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THE COMPLEXITY OF INFINITE COMPUTATIONS IN MODELS OF SET THE ORY

OLIVIER FINKEL

Equipe de Logique Mathématique, CNRS et Université Parigance.
e-mail addressfinkel@logique.jussieu.fr

ABSTRACT. We prove the following surprising result: there exist-aounter Buchi automatos
and a2-tape Buchi automatoB8 such that :

(1) There is a modeV; of ZFC in which thew-languageL(.A) and the infinitary rational relation
L(B) areTI3-sets, and

(2) There is a modeV, of ZFC in which thew-languageL(.A) and the infinitary rational relation
L(B) are analytic but non Borel sets.

This shows that the topological complexity of @adanguage accepted bylacounter Buchi automa-
ton or of an infinitary rational relation accepted by-#ape Biichi automaton is not determined by
the axiomatic syster@FC.

We show that a similar result holds for the class of languafétinite pictures which are recognized
by Biichi tiling systems.

We infer from the proof of the above results an improvemertheflower bound of some decision
problems recently studied in [Fin09b. Fin09a].

1. INTRODUCTION

Acceptance of infinite words by finite automata was firstly sidared in the sixties by Bichi in
order to study the decidability of the monadic second otdeoty of one successor over the integers
[Biic62]. The class of regular-languages has been intensively studied and many applicati
have been found, see [Thd90, Sta97, PP04] for many resultsed@rences. Many extensions of
regularw-languages have been investigated as the classedasfguages accepted lycounter
automata, pushdown automatatape automata, Petri nets, Turing machines, isee [Tho903EH
Sta97| Fin08a] for a survey of this work.

A way to study the complexity of languages of infinite wordsegated by finite machines is to study
their topological complexity and firstly to locate them wrtgard to the Borel and the projective
hierarchies. This work was analysed [in [Sta86, Sta87, Th88892, EH93| LT94, Sta97]. Itis
well known that everyo-language accepted by a deterministic Biichi automatoril§-get. This
implies that any-language accepted by a deterministic Muller automatori@éean combination
of ITY-sets hence &A%-set. But then it follows from Mc Naughton's Theorem, thatragular
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2 OLIVIER FINKEL

w-languages, which are accepted by deterministic Mulleoraata, are alsa\-sets. The Borel
hierarchy of regulat-languages is then determined. Moreover Landweber prdvaidane can
effectively determine the Borel complexity of a regulatanguage accepted by a given Muller or
Biichi automaton, see [Lang9, Tho90, Sta97, PP04].

In recent papers [Fin06a, Find8b] we have proved the folgwiery surprising results. From the
topological point of view,l-counter Blichi automata arddtape Bichi automata have the same ac-
cepting power as Turing machines equipped with a Blchigeoee condition. In particular, for
every non null recursive ordinal, there exist som&?-complete and somB? -completel -counter
w-languages (respectively, infinitary rational relationshd the supremum of the set of Borel ranks
of 1-counterw-languages (respectively, infinitary rational relatioissin ordinaty which is strictly
greater than the first non recursive ordia&X. Moreover we have proved that there is no general al-
gorithm to determine in an effective way the topological pierity of a givenl-counterv-language
(respectively, infinitary rational relation). Topologigaoperties ofl-counterw-languages (respec-
tively, infinitary rational relations) are actually highlyndecidable: for any countable ordina)
“determine whether a givehcounterw-language (respectively, infinitary rational relationjrighe
Borel class?, (respectivelyIT?)” is a I1i-hard problem,[[Fin0Sb].

We prove here an even more amazing result which shows thah®ety is actually very important
in the study of infinite computations. Recall that the usuabmatic systenmZFC is Zermelo-
Fraenkel systenZF plus the axiom of choicC. We prove that there exist Bcounter Biichi
automatonA4 and a2-tape Bichi automatoff such that :

(1) There is a model; of ZFC in which thew-languageL (.A) and the infinitary rational relation
L(B) areII-sets, and

(2) There is a model, of ZFC in which thew-languageL (.A) and the infinitary rational relation
L(B) are analytic but non Borel sets.

This shows that the topological complexity of arlanguage accepted bylacounter Bichi au-
tomaton or of an infinitary rational relation accepted @Btape Blichi automaton is not determined
by the axiomatic systerdFC.

We show that a similar result holds for the class of languadesfinite pictures which are recog-
nized by Buchi tiling systems, recently studied by Altemige Thomas and Wohrle in [ATWO03],
see also [Fin04, Fin09al].

In order to prove these results, we consider the largest(tlen without perfect subset) effective
coanalytic subset of the Cantor sp&te The existence of this largest thifi-setC; was proven by
Kechris in [Kec75] and independently by Guaspari and Satf§&ua73/ Sac76]. By considering
the cardinal of this sef; in different models of set theory, we show that its topolagmomplexity
depends on the actual model£fFC. Then we use some constructions from recent papers [Fin06a,
Fin06b | Fin09A] to infer our new results abdutounter or2-tape Bichi automata and Biichi tiling
systems. From the proof of the above results and from Shddafi&bsoluteness Theorem we
get an improvement of the lower bound of some decision proebleecently studied iri_[Fin09b,
Fin09a]. We show that the problem to determine whethev#anguage accepted by a given real
time 1-counter Blichi automaton (respectively, an infinitaryorzédl relation accepted by a given
2-tape Biichi automaton) is in the Borel clag§ (respectivelyII?), for a countable ordinak > 2
(respectivelyn > 2), is not in the clas$Ii. A similar result holds for languages of infinite pictures
accepted by Biichi tiling systems.



THE COMPLEXITY OF INFINITE COMPUTATIONS IN MODELS OF SET THBRY 3

The paper is organized as follows. In Section 2 we recall digfits of counter automat&-tape
automata, and tiling systems. We recall basic notions aflagy in Section 3. Results on the largest
effective coanalytic set are stated in Section 4. We prover@in results in Section 5.

Notice that as the results presented in this paper might lteriest to both set theorists and the-
oretical computer scientists, we shall recall in detail act®n 2 some notions of automata theory
which are well known to computer scientists but not to sebtisés. In a similar way we give in
Sections 3 and 4 a presentation of some results of set thenohware well known to set theorists
but not to computer scientists.

2. AUTOMATA

We assume now the reader to be familiar with the theory of &twAanguages [Tho90, Sta97]. We
shall follow usual notations of formal language theory.

WhenX is a finite alphabet, aon-empty finite wordver 3 is any sequence = a; ... ag, Where
a; € Xfori=1,...,k,andk is an integer> 1. Thelengthof x is k, denoted byz|. Theempty
word has no letter and is denoted By its length is0. >* is theset of finite wordgincluding the
empty word) ovei.

