
HAL Id: hal-00422538
https://hal.science/hal-00422538v3

Submitted on 19 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Complexity of Infinite Computations In Models of
Set Theory
Olivier Finkel

To cite this version:
Olivier Finkel. The Complexity of Infinite Computations In Models of Set Theory. Logical Methods
in Computer Science, 2009, 5 (4:4), pp.1-19. �hal-00422538v3�

https://hal.science/hal-00422538v3
https://hal.archives-ouvertes.fr


THE COMPLEXITY OF INFINITE COMPUTATIONS IN MODELS OF SET THE ORY

OLIVIER FINKEL

Equipe de Logique Mathématique, CNRS et Université Paris7, France.
e-mail address: finkel@logique.jussieu.fr

ABSTRACT. We prove the following surprising result: there exist a1-counter Büchi automatonA
and a2-tape Büchi automatonB such that :
(1) There is a modelV1 of ZFC in which theω-languageL(A) and the infinitary rational relation
L(B) areΠ

0
2-sets, and

(2) There is a modelV2 of ZFC in which theω-languageL(A) and the infinitary rational relation
L(B) are analytic but non Borel sets.
This shows that the topological complexity of anω-language accepted by a1-counter Büchi automa-
ton or of an infinitary rational relation accepted by a2-tape Büchi automaton is not determined by
the axiomatic systemZFC.
We show that a similar result holds for the class of languagesof infinite pictures which are recognized
by Büchi tiling systems.
We infer from the proof of the above results an improvement ofthe lower bound of some decision
problems recently studied in [Fin09b, Fin09a].

1. INTRODUCTION

Acceptance of infinite words by finite automata was firstly considered in the sixties by Büchi in
order to study the decidability of the monadic second order theory of one successor over the integers
[Büc62]. The class of regularω-languages has been intensively studied and many applications
have been found, see [Tho90, Sta97, PP04] for many results and references. Many extensions of
regularω-languages have been investigated as the classes ofω-languages accepted by1-counter
automata, pushdown automata,2-tape automata, Petri nets, Turing machines, see [Tho90, EH93,
Sta97, Fin08a] for a survey of this work.

A way to study the complexity of languages of infinite words accepted by finite machines is to study
their topological complexity and firstly to locate them withregard to the Borel and the projective
hierarchies. This work was analysed in [Sta86, Sta87, Tho90, Sim92, EH93, LT94, Sta97]. It is
well known that everyω-language accepted by a deterministic Büchi automaton is aΠ

0
2-set. This

implies that anyω-language accepted by a deterministic Muller automaton is aboolean combination
of Π

0
2-sets hence a∆0

3-set. But then it follows from Mc Naughton’s Theorem, that all regular
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2 OLIVIER FINKEL

ω-languages, which are accepted by deterministic Muller automata, are also∆0
3-sets. The Borel

hierarchy of regularω-languages is then determined. Moreover Landweber proved that one can
effectively determine the Borel complexity of a regularω-language accepted by a given Muller or
Büchi automaton, see [Lan69, Tho90, Sta97, PP04].

In recent papers [Fin06a, Fin08b] we have proved the following very surprising results. From the
topological point of view,1-counter Büchi automata and2-tape Büchi automata have the same ac-
cepting power as Turing machines equipped with a Büchi acceptance condition. In particular, for
every non null recursive ordinalα, there exist someΣ0

α-complete and someΠ0
α-complete1-counter

ω-languages (respectively, infinitary rational relations). And the supremum of the set of Borel ranks
of 1-counterω-languages (respectively, infinitary rational relations)is an ordinalγ1

2 which is strictly
greater than the first non recursive ordinalωCK

1 . Moreover we have proved that there is no general al-
gorithm to determine in an effective way the topological complexity of a given1-counterω-language
(respectively, infinitary rational relation). Topological properties of1-counterω-languages (respec-
tively, infinitary rational relations) are actually highlyundecidable: for any countable ordinalα,
“determine whether a given1-counterω-language (respectively, infinitary rational relation) isin the
Borel classΣ0

α (respectively,Π0
α)” is a Π1

2-hard problem, [Fin09b].

