this class and, as a consequence, we prove that its spectral gap

property can be extended from the linearization space (with gaussian decay)

to larger L2 spaces with, say, polynomial weights.

2. The abstract result

Let us start with an almost equivalent condition for the decay of the semi-

group in terms of a uniform bound on a vertical line for the resolvent. We

omit the proof to keep this note short. It can be found in Ref. 3 and it

mainly relies on a careful use of the Parseval identity between the resolvent

operator and the semigroup.

For some closed densely defined unbounded operator T in a Hilbert

space E, denote by by R(z) = (T − z)−1, z 6∈ Σ(T ) its resolvent operator,

and L(E) the space of bounded linear operators on E. Finally for any a ∈ R,

define the half complex plane ∆a := {z ∈ C, ℜe z > a}.

Theorem 2.1. Assume for the operator T in the Hilbert space E:

(H1) Localization of the spectrum: Σ(T ) ⊂ (∆a)
c ∪ {ξ1, ... , ξk} with

a ∈ R, and ξj ∈ ∆a, 1 ≤ j ≤ k some discrete eigenvalues;

(H2) Control on the resolvent operators:

∃K > 0, ∀ y ∈ R, ‖R(a+ i y)‖L(E) ≤ K.

(H3) Weak control on the semigroup: There exist b, Cb ≥ 0 such

that

∀ t ≥ 0 ‖et T ‖L(E) ≤ Cb e
b t.

Then, for any λ > a, there exists Cλ explicit from a, b, Cb, K such that

∀ t ≥ 0,

∥

∥

∥

∥

∥

et T −
k

∑

i=1

eξi t Πi

∥

∥

∥

∥

∥

L(E)

≤ Cλ e
λ t (1)

for the spectral projectors Πi of eigenvalues ξi.
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We also have the following converse result: assume

∀ t ≥ 0,

∥

∥

∥

∥

∥

∥

et T −

k
∑

j=1

eξj t Πj

∥

∥

∥

∥

∥

∥

L(E)

≤ Ca e
a t (2)

for some constants a ∈ R, Ca ∈ (0,∞), some complex numbers ξj ∈ ∆a

and some operators Πj which all commute with et T . Then T satisfies (H1),

(H2), (H3).

Remark 2.2. Assumption (H3) is required in this theorem in order to

obtain quantitative constants in the rate of decay. Therefore, under as-

sumptions (H1) and (H3), assertions (H2) and Eq. (1) are equivalent in

a quantitative way.

The following theorem is the core of the method:

Theorem 2.3. Assume that T is a closed unbounded densely defined oper-

ator in a Hilbert space H, and that T := T
∣

∣

H
is a closed unbounded densely

defined operator in a Hilbert subspace H ⊂ H which satisfies (H1) and

(H2) (with E = H). Assume moreover that T satisfies:

(H4) Decomposition: T = A+B where A and B are closed unbounded

densely defined operators with domains included in the one of T

such that

– for some r > 0, the operator B − ξ is invertible with uni-

form bound for any ξ ∈ ∆a \ (∪
k
i=1B(ξi, r)) (where every balls

B(ξi, r) are strictly included in ∆a);

– B = B|H is well-defined as a closed unbounded densely defined

operator with domain included in the one of T , and B − ξ is

invertible for any ξ ∈ ∆a \ (∪
k
i=1B(ξi, r));

– A (B − ξ)−1 : H → H and (B − ξ)−1 A : H → H are bounded

for any ξ ∈ ∆a \ (∪
k
i=1B(ξi, r)).

Then T satisfies (H2) in the space E = H (with constructive bounds in

terms of the above assumptions).

The proof of the following corollary is immediate by combining Theorem

2.3 and Theorems 2.1.

Corollary 2.4. Assume that T satisfies (H1) and (H2) in the space H

and T satisfies (H3) and (H4) in the space H. Assume moreover that the

eigenvalues of T in ∆a are the same as those of T , that is {ξ1, . . . , ξk}.
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Then the conclusion of Theorem 2.1 holds in the space H: for any λ > a,

there exists Cλ explicit from a, b, Cb, K such that

∀ t ≥ 0,

∥

∥

∥

∥

∥

etT −
k

∑

i=1

eξi t Πi

∥

∥

∥

∥

∥

L(H)

≤ Cλ e
λ t.

Remark 2.5. If r can be taken as small as wanted (H4) (for some decom-

positions depending on r), it can be proved that the eigenvalues of T in ∆a

are the same as those of T in ∆a (that is {ξ1, . . . , ξk}) and this assumption

can be relaxed.

Remark 2.6. Thanks to the reciprocal part of Theorem 2.1, assumption

(H2) on T can be replaced by assuming a decay on the semigroup:

∀ t ≥ 0,

∥

∥

∥

∥

∥

∥

et T −

k
∑

j=1

eξj t Πj

∥

∥

∥

∥

∥

∥

L(H)

≤ Cλ e
λ t.

Proof of Theorem 2.3. Assume that k = 1 and ξ1 = 0 for the sake of

simplicity, the proof being similar in the general case.