The first infinite ordinalis w. An w-word over ¥ is anw -sequencer; ... a, ..., Where for all
integersi > 1, a; € ¥. Wheno is anw-word overy, we writec = o(1)c(2)...0(n)..., where
forall i, o(i) € ¥, ando[n] = o(1)o(2)...0(n) foralln > 1 ando[0] = .

The usual concatenation product of two finite wotdandv is denotedu.v (and sometimes just
uw). This product is extended to the product of a finite wardnd anw-word v: the infinite word
u.v is then thev-word such that:

(uw)(k) = u(k) if k < u|,and(u.v)(k) = v(k — |u|) if & > |ul.

The set of w-wordsover the alphabel is denoted by=“. An w-languageover an alphabeX is a
subset o8¢, The complement (ikx*) of anw-languagel’ C ¢ is ¥¥ — V, denotedV —.

For a finitary languag®” C ¥*, thew-power of V' is thew-language

Ve=Auy...up...€eX|Vi>1u €V}

Abstract models of finite machines reading finite or infinierels have been considered in automata
theory, calculability and complexity theories. The singpimodel of machine used for recognizabil-
ity of languages of (finite or infinite) words is the model ofitinstate machine. One can consider
that such a maching1 has a semi infinite tape divided into cells. This tape costairthe begin-
ning the input word written from left to right, each letterifig contained in a cell; in the case of a
finite input word, the remaining cells contain a special klagmbol. The machine has a reading
(only) head, placed at the beginning on the first cell. It Hag afinite control, consisting of a finite
setK of states and a current state. There is a special giat@led the initial state and a sEtC K

of final states. The reading of a word begins in stgtethen the machine reads successively the
letters from left to right, changing the current state aduuy to the transition relation which has a
finite description. The finite word is accepted by\ if the reading ofz ends in a final state. An
infinite word o is accepted byM if some final state occurs infinitely often during the readirfigr.

We now give a formal definition of a finite state machine.

Definition 2.1. A finite state machine (FSM) is a quadruplé = (K, X, J, qo), whereK is a finite
set of statesy. is a finite input alphabety, € K is the initial state and is a mapping fromi x 32
into 25
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Letx = aqasq...a, be afinite word oved.. A sequence of states= q1qs . .. ¢,qn11 IS called a
run of M on z iff:

1) ¢1 = qp is the initial state, and

2) foreachi > 1, ¢;1+1 € 0(qi, a;).

Leto = ajas...a, ... be anw-word overX. A sequence of states= ¢1qs...¢q, ... is called an
(infinite) run of M on ¢ iff:

1) ¢1 = qp is the initial state, and

2) for eachi > 1, g;+1 € 0(q;, a;).

For every (infinite) run = q1q2. .. ¢, ... of M, In(r) is the set of states entered infinitely often
by M during the runr.

Definition 2.2. An automaton is a 5-tupl = (K, X%, 6, qo, F) where M’ = (K,X.,4,q) is a
finite state machine anfl C K is the set of final states. The language accepted/bis the set of
finite wordsz such that there is a run g¥ on x ending in a final state.

Definition 2.3. A Biichi automaton is a 5-tupl&1 = (K, X, 4, qo, F)) whereM’ = (K, %, 6, qo) is
a finite state machine anfd C K is the set of final states. Thelanguage accepted byt is

L(M) = {o € ¥¥| there exists a run of M ono such thatin(r) N F # 0}.

Recall that a language (respectivelylanguage) is said to be regular iff it is accepted by an au-
tomaton (respectively, Buchi automaton). &fanguagel is regular iff it belongs to the-Kleene
closure of the class of finitary regular languages, i.e.hiéiré exist some regular languadésV;,
for i € [1,n], such thatl = |J;_, U;.V.

Notice that a finite state machine has only a bounded memanaiting the current state of the
machine. More complicated machines have been consideréth whn store some unbounded
contents. In particular a counter machine has a finite sebwiters, each of which containing a
non-negative integer. The machine can test whether thegbof a given counter is zero or not.
And transitions depend on the letter read by the machineuhrent state of the finite control, and
the tests about the values of the counters. Each transéams|to another state, and values of the
counters can be increased byr decreased by, providing that these values always remain non-
negatives. Notice that in this model soméransitions are allowed. During these transitions the
reading head of the machine does not move to the right, ieemiichine does not read any more
letter.

We now recall the formal definition df-counter machine ankkcounter Biichi automata which will
be useful in the sequel.

Definition 2.4. Let k be an integer> 1. A k-counter machine is a 4-tupl&1=(K, >, A, qo),
where K is a finite set of stateg; is a finite input alphabey, € K is the initial state, and\ C
K x (ZU{A}) x{0,1}* x K x {0, 1, —1}* is the transition relation. Thie-counter maching\1 is
said to beeal timeiff: A C K x ¥ x {0,1}* x K x {0,1,—1}*, i.e. iff there are no\-transitions.
If the machineM is in stateg andc; € N is the content of the” counterC; then the configuration
(or global state) ofM is the(k + 1)-tuple(q, ¢, ..., ck).

Fora € SU{\}, ¢,¢ € K and(cy,...,c;) € Nf such that; = 0forj € E C {1,...,k} and
¢; >0forj ¢ E,if (¢,a,i1,...,1k, ¢, j1,-..,5k) € A wherei; = 0forj € Eandi; = 1 for
J ¢ E, then we write:

a’:(q7cl7"'7ck) =M (qlvcl +j17---7ck +]k)
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Thus we see that the transition relation must satisfy:
if (¢,a,i1,--.,ik,qj1,---,7k) € Aandi,, = 0forsomem € {1,...,k}, thenj,, =0orj, =1
(but j,,, may not be equal te-1).

Leto = ajaz...a,...beanv-word over:. Anw-sequence of configuratioms= (g;,ct, ... c}%)izl
is called a run ofM on o, starting in configuratioftp, cy, . . ., ¢k ), iff:
Q) (q1,¢f,...ct) = (pycry.. . ) ' ‘ ' '
(2) foreachi > 1, there exist$; € SU{\} suchthab; : (¢;,c},... L) = (giy1, i i)

and such that eitherjas ... a,, ... = biby... b, ...
orbiby...b,...is afinite prefix ofaias ... ay, ...
The runr is said to be complete whenas ... a, ... = bibs... b, ...

For every such rurin(r) is the set of all states entered infinitely often during theru
A complete run- of M ono, starting in configuratiofigo, 0, . .., 0), will be simply called “a run of
Mong”.

Definition 2.5. A Biichi k-counter automaton is a 5-tuplel=(K, X, A, qo,F), whereM'=(K, X, A,
qo) is ak-counter machine anfl’ C K is the set of accepting states. Thdanguage accepted by
Mis L(M)={o € ¢ | there exists a run r oM ono such thafin(r) N F # 0}.