We prove here an even more amazing result which shows that SetTheory is actually very important
in the study of infinite computations. Recall that the usual axiomatic systemZFC is Zermelo-
Fraenkel systemZF plus the axiom of choiceAC. We prove that there exist a1-counter Büchi
automatonA and a2-tape Büchi automatonB such that :
(1) There is a modelV1 of ZFC in which theω-languageL(A) and the infinitary rational relation
L(B) areΠ

0
2-sets, and

(2) There is a modelV2 of ZFC in which theω-languageL(A) and the infinitary rational relation
L(B) are analytic but non Borel sets.
This shows that the topological complexity of anω-language accepted by a1-counter Büchi au-
tomaton or of an infinitary rational relation accepted by a2-tape Büchi automaton is not determined
by the axiomatic systemZFC.
We show that a similar result holds for the class of languagesof infinite pictures which are recog-
nized by Büchi tiling systems, recently studied by Altenbernd, Thomas and Wöhrle in [ATW03],
see also [Fin04, Fin09a].

In order to prove these results, we consider the largest thin(i.e., without perfect subset) effective
coanalytic subset of the Cantor space2ω. The existence of this largest thinΠ1

1-setC1 was proven by
Kechris in [Kec75] and independently by Guaspari and Sacks in [Gua73, Sac76]. By considering
the cardinal of this setC1 in different models of set theory, we show that its topological complexity
depends on the actual model ofZFC. Then we use some constructions from recent papers [Fin06a,
Fin06b, Fin09a] to infer our new results about1-counter or2-tape Büchi automata and Büchi tiling
systems. From the proof of the above results and from Shoenfield’s Absoluteness Theorem we
get an improvement of the lower bound of some decision problems recently studied in [Fin09b,
Fin09a]. We show that the problem to determine whether anω-language accepted by a given real
time 1-counter Büchi automaton (respectively, an infinitary rational relation accepted by a given
2-tape Büchi automaton) is in the Borel classΣ

0
α (respectively,Π0

α), for a countable ordinalα > 2
(respectively,α ≥ 2), is not in the classΠ1

2. A similar result holds for languages of infinite pictures
accepted by Büchi tiling systems.
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The paper is organized as follows. In Section 2 we recall definitions of counter automata,2-tape
automata, and tiling systems. We recall basic notions of topology in Section 3. Results on the largest
effective coanalytic set are stated in Section 4. We prove our main results in Section 5.

Notice that as the results presented in this paper might be ofinterest to both set theorists and the-
oretical computer scientists, we shall recall in detail in Section 2 some notions of automata theory
which are well known to computer scientists but not to set theorists. In a similar way we give in
Sections 3 and 4 a presentation of some results of set theory which are well known to set theorists
but not to computer scientists.

2. AUTOMATA

We assume now the reader to be familiar with the theory of formalω-languages [Tho90, Sta97]. We
shall follow usual notations of formal language theory.
WhenΣ is a finite alphabet, anon-empty finite wordoverΣ is any sequencex = a1 . . . ak, where
ai ∈ Σ for i = 1, . . . , k , andk is an integer≥ 1. The lengthof x is k, denoted by|x|. Theempty
word has no letter and is denoted byλ; its length is0. Σ⋆ is theset of finite words(including the
empty word) overΣ.
The first infinite ordinal is ω. An ω-word over Σ is anω -sequencea1 . . . an . . ., where for all
integersi ≥ 1, ai ∈ Σ. Whenσ is anω-word overΣ, we writeσ = σ(1)σ(2) . . . σ(n) . . ., where
for all i, σ(i) ∈ Σ, andσ[n] = σ(1)σ(2) . . . σ(n) for all n ≥ 1 andσ[0] = λ.
The usual concatenation product of two finite wordsu andv is denotedu.v (and sometimes just
uv). This product is extended to the product of a finite wordu and anω-word v: the infinite word
u.v is then theω-word such that:
(u.v)(k) = u(k) if k ≤ |u| , and(u.v)(k) = v(k − |u|) if k > |u|.
Theset of ω-wordsover the alphabetΣ is denoted byΣω. An ω-languageover an alphabetΣ is a
subset ofΣω. The complement (inΣω) of anω-languageV ⊆ Σω is Σω − V , denotedV −.
For a finitary languageV ⊆ Σ⋆, theω-power ofV is theω-language