Take ξ /∈ ∆a\B(0, r) and define

U(ξ) := B(ξ)−1 −R(ξ)AB(ξ)−1,

where R(ξ) is the resolvent of T in H and B(ξ) = B−ξ. Since by assumption

B(ξ)−1 : H → H , AB(ξ)−1 : H → H and R(ξ) : H → H are bounded

operators, U(ξ) : H → H is well-defined and bounded from H to H. Then,

(T − ξ)U(ξ) = (A+ B(ξ))B(ξ)−1 − (T − ξ)R(ξ)AB(ξ)−1

= AB(ξ)−1 + IdH − (T − ξ)R(ξ)AB(ξ)−1

= AB(ξ)−1 + IdH −AB(ξ)−1 = IdH.

To be more precise, introduce the canonical injection J : H → H and use

that R = J R, A = J A, T J = J T to write:

(T − ξ)R(ξ)AB(ξ)−1 = (T − ξ)J R(ξ)AB(ξ)−1 = J (T − ξ)R(ξ)AB(ξ)−1

= J IdH AB(ξ)−1 = J AB(ξ)−1 = AB(ξ)−1.

The operator T − ξ is also one-to-one. Indeed, if g satisfies

g ∈ Dom(T ), (T − ξ) g = 0,

the decomposition (H4) yields

B(ξ) g = −A g ∈ H,
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and therefore g ∈ Domain(B) ⊂ Domain(T ) ⊂ H because B(ξ) = B(ξ)|H
is invertible on H . We conclude that g = 0 since T − ξ is one-to-one. As a

conclusion, U(ξ) is the inverse of T −ξ which in turn implies that ξ /∈ Σ(T )

and R(ξ) = U(ξ) satisfies the announced estimate. This concludes the

proof.

3. Application to the Fokker-Planck equation

In this section we are concerned with the Fokker-Planck equation

∂tf = T f := div(∇f + E f)

for the real valued density function f = f(t, x), t ≥ 0, x ∈ Rd. In this

equation E = E(x) ∈ Rd is a given force field, written as

E = ∇U + F (3)

where the potential U : Rd → R is such that µ(dx) = e−U(x) dx is a

probability measure satisfying the “Poincaré inequality condition”: there

exists λP < 0 such that

−

∫

|∇u|2 µ(dv) ≤ λP

∫

u2 µ(dv) ∀u ∈ H1(Rd),

∫

u dµ = 0, (4)

(cf. for instance Refs. 5–7 and the references therein). The additionnal force

field F satisfies

∇ · F = 0, ∇U · F = 0, |F | ≤ C(1 + |∇U |). (5)

Thanks to that structural assumptions we can split T between a sym-

metric term and a skew-symmetric term:

T = T s + T as, T sf = div(∇f +∇U f), T asf = div (F f).

The operator T s is symmetric in H = L2(µ−1)

〈T sf, g〉H = −

∫

∇(f/µ) · ∇(g/µ)µ = 〈f, T sg〉H ,

while the operator T as is anti-symmetric in H = L2(m−1) for any weight

function m−1(v) = θ(U(x)), with θ : R+ → R+:

(T asf, g)H =

∫

[

(∇ · F ) f + F · ∇f
]

g m−1 = −

∫

f ∇ · (F gm−1)

= −

∫

f
[

(∇ · F ) gm−1 + (F · ∇g)m−1 + g θ′(U) (∇U · F )
]

= −

∫

[

(∇ · F ) g + F · ∇g
]

f m−1 = −〈f, T asg〉H.
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As an important consequence, we have

〈T asf, f〉H =

∫

∇ · (F f) f θ(U) = 0.

In H := L2(µ−1) the restricted operator T := T
∣

∣

H
is non-positive, its

first eigenvalue is 0 associated to the eigenspace Rµ, and it has a spectral

gap thanks to the Poincaré inequality:
∫

f (Tf)µ−1 = −

∫

µ |∇(f/µ))|2 ≤ λ2 ‖f − 〈f〉‖2H .

A natural question to ask is whether it is possible to obtain an expo-

nential decay on the semigroup in a space larger than H . The following

theorem gives an answer in L2 spaces with polynomial or “stretched” ex-

ponential weights. The proof follows from the application of the abstract

method and some careful computations on the Dirichlet form in the larger

space.

Theorem 3.7. Let µ = e−U with U(v) = (1 + |x|2)s/2, s ≥ 1 (so that

Poincaré inequality holds for µ).

Let m ∈ C2(Rd) be a weight function such that m−1(x) = θ(U(x)) with

θ(x) = (1+ |x|2)k/2 with k > d or θ(x) = e(1+|x|2)k/2

with k ∈ (0, 1). Let us

define H := L2(m−1).

Then there exist explicit λ ∈ (−λP , 0) and Cλ ∈ [1,∞) such that

∀ f0 ∈ H, ∀ t ≥ 0 ‖ft − 〈f0〉µ‖H ≤ Cλ e
λ t ‖f0 − 〈f0〉µ‖H.

Remark 3.8. In this theorem Cλ > 1 is allowed, which means that we do

not prove that the Dirichlet form of T has a sign.

Remark 3.9. The smoothness assumption on U and m at the origin can

be relaxed.
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