The class ofv-languages accepted by Budhicounter automata will be denot@®IiCL (k). The
class ofw-languages accepted byal timeBliichi k-counter automata will be denoteeBCL (k).

Remark that thel-counter automata introduced above are equivalent to tebdomuwn automata
whose stack alphabet is in the fof, A} whereZ; is the bottom symbol which always remains
at the bottom of the stack and appears only thereArsdanother stack symbol, see [ABE96].

The classBCL(1),, is a strict subclass of the cla€¥FL,, of context freew-languages accepted
by Biichi pushdown automata. Notice that @adanguageL is in the classBCL(1),, (respec-
tively, CFL,) iff it belongs to thew-Kleene closure of the class of finitary languages accepyed b
1-counter automata (respectively, pushdown automata)iffilhere exist somd-counter (respec-
tively, context-free) languagés;, V;, for i € [1,n], such thatL = |J;"_, U;.V}*, see[[Sta97, Fin06a,
Fin08a].

We shall consider also the notion of acceptance of binagtiocgls over infinite words bg-tape
Biichi automata, firstly considered by Gire and Nivatlin B3irGN84]. A2-tape automaton is
an automaton having two tapes and two reading heads, onadbrtape, which can move asyn-
chronously, and a finite control as in the case of-tafpe) automaton. The automaton reads a pair
of (infinite) words(u,v) wherew is on the first tape and is on the second tape. Such automata
can also be considered for the reading of pairs of finite wbrdsve shall only need here the case
of infinite words. We now recall the formal definition 8ftape Blchi automata and of infinitary
rational relations.

Definition 2.6. A 2-tape Blchi automaton is@&tuple 7 = (K, X1, %5, A, qo, F), whereK is a
finite set of statesy; andX; are finite alphabets) is a finite subset of{ x X7 x 33 x K called
the set of transitionsyg is the initial state, and’ C K is the set of accepting states.

A computationC of the 2-tape Biichi automatadh is an infinite sequence of transitions

(g0, u1,v1,q1), (q1,u2,v2,G2), - - - (Gi—1, Ui, Vi, Gi), (Gi, Wit 15 Vit1, Gig1)s - - -

The computation is said to be successful iff there existsal ftateq; € F' and infinitely many
integersi > 0 such thaiy; = g. The input word of the computation is= w;.uz.u3 . .. The output
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word of the computation is = v1.v9.v3 ... Here the input and the output words may be finite or
infinite.

The infinitary rational relation.(7") C 3¢ x X% accepted by the 2-tape Blichi automatbris
the set of pairgu,v) € 3¢ x X% such thatu andv are the input and the output words of some
successful computatiaf of 7.

Remark 2.7. An infinitary rational relation/(7)) C £¢ x 3§ may be seen as anrlanguage over
the product alphabet; x 3.

In the sequel, we will also consider the notion of recogrizdanguage of infinite pictures. We
recall first some basic definitions about languages of igfitmitb-dimensional words, i.e., languages
of infinite pictures.

Let X be a finite alphabet ang be a letter not irt and let>: = X U {#}. An w-picture overs is a
function p from w x w into 3 such thap(i, 0) = p(0,4) = # forall i > 0 andp(i, j) € = fori,j >
0. For each integef > 1, the;*" row of thew-picturep is the infinite wordp(1, 5).p(2,7).p(3,7) . ..
over. and thej*" column ofp is the infinite wordp(j,1).p(j,2).p(4,3) ... overX. The set ofu-
pictures ovel is denoted by=“*. An w-picture languagd. is a subset oE“~.

In J[ATWO3], Altenbernd, Thomas and Wohrle have consideaedeptance of languages of infinite
two-dimensional words (infinite pictures) by finite tilingstems, with the usual acceptance condi-
tions, such as the Biichi and Muller ones, firstly used fonitdiwords. They showed that Biichi

and Muller acceptance conditions lead to the same classofinizable languages of infinite pic-

tures. So we shall only recall the notion of Biichi recogbigdanguages of infinite pictures, see
[ATWO03, [Fin04 [ Fin09a] for more details.

A tiling system is a tupled=(Q, >, A), where@ is a finite set of states}. is a finite alphabet,
A C (2 x Q)*is afinite set of tiles.

A Buchi tiling system is a paifA,F') where A=(Q, X, A) is a tiling system and” C @ is the set
of accepting states.

Tiles are denoted b( EZ?”;]?’g EZ“’ Z4§ > with a; € > andg; € Q,
1,41 2542

bs by

and in general, over an alphatigtby ( b b
1 2

> with b; €T

A combination of tiles is defined by:

by ba (Y U\ [ (st (bt
b1 bs b’1 b’2 (bl,b’l) (bz,bé)

Definition 2.8. Let A=(Q, X, A) be a tiling system, and’ C @ be the set of accepting states.
A run of the tiling system4=(Q, 3, A) over anw-picturep € ¥ is a mapping from w x w into
@ such that for all7, j) € w x w with p(4, j) = a; ; andp(i, j) = ¢; ; we have
( A j4+1  Qi41,5+1 > o ( 9ij+1  Gi4+1,5+1 ) c A,
aj,j QAi+1,5 di,j di+1,5
The w-picture languagd.((.A,F')) Buchi-recognized by.A,F') is the set ofv-picturesp € X“¥
such that there is some ryrof A onp andp(v) € F for infinitely manyv € w?.
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An interesting variation of the above defined reognizabitibndition for infinite pictures uses the
diagonal of anw-picture. The diagonal of an-picturep is the set of vertice®i(p) = {(i,7) | i €

w}.

The w-picture language Buchi-recognized by, F') on the diagonais the set ofuv-picturesp €
¥« such that there is some rwof A onp andp(v) € F for infinitely manyv € Di(p).

The following result was stated in [ATW03].

Theorem 2.9. Anw-picture languagel, C >““ is Buchi-recognized by a tiling system if and only
if it is Buchi-recognized on the diagonal by a tiling system. ]

We can state some links with classical notions of tiling & (quarter of the) plane, see for instance
[BJOS].

We denotel’ = 3 x Q whereX. is the alphabet of pictures ar@ is the set of states of a tiling
systemA=(Q, >, A). We consider configurations which are element§of“. One can imagine
that each cell of the quarter of the plane contains a lettédreflphabet’.

Let A C (2 x Q)* = I'* be a finite set of tiles. We denote its complementby = T'* — A. A
tiling of the (quarter of the) plane withh~ as set of forbidden patterns is simply a configuration
c € T“*¥ such that for all integers j € w:

< c(i,j+1) e(i+1,5+1) > c A
(i, 7) c(i +1,7) :

Then thew-picture languagd. C >““ which is Biichi-recognize@n the diagonaby the tiling

system(A,F) is simply the set ofv-picturesp € ¥““ which are projections of configurations

¢ € T'“>*“ which are tilings of the (quarter of the) plane wif{T as set of forbidden patterns such

that for infinitely manyi € w the second component afi, ) is in F.