V ω = {u1 . . . un . . . ∈ Σω | ∀i ≥ 1 ui ∈ V }

Abstract models of finite machines reading finite or infinite words have been considered in automata
theory, calculability and complexity theories. The simplest model of machine used for recognizabil-
ity of languages of (finite or infinite) words is the model of finite state machine. One can consider
that such a machineM has a semi infinite tape divided into cells. This tape contains at the begin-
ning the input word written from left to right, each letter being contained in a cell; in the case of a
finite input word, the remaining cells contain a special blank symbol. The machine has a reading
(only) head, placed at the beginning on the first cell. It has also a finite control, consisting of a finite
setK of states and a current state. There is a special stateq0 called the initial state and a setF ⊆ K
of final states. The reading of a word begins in stateq0; then the machine reads successively the
letters from left to right, changing the current state according to the transition relation which has a
finite description. The finite wordx is accepted byM if the reading ofx ends in a final state. An
infinite wordσ is accepted byM if some final state occurs infinitely often during the readingof σ.
We now give a formal definition of a finite state machine.

Definition 2.1. A finite state machine (FSM) is a quadrupleM = (K,Σ, δ, q0), whereK is a finite
set of states,Σ is a finite input alphabet,q0 ∈ K is the initial state andδ is a mapping fromK × Σ
into 2K .
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Let x = a1a2 . . . an be a finite word overΣ. A sequence of statesr = q1q2 . . . qnqn+1 is called a
run ofM onx iff:
1) q1 = q0 is the initial state, and
2) for eachi ≥ 1, qi+1 ∈ δ(qi, ai).
Let σ = a1a2 . . . an . . . be anω-word overΣ. A sequence of statesr = q1q2 . . . qn . . . is called an
(infinite) run ofM onσ iff:
1) q1 = q0 is the initial state, and
2) for eachi ≥ 1, qi+1 ∈ δ(qi, ai).
For every (infinite) runr = q1q2 . . . qn . . . of M, In(r) is the set of states entered infinitely often
by M during the runr.

Definition 2.2. An automaton is a 5-tupleM = (K,Σ, δ, q0, F ) whereM′ = (K,Σ, δ, q0) is a
finite state machine andF ⊆ K is the set of final states. The language accepted byM is the set of
finite wordsx such that there is a run ofM onx ending in a final state.

Definition 2.3. A Büchi automaton is a 5-tupleM = (K,Σ, δ, q0, F ) whereM′ = (K,Σ, δ, q0) is
a finite state machine andF ⊆ K is the set of final states. Theω-language accepted byM is

L(M) = {σ ∈ Σω | there exists a runr of M onσ such thatIn(r) ∩ F 6= ∅}.

Recall that a language (respectively,ω-language) is said to be regular iff it is accepted by an au-
tomaton (respectively, Büchi automaton). Anω-languageL is regular iff it belongs to theω-Kleene
closure of the class of finitary regular languages, i.e. iff there exist some regular languagesUi, Vi,
for i ∈ [1, n], such thatL =

⋃n
i=1 Ui.V

ω
i .

Notice that a finite state machine has only a bounded memory containing the current state of the
machine. More complicated machines have been considered which can store some unbounded
contents. In particular a counter machine has a finite set of counters, each of which containing a
non-negative integer. The machine can test whether the content of a given counter is zero or not.
And transitions depend on the letter read by the machine, thecurrent state of the finite control, and
the tests about the values of the counters. Each transition leads to another state, and values of the
counters can be increased by1 or decreased by1, providing that these values always remain non-
negatives. Notice that in this model someλ-transitions are allowed. During these transitions the
reading head of the machine does not move to the right, i.e. the machine does not read any more
letter.

We now recall the formal definition ofk-counter machine andk-counter Büchi automata which will
be useful in the sequel.

Definition 2.4. Let k be an integer≥ 1. A k-counter machine is a 4-tupleM=(K,Σ, ∆, q0),
whereK is a finite set of states,Σ is a finite input alphabet,q0 ∈ K is the initial state, and∆ ⊆
K× (Σ∪{λ})×{0, 1}k ×K×{0, 1,−1}k is the transition relation. Thek-counter machineM is
said to bereal timeiff: ∆ ⊆ K ×Σ×{0, 1}k ×K ×{0, 1,−1}k , i.e. iff there are noλ-transitions.
If the machineM is in stateq andci ∈ N is the content of theith counterCi then the configuration
(or global state) ofM is the(k + 1)-tuple(q, c1, . . . , ck).

