déposer
version française rss feed
HAL : hal-00433533, version 2

Fiche détaillée  Récupérer au format
Versions disponibles :
Random walks with occasionally modified transition probabilities
Olivier Raimond 1, Bruno Schapira 2
(19/11/2009)

We study recurrence properties and the validity of the (weak) law of large numbers for (discrete time) processes which, in the simplest case, are obtained from simple symmetric random walk on $\Z$ by modifying the distribution of a step from a fresh point. If the process is denoted as $\{S_n\}_{n \ge 0}$, then the conditional distribution of $S_{n+1} - S_n$ given the past through time $n$ is the distribution of a simple random walk step, provided $S_n$ is at a point which has been visited already at least once during $[0,n-1]$. Thus in this case $P\{S_{n+1}-S_n = \pm 1|S_\ell, \ell \le n\} = 1/2$. We denote this distribution by $P_1$. However, if $S_n$ is at a point which has not been visited before time $n$, then we take for the conditional distribution of $S_{n+1}-S_n$, given the past, some other distribution $P_2$. We want to decide in specific cases whether $S_n$ returns infinitely often to the origin and whether $(1/n)S_n \to 0$ in probability. Generalizations or variants of the $P_i$ and the rules for switching between the $P_i$ are also considered.
1 :  Modélisation aléatoire de Paris X (MODAL'X)
Université Paris X - Paris Ouest Nanterre La Défense
2 :  Laboratoire de Mathématiques d'Orsay (LM-Orsay)
CNRS : UMR8628 – Université Paris XI - Paris Sud
Mathématiques/Probabilités
Self-interacting random walk – Excited random walk – Weak law of large numbers – Cauchy law
Liste des fichiers attachés à ce document : 
PDF
MRWnewrevised3.pdf(300.3 KB)
PS
MRWnewrevised3.ps(1.1 MB)

tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...