3. TOPOLOGY

We assume the reader to be familiar with basic notions ofieggonvhich may be found in [Mos80,
LT94,[Kec95/ Sta97, PP0D4]. There is a natural metric on th&sef infinite words over a finite
alphabet containing at least two letters which is called frefix metricand defined as follows.
Foru,v € ¥ andu # v let 6(u,v) = 27 lpref(u) wherelper(u,v) IS the first integemn such that
the (n + 1) letter ofu is different from the(n + 1)%! letter of v. This metric induces o&x“ the
usual Cantor topology for whicbpen subsetsf ¥ are in the formiV.X«, wherelW C ¥*. A set
L C ¥¥ is aclosed seifff its complement=® — L is an open set. Define now ttBorel Hierarchy
of subsets ok“:

Definition 3.1. For a non-null countable ordinal, the classeX? andII® of the Borel Hierarchy
on the topological space” are defined as follows:

320 is the class of open subsetsXf, I1{ is the class of closed subsets3f,

and for any countable ordinal > 2:

3, is the class of countable unions of subset&fin (. _, IIS.

IT), is the class of countable intersections of subses‘oin |, _, 9.
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Recall some basic results about these classes. The Baséslare closed under finite intersections
and unions, and continuous preimages. Moreoﬁ@r,is closed under countable unions, aﬁ(g

under countable intersections. As usual the ambiguous Adss the classs? N ITY.

The class oBorel setds Aj:={J,_,, Z¢=U,.,, I, wherew, is the first uncountable ordinal.
The class of Borel sets is the closure of the class of operuséer countable union and countable
intersection. It is also the closure of the class of open setier countable union (respectively,
intersection) and complementation.

TheBorel hierarchyis as follows:

> =open 9 . 20
AY=clopen A Al Al
1Y =closed ) . m°

This picture means that any class is contained in every ttaf®e right of it, and the inclusion is
strict in any of the spaces”.
For a countable ordinal, a subset of“ is a Borel set ofank « iff it is in X0 U ITI9 but not in

UKa(zg U Hg).

There are also some subset&fwhich are not Borel. Indeed there exists another hierarelypid
the Borel hierarchy, which is called the projective hiergrand which is obtained from the Borel
hierarchy by successive applications of operations ofggt@n and complementation. The first
level of the projective hierarchy is formed by the clasapélytic setsand the class ofo-analytic
setswhich are complements of analytic sets. In particular thexbf Borel subsets & is strictly
included into the clasX! of analytic setsvhich are obtained by projection of Borel sets.

Definition 3.2. A subsetA of ¥¢ is in the class=! of analytic sets iff there exists another finite set
Y and a Borel subseB of (X x Y)“ such thatr € A < Jy € Y“ such that(z,y) € B, where
(z,y) is the infinite word over the alphabEtx Y such thatz, y)(i) = (z(i),y(¢)) for each integer
1> 1.

Remark 3.3. In the above definition we could take in the clasd19. Moreover analytic subsets
of ¥ are the projections dfI{-subsets oE“ x w*, wherew* is the Baire space, [MosB0].

By Suslin’s Theorem it holds that a subsétof X¢ is Borel iff it is analyticand coanalytic, i.e.
Al =TI n 21, A setA which is analytic but not coanalytic, or equivalently arialput not Borel,
is called atrue analytic set

We now define completeness with regard to reduction by coatis functions. For a countable
ordinala > 1, a setF C X¢ is said to be &9 (respectivelyI1?, >1)-complete seiff for any set
E C Y% (with Y a finite alphabet):E € X0 (respectively,E € TI?, E € X1) iff there exists a
continuous functiory : Y — ¥« such thatt = f~(F).

Recall that a sek C Y* is aX? (respectivelyIT! )-complete subset dt iff it is in 39 but not
in TI9 (respectively in[1% but not inX?), [Kec95]. ¥ (respectivelyII®)-complete sets, with an
integer> 1, are thoroughly characterized [n [Sta86].

In particular, the singletons @F areIT{-complete subsets @F. Thew-languager = (0*.1)~ is a
well known example olT$-complete subset dfo, 1}«. It is the set ofu-words over{0, 1} having
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infinitely many occurrences of the lettér Its complement0,1}* — (0*.1)“ is a X9-complete
subset of 0, 1}«.

We recall now the definition of the arithmetical hierarchyw.efanguages which form the effective
analogue to the hierarchy of Borel sets of finite ranks.

Let X be a finite alphabet. An-languagel. C X“ belongs to the class,, if and only if there
exists a recursive relatioR;, C (N)"~! x X* such that

L={ceX¥|3ay...Qna, (ai1,...,an—1,0la,+1]) € R1}

whereQ); is one of the quantifierg or 3 (not necessarily in an alternating order). &#anguagel, C
X* belongs to the clasH,, if and only if its complementX“ — L belongs to the class,,. The
inclusion relations that hold between the classgsandIl,, are the same as for the corresponding
classes of the Borel hierarchy. The clasSgsandIl,, are included in the respective clas®$ and
9 of the Borel hierarchy, and cardinality arguments sufficertow that these inclusions are strict.

As in the case of the Borel hierarchy, projections of arittioaé sets (of the second-class) lead
beyond the arithmetical hierarchy, to the analytical highg of w-languages. The first class of this
hierarchy is the (lightface) class! of effective analytic setwhich are obtained by projection of
arithmetical sets. Aw-languagel. C X“ belongs to the clasg! if and only if there exists a
recursive relatio?;, C N x {0,1}* x X* such that:

L={oeX¥|3r(r € {0,1}¥ AVYnIm((n,7[m],o[m]) € Rr))}
Then anw-languagel C X“ is in the class:} iff it is the projection of anu-language over the
alphabetX x {0,1} which is in the classl,. The (lightface) clas§l! of effective co-analytic sets
is simply the class of complements of effective analytis séfe denote as usuall = 1 N I11.
Recall that anu-languagel. C X* is in the classt1 iff it is accepted by a non deterministic Turing
machine (reading-words) with a Biichi or Muller acceptance condition [CG3897].

4. THE LARGEST THIN EFFECTIVE COANALYTIC SET

We now recall some basic notions of set theory which will befuisin the sequel, and which are
exposed in any textbook on set theory, such as [Jec02].

The usual axiomatic syste#@FC is Zermelo-Fraenkel syste@F plus the axiom of choicaC. A
model {, €) of the axiomatic systerdFC is a collectionV of sets, equipped with the membership
relatione, where % € y” means that the setis an element of the sgt which satisfies the axioms
of ZFC. We shall often say “ the mod#®” instead of “the modelV(, €)”.