For a ∈ Σ ∪ {λ}, q, q′ ∈ K and(c1, . . . , ck) ∈ N
k such thatcj = 0 for j ∈ E ⊆ {1, . . . , k} and

cj > 0 for j /∈ E, if (q, a, i1, . . . , ik, q
′, j1, . . . , jk) ∈ ∆ whereij = 0 for j ∈ E andij = 1 for

j /∈ E, then we write:

a : (q, c1, . . . , ck) 7→M (q′, c1 + j1, . . . , ck + jk)
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Thus we see that the transition relation must satisfy:
if (q, a, i1, . . . , ik, q

′, j1, . . . , jk) ∈ ∆ andim = 0 for somem ∈ {1, . . . , k}, thenjm = 0 or jm = 1
(but jm may not be equal to−1).

Letσ = a1a2 . . . an . . . be anω-word overΣ. Anω-sequence of configurationsr = (qi, c
i
1, . . . c

i
k)i≥1

is called a run ofM onσ, starting in configuration(p, c1, . . . , ck), iff:
(1) (q1, c

1
1, . . . c

1
k) = (p, c1, . . . , ck)

(2) for eachi ≥ 1, there existsbi ∈ Σ∪{λ} such thatbi : (qi, c
i
1, . . . c

i
k) 7→M (qi+1, c

i+1
1 , . . . ci+1

k )
and such that eithera1a2 . . . an . . . = b1b2 . . . bn . . .
or b1b2 . . . bn . . . is a finite prefix ofa1a2 . . . an . . .

The runr is said to be complete whena1a2 . . . an . . . = b1b2 . . . bn . . .
For every such run,In(r) is the set of all states entered infinitely often during the run r.
A complete runr of M onσ, starting in configuration(q0, 0, . . . , 0), will be simply called “a run of
M onσ”.

Definition 2.5. A Büchik-counter automaton is a 5-tupleM=(K,Σ,∆, q0,F ), whereM′=(K,Σ,∆,
q0) is ak-counter machine andF ⊆ K is the set of accepting states. Theω-language accepted by
M isL(M)= {σ ∈ Σω | there exists a run r ofM onσ such thatIn(r) ∩ F 6= ∅}.

The class ofω-languages accepted by Büchik-counter automata will be denotedBCL(k)ω . The
class ofω-languages accepted byreal timeBüchik-counter automata will be denotedr -BCL(k)ω.

Remark that the1-counter automata introduced above are equivalent to the pushdown automata
whose stack alphabet is in the form{Z0, A} whereZ0 is the bottom symbol which always remains
at the bottom of the stack and appears only there andA is another stack symbol, see [ABB96].
The classBCL(1)ω is a strict subclass of the classCFLω of context freeω-languages accepted
by Büchi pushdown automata. Notice that anω-languageL is in the classBCL(1)ω (respec-
tively, CFLω) iff it belongs to theω-Kleene closure of the class of finitary languages accepted by
1-counter automata (respectively, pushdown automata), i.e. iff there exist some1-counter (respec-
tively, context-free) languagesUi, Vi, for i ∈ [1, n], such thatL =

⋃n
i=1 Ui.V

ω
i , see [Sta97, Fin06a,

Fin08a].

We shall consider also the notion of acceptance of binary relations over infinite words by2-tape
Büchi automata, firstly considered by Gire and Nivat in [Gir81, GN84]. A2-tape automaton is
an automaton having two tapes and two reading heads, one for each tape, which can move asyn-
chronously, and a finite control as in the case of a (1-tape) automaton. The automaton reads a pair
of (infinite) words(u, v) whereu is on the first tape andv is on the second tape. Such automata
can also be considered for the reading of pairs of finite wordsbut we shall only need here the case
of infinite words. We now recall the formal definition of2-tape Büchi automata and of infinitary
rational relations.

Definition 2.6. A 2-tape Büchi automaton is a6-tuple T = (K,Σ1,Σ2,∆, q0, F ), whereK is a
finite set of states,Σ1 andΣ2 are finite alphabets,∆ is a finite subset ofK × Σ⋆

1 × Σ⋆
2 ×K called

the set of transitions,q0 is the initial state, andF ⊆ K is the set of accepting states.
A computationC of the 2-tape Büchi automatonT is an infinite sequence of transitions

(q0, u1, v1, q1), (q1, u2, v2, q2), . . . (qi−1, ui, vi, qi), (qi, ui+1, vi+1, qi+1), . . .