The axioms oZFC express some natural facts that we consider to hold in thersgs of sets. For
instance a natural fact is that two setandy are equal iff they have the same elements. This is
expressed by the sentence:

VaVy [c =y < Vz(z €x < z € y) |
The above sentence is thgiom of Extensionality
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Another natural axiom is thBairing Axiomwhich states that for all setsandy there exists a set
z = {z,y} whose elements areandy:

VaVy [Fz(Vw(w € z = (w =2V w =1y)))]
Similarly thePowerset Axionstates the existence of the set of subsets of a.set

The Separation Schema is in fact an infinite set of axioms. eBoh first-order formulg, with
free variablez, in the language of set theory with the equality symbol arddainary symbok, the
following axiom states the existence of the get {z € = | p(z)} of elements of a set which
satisfy .

Va[Ty(Vz(z € y < (2 € 3 A p(2))))]
The other axioms 0ZFC are the Union Axiom, the Replacement Schema, the InfinityoAxithe
Foundation Axiom, and the Axiom of Choice. We refer the reddeany textbook on set theory,
like [Jec02], for an exposition of these axioms.

We recall that the infinite cardinals are usually denote®fy;, N, ..., R,, ... The cardinak,,
is also denoted by, as usual when it is considered as an ordinal.

The continuum hypothesiS8H says that the first uncountable carditalis equal to2® which is
the cardinal of the continuum. Goédel and Cohen have pravatthe continuum hypothes@@H

is independent from the axiomatic syst@RC. This means that there are some modelglC +
CH and also some models @FC + — CH, where— CH denotes the negation of the continuum
hypothesis,[[Jec02].

Let ON be the class of all ordinals. Recall that an ordiaabk said to be a successor ordinal iff
there exists an ording such thato = 3 + 1; otherwise the ordinadk is said to be a limit ordinal
and in that case = sup{3 € ON | 3 < a}.

The clasd. of constructible setih a modelV of ZF is defined by

L= |J L
acON
where the setk («) are constructed by induction as follows:

(1) L(0) =0
(2) L(a) = Ug, L(B), for a alimit ordinal, and
(3) L(a+1) is the set of subsets &f(«) which are definable from a finite number of elements
of L(«) by a first-order formula relativized ().
If V is a model oZF andL is the class oftonstructible setsf V, then the clas& forms a model of
ZFC + CH. Notice that the axiom\(=L ) means “every set is constructible” and that it is consisten
with ZFC.

Consider now a model of the axiomatic systerdFC and the class of constructible s&sC V
which forms another model &&FC. It is known that the ordinals df are also the ordinals of.
But the cardinals itV may be different from the cardinals in

In the sequel we shall consider in particular the first untabie cardinal irl_; it is denotedtk. It
is in fact an ordinal o/ which is denotedvl. It is known that this ordinal satisfies the inequality
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wl < wi. In amodelV of the axiomatic syster@FC + V=L the equalityw! = w; holds. But

in some other models &FC the inequality may be strict and ther¥ < w;. This is explained in
[Jec02, page 202]: one can start from a modef ZFC + V=L and construct by forcing a generic
extensionV[G] in which the cardinalsv andw;, are collapsed; in this extension the inequality
wl < wy holds.

We now recall the notion of perfect set.

Definition 4.1. Let P C X¢, whereX is a finite alphabet having at least two letters. The/3ét
said to be a perfect subsetX¥f if and only if :

(1) P is a non-empty closed set, and

(2) for everyx € P and every open séf containingz there is an element € P N U such that

So a perfect subset af* is a non-empty closed set which has no isolated points. leiskmown
that a perfect subset af“ has cardinality2™?, i.e. the cardinality of the continuum, sée [Mo5s80,
page 66]. We recall now the definition of therfect set propertgand some known results for Borel
or analytic sets.

Definition 4.2. A classT" of subsets oE“ has the perfect set property iff each séte T is either
countable or contains a perfect subset.

Theorem 4.3(see[Mos80, Kec95])The class of analytic subsetsXif has the perfect set property.
In particular, the continuum hypothesis is satisfied for Igtia sets: every analytic set is either
countable or has cardinalitg™o. L]

On the other hand, “the perfect set property for the clasefédtive) coanalytic subsets af”
is actually independent from the axiomatic systBRC. This fact follows easily, as we shall see
below, from a result about the largest thin effective cogiaket.

We first recall the notion of thin subset Bf.

Definition 4.4. A setX C >* is said to be thin iff it contains no perfect subset.

The important following result was proved by Kechiis [Ket&hd independently by Guaspari
[Gua73] and Sacks [Sac76].

Theorem 4.5(see [M0s80] page 247) et be a finite alphabet having at least two letters. There
exists a thinlli-setC;(X*) C ¥ which contains every thin[i-subset of«. It is called the
largest thinIT}-set in:«. ]

Notice that the existence of the largest thit-set inX“ is proved from the axiomatic systefiC,
i.e. Zermelo-Fraenkel systert plus the axiom of choicAC, and even if we replace the axiom of
choice by a weaker version called the axiom of dependentelit.

An important fact is that the cardinality of the largest thik-set in>“ may depend on the model
of ZFC.

We can now state Kechris’s result on the cardinality of thgdat thinl1}-set, proved independently
by Guaspari and Sacks, see also [Kan97, page 171].

Theorem 4.6. (ZFC) The cardinal of the largest thifi}-set inX* is equal to the cardinal ab}". []
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Notice that this means that in a given motfebf ZFC the cardinal of the largest thiiii -set inx«
is equal to the cardinah V of the ordinalw! which plays the role of the cardin&, in the inner
modelL of constructible sets of .

There exists also a largest tHiff-set in the Baire space”. By [Mos80, Exercise 4F.7, page 251]
the cardinal of the largest thifii-set in the Baire space is equal to the cardinal of the lariést
I1}-set in any Cantor spacé” wherey: is finite and has at least two elements.

We can now easily state the following result.

Corollary 4.7. The perfect set property for the class of effective coaitaytbsets ob« is inde-
pendent from the axiomatic syst&RC. Indeed it holds that :

(1) (ZFC +V=L). The class of effective coanalytic subsetE6fdoes not have the perfect set
property.
(2) (ZFC + wl* < wy). The class of effective coanalytic subsets6fhas the perfect set
property.
Proof.

(1) Assume first thaV¥ is a model of the axiomatic systefi-C + V=L . In this model the cardinal
of the largest thinll}-set inX“ is equal towl = w;. ThusC;(X¥) is not countable but it
contains no perfect subset, hence the class of effectiveatytac subsets oE“ does not have
the perfect set property.

(2) Assume now thaV is a model of the axiomatic systeAFC + wl < wi. In this model the
largest thinIli-set inX* is countable. Thus every effective coanalytic subsetvfis either
thin and countable or contains a perfect subset, hence dise of effective coanalytic subsets
of * has the perfect set property. ]

Notice that, by [[Kan97, Theorem 14.10, page 184 and Theork®, page 136], the perfect set
property for the class of all (boldfac&]!-subsets ob“ is equiconsistent with the existence of an
inaccessible cardinalwhich is alarge cardinal The axiom “there exists an inaccessible cardinal”
is a “large cardinal axiom”; its consistency can not be pdoweZFC. Thus the consistency of the
perfect set property for the classif -subsets oE“ can not be proved igZFC. We refer the reader
to [Kan97] for an exposition of these results, which will fiet necessary in this paper.

On the other hand, if in a mod#l of ZFC the class of1}-subsets oE“ has not the perfect property,
then we cannot infer from this property that the continuurpdiiesis is satisfied fdili-subsets
of ¥¥. However every coanalytic set is the unionf Borel sets, and this implies that every
coanalytic set is either countable, or of cardinaliy, or of cardinality2™°, see[[Jec02, Corollary
25.16, page 488].

We can now state the following results which will be usefultia sequel.
Corollary 4.8. (ZFC + V=L) The largest thiI}-set inX“ is not a Borel set.

Proof. In the modelL, the cardinal of the largest thifi}-set in>“ is equal to the cardinal ef’.
Moreover the continuum hypothesis is satisfied tbitis = wL.

Thus the largest thifili-set inX* has the cardinality of the continuum. But it has no perfebissti
and the class of Borel sets has the perfect set property. fieuargest thirlli-set inX* can not
be a Borel set. ]
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Corollary 4.9. (ZFC + w¥ < w;) The largest thifli-set inX* is countable, hence XJ-set.

Proof. Let V be a model of ZFC + w{‘ < w1). In this modelw; is the first uncountable ordinal.
Thuswl < w implies thatw} is a countable ordinal iv. Its cardinal isR, and it is also the
cardinal of the largest thifli-set inX*. Thus the sef; (X“) is countable. But for every € ¥
the singleton{z} is a closed subset af“. Thus the largest thifil}-set in>“ is a countable union
of closed sets, i.e. Eg-subset obv, ]

5. COMPLEXITY OF INFINITE COMPUTATIONS

There are several characterizations of the largestihiset inX“, see[[Kec75, Mos80]. Moschovakis
gave in [Mos80, page 248]1ai-formula ¢ defining the se€; (X). Notice that all subformulas of
this formula are themselves given previously in the book $BGj.

From now on we shall simply denote By the largest thidli-set in{0, 1}~ = 2v.

This setC; is alli-set defined by &l}-formula¢. Thus its complemerd; = 2~ — C; is aX}-set
defined by the2i-formulay = —é.

Recall that one can construct, from thg-formula v definingC;", a Biichi Turing maching”
accepting thev-languageC; , see([Sta97]. We can then construct from the Buchi Turinghime
T, using a classical construction (see for instance [HMUQGABR-counter Biichi automatonl;
accepting the same-language.

We are now going to recall some constructions which were usedprevious papel [Fin06a] to
study topological properties of context-freelanguages, and which will be useful in the sequel.

LetX = {0, 1}, F be a new letter not i, S be an integep 1, andfg : ¥ — (XU {E})“ be the
function defined, for alk € X¢, by:
Os(z) = x(l).ES.x(Q).ESQ.x(3).ESa.x(4) oz(n). B x(n + 1).Esn+1 e

We proved in[[Fin06a] that if. C >“ is anw-language in the claB8CL(2),, andk = cardinal (X)+
2, S = (3k)3, then one can construct effectively, from a Bugksounter automaton; accepting
L, a real time Biich8-counter automatoml, such thatl(As) = 0g(L).

We used also ir [Fin06a] another coding which we now recat A =2 x 3 x 5 x 7 x 11 x 13 x
17 x 19 = 9699690 be the product of the eight first prime numbers. Ldte a finite alphabet; here
we shall sel’ = ¥ U {E'}. Anw-wordz € 'V is coded by thes-word

hic(z) = A.CK 2(1).B.CK" A.C** 2(2).B.CK" A.CK’ 2(3).B...B.CK" . ACK" x(n).B...

over the alphabel’; = ' U {A, B,C}, where A, B,C are new letters not i'. We proved in
[Fin064] that, from a real time Buclicounter automatonl, acceptingL(.A42) C I', one can ef-
fectively construct a Buchi-counter automatow; accepting the-languagér i (L(Asz))Uh g (T') .

Consider now the mappingk : (TU{A, B,C})* — (I'U{A, B, C, F'})* which is simply defined
by: forallz € (' U{A, B,C})~,

o (z) = FELa(1) FE L a(2). . FE L a(n). FE L a(n +1). P51
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Then thew-languagepk (L(As3)) = ¢ (hix (L(A2))Uhk (I'*)7) is accepted by a real time Buchi
1-counter automatomd, which can be effectively constructed from the real time ligzcounter
automatonA,, [Fin06a].

We can now use these previous constructions to obtain ounfai result.

From now on we consider that we have obtained, from a BuchingumachineZ accepting the
w-languageC; C ¥¥ = 2“, a2-counter Buchi automaton; accepting the same-language,
and then a real time Buclg-counter automatoml, accepting thev-languageL(.Az) = 6s(Cy ),
whereS = (3 x 4)3 = (12)3. Next, following the above construction, we have a Biicicounter
automatonAs accepting thev-languagehk (L(Az2))Uhk (I')~, and a real time Buchi-counter
automatonA, accepting thev-languagepx (L(.A3)). In the sequel we shall denote simply; by
A.

Theorem 5.1. Let A be the real-time -counter Bichi automaton constructed above. The topolog-
ical complexity of thev-languageL(.A) is not determined by the axiomatic systBFC. Indeed it
holds that :

(1) (ZFC + V=L). Thew-languageL(.A) is a true analytic set.

(2) (ZFC + wl < wy). Thew-languageL(A) is aITy-set.

Proof.

(1) Assume first tha¥ is a model of the axiomatic systefiC + V=L . In the modeV, by Corol-
lary [4:8 the largest thifli-setC; is not a Borel set. Thus the-languageC; = L(A;) is
not a Borel set because the class of Borel subse?s @& closed under complementation. The
w-languageL(A2) = 60s(C;) cannot be a Borel set. Indeed the functidnis continuous
and if L(A;) was Borel then thes-languageC; = 65'(L(Az2)) would be Borel too as the
inverse image of a Borel set by a continuous function. Nexicam® see that the-language
L(A3) = hr(L(Az))Uhg(I“)~ is not Borel. Indeed the functiohy is also continuous
and if L(A3) was Borel then thes-languageL(As) = h'(L(As3)) would be Borel too as
the inverse image of a Borel set by a continuous function.allinve can see that the-
languageL (A) = ¢k (L(A3)) is not Borel. Otherwise, the functiapi being continuous, the
w-languagel(As3) = ¢ (L(.A)) would be Borel too as the inverse image of a Borel set by a
continuous function. Thus the-languagel.(.A) is an analytic but non Borel set.

(2) Assume now tha¥ is a model of ZFC + w! < wi). In the modeN, by Corollary[4.9, the
largest thinll}-setC; is a X9-set. Thus its complemed, = L(A;) is aIl-set. It is then
proved in [Fin06A] that the-languaged.(Az2) = 05(C; ), L(As) = hx(L(A2))Uhk(T¥)~,
and finally L(A) = ¢k (L(Aj3)), are alsd1)-sets. O

We can now improve a recent result from_[FinD9b]. It is veryunal to ask whether one can
effectively determine the topological complexity of arlanguage accepted by a given real-time
1-counter Bichi automaton (respectively, Biichi pushdawtomaton). We had previously shown
that this is not possible: For any countable ordinalit is undecidable whether an-language
accepted by a given Buichi pushdown automaton ¥aset (respectively, &12-set, a Borel set),
[Fin03]. Moreover we have recently proved in [Fin09b] tHa¢te decision problems are actually
I1i-hard. Notice that herH is a class of the analytical hierarchy on subsetd ofrhe notions of
analytical hierarchy and of complete sets for classes effild@rarchy may be found for instance in
the textbooks [Rog67, Odi89, Odi99].
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A real-time 1-counter Bichi automatofi has a finite description to which can be associated, in an
effective way, a unique natural number called the indeg.ofVe have then a Gddel numbering of
real-timel-counter Blchi automata. From now on, we shall denote, iSm09L], C., the real time
Buchi 1-counter automaton of index(reading words ove2 = {0,1, A, B, C, E, F'}). The above
cited result can be now formally stated as follows.

Theorem 5.2(JFin09K]). Let« be a countable ordinal. Then
(1) {z e N| L(C,) isin the Borel clas&? } is II-hard.
(2) {z €N | L(C.) isin the Borel clasd1?} is IT3-hard.
(3) {z e N| L(C,) is a Borel sef} is I13-hard. O

This implies in particular that these decison problems ateimthe class2!, but they still could
have beerlI}-complete. We are going now to prove that this is not the case.

Theorem 5.3. Leta be a countable ordinal. Then

(1) Fora >2,{z € N| L(C,) is in the Borel clas&! } is not all}-set.
(2) Fora >2,{z € N| L(C,) is in the Borel clasd1? } is not all}-set.
(3) {z e N| L(C,) is a Borel set} is not alli-set.

Proof. We first prove item (1). Le#d be the real-timd -counter Biichi automaton cited in Theorem
and lety be its index so thatl = C.,.

Assume now thaV is a model of ZFC + w! < w;). In the modelV, by Theoreni5]1, the-
languagel(.A) is aHg-set, hence also X! -set for any countable ordinal > 2. Thus, fora: > 2,
the integerzy belongs to the seftz € N | L(C,) is in the Borel clas&? }.

But, by Theoreni 511, in the inner modelC V, thew-languagel(.A) is an analytic but non Borel
set so the integer, does not belong to the st € N | L(C,) is in the Borel classx?}.

On the other hand, Shoenfield’'s Absoluteness Theorem isfhla everyr}-set (respectively1}-

set) is absolute for all inner models of (ZF + DC), where (D€})He weak version of the axiom
of choice called the axiom of dependent choice which holdsaiticular in the inner moddl, see
[Jec02, page 490].

In particular, if the se{z € N | L(C,) is in the Borel clas&?} was alli-set, then it could not be a
different subset oN in the modelsV andL considered above. Therefore, for any countable ordinal
a > 2,theset{z € N | L(C,) is in the Borel clas&? } is not alli-set.

Items (2) and (3) follow similarly from Theoreim 5.1 and frothdg@nfield’s Absoluteness Theorem.
L]

In order to prove similar results for infinitary rational agbns accepted b3-~tape Blichi automata,
we shall use a construction from [Fin06b]. We proved_in [BioiPthat infinitary rational relations
have the same topological complexity.asanguages accepted by Biichi Turing machines. We used
a simulation of the behaviour of real timecounter automata b3-tape Biichi automata. We recall
now a coding which was used in [Fin06b].

We first define a coding of am-word over the finite alphabe? = {0,1, A, B,C, E, F'} by an
w-word over the alphab&?’ = Q U {D}, whereD is an additional letter not if2. Forxz € Q“ the
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w-word h(zx) is defined by :
h(x) = D.0.z(1).D.0%.2(2).D.0%.2(3).D ... D.0".z(n).D.0" " .x(n +1).D...
It is easy to see that the mappihdrom Q“ into (2 U {D})¥ is continuous and injective.

Let nowa be thew-word over the alphabe?’ which is simply defined by:
a=D.0.D.0>.D.03.D.0*.D...D.0".D.0""'.D...
The following results were proved in [Fin06b].

Lemma 5.4([Fin06k]). Let(2 be a finite alphabet such thate 2, « be thew-word overQ U {D}
defined as above, and C Q“ be inr-BCL(1),,. Then there exists an infinitary rational relation
Ry C(QU{D})¥ x (QU{D})¥ such that:

Vo e Q¥ (x € L) iff (h(z),a) € Ry)

[
Lemma 5.5([Fin06K]). The setRy, = (QU{D})*¥ x (QU{D})¥ — (h(2¥) x {a}) is an infinitary
rational relation. L]

Considering the uniorR; U R, of the two infinitary rational relations obtained in the twiooae
lemmas we get the following result.

Proposition 5.6([Fin06K]). Let L C O be inr-BCL(1),, and £ = h(L) U (h(£2¥))~. Then
R=Lx{a} (@) x (@) - {a})

is an infinitary rational relation. Moreover one can constteffectively, from a real tim&-counter
Biichi automatonA4 acceptingl., a 2-tape Bichi automatoris accepting the infinitary relatiork. [ ]

Let now A be the real timé-counter Biichi automaton constructed above and cited @aoféni 5.1L
and B be the2-tape Biichi automaton which can be constructed frdroy the above Proposition
[5.8. We can now state our second main result.

Theorem 5.7. The topological complexity of the infinitary rational relat L(5) is not determined
by the axiomatic syste@FC. Indeed it holds that :

(1) (ZFC + V=L). The relationL(B) is a true analytic set.
(2) (ZFC + w} < wy). The relationL(B) is aII-set.

Proof.

(1) Assume first thaV is a model of the axiomatic systedtC + V=L . In the modeN, by Corol-
lary[4.8 the largest thiiili-setC; is not a Borel set and by Theorédm15.1 thdanguagel(.A)
is a true analytic set.

On the other hand the functidnis continuous. Thus the functignfrom Q“ into (QU {D})“ x
(QU{D})~ defined byg(z) = (h(z), «) is also continuous. If the relatioh(B) was a Borel
set then thev-languagelL(A) = ¢~ (L(B)) would be also a Borel set as the inverse image of a
Borel set by a continuous function. Thus the relatici8) is not a Borel set.

(2) Assume now tha¥ is a model of ZFC + w! < wi). In the modeN, by Corollary(4.9, the
largest thinll}-setC; is aX9-set and by Theorei 5.1 thelanguagel (A) is aIly-set. It is
easy to prove thaf = h(L(A)) U (h(2¥))~ is also ally-set (this is due to the fact thatis
an homeomorphism betwe€lt and its imagé:(2*) which is a closed subset ¢ U {D})%,
see [Fin06b]). Then one can easily see that thelset {a} is also ally-set. But the set
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() x ((2)* — {a}) is an open hencBl-subset of Q U {D})* x (QU {D})~. Thus the
relationR = £ x {a} J ()“ x ((¥)* —{a}) is ally-subset of QU{D})* x (QU{D})*.[]

From now on we shall denofg the 2-tape Biichi automaton of index Then we recall the follow-
ing recent result which shows that topological propertiemfinitary rational relations are highly
undecidable.

Theorem 5.8( [Fin09L]). Let« be a non null countable ordinal. Then
(1) {z e N| L(7,) is in the Borel clas&! } is I13-hard.
(2) {z e N| L(7,) is in the Borel clasd1?} is IT3-hard.
(3) {# e N| L(7,) is a Borel sef} is II3-hard. O

We can now state that these decision problems are not indsel€}.

Theorem 5.9. Let« be a countable ordinal. Then
(1) Fora > 2,{z € N| L(T,) isin the Borel clas&?} is not all.-set.
(2) Fora > 2,{z € N| L(T,) isin the Borel clas41’ } is not all}-set.
(3) {z e N| L(7,) is a Borel set} is not alli-set.

Proof. We can reason as in the proof of Theofen 5.3 (in the caselafiguages of-counter Biichi
automata). We use Shoenfield’'s Absoluteness Theorem amaérhié. 7 instead of Theorém 5l1.

We consider now Biichi recognizable languages of infinitdupes. We shall use in the sequel a
result proved in[[Fin04, Fin09a] which we now recall.

Foro € ¥ = {0,1}* we denotes the w-picture whose first row is the-word ¢ and whose
other rows are labelled with the letter For anw-languagel C >* = {0, 1}* we denoteL’ the
language of infinite picturess® | o € L}.

Lemma 5.10([Fin04)). If L C ¢ is accepted by some Turing machine withizkBi acceptance
condition, thenZ? is Buchi recognizable by a finite tiling system. L]

Recall that forl" a finite alphabet having at least two letters, thel¥&t* of functions fromw x w
into I' is usually equipped with the product topology of the diseteipology onl". This topology
may be defined by the following distandelLet x andy in T'“*“ such thatr # y, then
d(z,y) = 2% where

n =min{p > 0| 3(i,7) z(i,7) # y(i,j) andi + j = p}.
Then the topological spadé’*“ is homeomorphic to the topological spdce, equipped with the
Cantor topology.
The setz«« of w-pictures overs, viewed as a topological subspace3f*“, is easily seen to
be homeomorphic to the topological space*~, via the mappingp : ¥¢* — X“*« defined by
o(p)(i,7) =p(i+ 1,7+ 1) forall p € ¢« andi, j € w.

Let now7 be a Buchi Turing machine accepting thdanguageC; . Using Lemmd.5.10 we can
construct a Buichi tiling syster§ accepting thev-picture languagéC; )°. We consider now the
topological complexity of this set(S) C ¥«
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It is then easy to see thatif C ¥« = {0,1}* is aIlIy-subset of* then thew-picture language
LY is aITy-subset o2, And if L C ¥* = {0,1}“ is not Borel then thes-picture languagé.’
is also not Borel. Then Corollariés #.8 dndl4.9 imply thedieihg result.

Theorem 5.11. The topological complexity of the-picture languageL(S) is not determined by
the axiomatic systeiFC. Indeed it holds that :

(1) (ZFC + V=L). Thew-picture languagel(S) is a true analytic set.
(2) (ZFC + wl < wy). Thew-picture languagel.(S) is aITy-set. L]

We have recently proved that the topological complexityedicture languages accepted by Biichi
tiling systems is highly undecidable. Below the Bichitjisystem of index is denoted bys, .

Theorem 5.12( [Ein09a]) Leta be a non null countable ordinal. Then

(1) {z e N| L(S,) isin the Borel clas?} is IT3-hard.
(2) {z € N| L(S,) is in the Borel clasd1?} is I13-hard.
(3) {z e N| L(S,) is a Borel set} is I1}-hard. [

As in the case ofu-languages of-counter automata or &-tape automata, we can now infer the
following result from Shoenfield’s Absoluteness Theoremd @heoreni 5.711.

Theorem 5.13. Leta be a countable ordinal. Then

(1) Fora >2,{z € N| L(S,) is in the Borel class! } is not alli-set.
(2) Fora >2,{z € N| L(S,) is in the Borel clasd19} is not all}-set.
(3) {z e N| L(S.) is a Borel set} is not all}-set. O

6. CONCLUDING REMARKS

We obtained surprising results which show that the topoligtomplexity of anuv-language ac-
cepted by d-counter Biichi automaton, of an infinitary rational radataccepted by 2-tape Bichi
automaton, or of a Biichi recognizable language of infinittupes, is not determined by the ax-
iomatic systenZFC.

We have inferred from the proof of the above results and frtnoeBfield’s Absoluteness Theorem
an improvement of the lower bound of some decision problemeantly studied il [Fin09b, Fin0Pa].

Recall that, by[[Fin09b, Remark 3.25], df is an ordinal smaller than the Church-Kleene ordinal
w{K, which is the first non-recursive ordinal, théa € N | L(C.) is in the Borel clas&?} (re-
spectively,{z € N | L(C,) is in the Borel classII?}) is a¥i-set. We now know that for > 2
(respectivelyn > 2), itis actually in the clasy? \ (33 UTIL) but the question is still open whether
these problems ael-complete. The exact complexity of being in the Borel clB8s(respectively,
1Y), for a countable ordinat, remains an open problem forlanguages of real time-counter au-
tomata (respectively, pushdown automatdape automata). and for Biichi recognizable languages
of infinite pictures.
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