The computation is said to be successful iff there exists a final stateqf ∈ F and infinitely many
integersi ≥ 0 such thatqi = qf . The input word of the computation isu = u1.u2.u3 . . . The output
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word of the computation isv = v1.v2.v3 . . . Here the input and the output words may be finite or
infinite.
The infinitary rational relationL(T ) ⊆ Σω

1 × Σω
2 accepted by the 2-tape Büchi automatonT is

the set of pairs(u, v) ∈ Σω
1 × Σω

2 such thatu andv are the input and the output words of some
successful computationC of T .

Remark 2.7. An infinitary rational relationL(T ) ⊆ Σω
1 × Σω

2 may be seen as anω-language over
the product alphabetΣ1 × Σ2.

In the sequel, we will also consider the notion of recognizable language of infinite pictures. We
recall first some basic definitions about languages of infinite two-dimensional words, i.e., languages
of infinite pictures.

Let Σ be a finite alphabet and# be a letter not inΣ and letΣ̂ = Σ∪ {#}. An ω-picture overΣ is a
functionp from ω×ω into Σ̂ such thatp(i, 0) = p(0, i) = # for all i ≥ 0 andp(i, j) ∈ Σ for i, j >
0. For each integerj ≥ 1, thejth row of theω-picturep is the infinite wordp(1, j).p(2, j).p(3, j) . . .
overΣ and thejth column ofp is the infinite wordp(j, 1).p(j, 2).p(j, 3) . . . overΣ. The set ofω-
pictures overΣ is denoted byΣω,ω. An ω-picture languageL is a subset ofΣω,ω.

In [ATW03], Altenbernd, Thomas and Wöhrle have consideredacceptance of languages of infinite
two-dimensional words (infinite pictures) by finite tiling systems, with the usual acceptance condi-
tions, such as the Büchi and Muller ones, firstly used for infinite words. They showed that Büchi
and Muller acceptance conditions lead to the same class of recognizable languages of infinite pic-
tures. So we shall only recall the notion of Büchi recognizable languages of infinite pictures, see
[ATW03, Fin04, Fin09a] for more details.

A tiling system is a tupleA=(Q,Σ,∆), whereQ is a finite set of states,Σ is a finite alphabet,
∆ ⊆ (Σ̂ ×Q)4 is a finite set of tiles.
A Büchi tiling system is a pair(A,F ) whereA=(Q,Σ,∆) is a tiling system andF ⊆ Q is the set
of accepting states.

Tiles are denoted by

(

(a3, q3) (a4, q4)
(a1, q1) (a2, q2)

)

with ai ∈ Σ̂ andqi ∈ Q,

and in general, over an alphabetΓ, by

(

b3 b4
b1 b2

)

with bi ∈ Γ.

A combination of tiles is defined by:
(

b3 b4
b1 b2

)

◦

(

b′3 b′4
b′1 b′2

)

=

(

(b3, b
′
3) (b4, b

′
4)

(b1, b
′
1) (b2, b

′
2)

)

Definition 2.8. LetA=(Q,Σ,∆) be a tiling system, andF ⊆ Q be the set of accepting states.
A run of the tiling systemA=(Q,Σ,∆) over anω-picturep ∈ Σω,ω is a mappingρ from ω×ω into
Q such that for all(i, j) ∈ ω × ω with p(i, j) = ai,j andρ(i, j) = qi,j we have

(

ai,j+1 ai+1,j+1

ai,j ai+1,j

)

◦

(

qi,j+1 qi+1,j+1

qi,j qi+1,j

)

∈ ∆.

Theω-picture languageL((A,F )) Büchi-recognized by(A,F ) is the set ofω-picturesp ∈ Σω,ω

such that there is some runρ of A onp andρ(v) ∈ F for infinitely manyv ∈ ω2.



THE COMPLEXITY OF INFINITE COMPUTATIONS IN MODELS OF SET THEORY 7

An interesting variation of the above defined reognizability condition for infinite pictures uses the
diagonal of anω-picture. The diagonal of anω-picturep is the set of verticesDi(p) = {(i, i) | i ∈
ω}.

Theω-picture language Büchi-recognized by(A,F ) on the diagonalis the set ofω-picturesp ∈
Σω,ω such that there is some runρ of A onp andρ(v) ∈ F for infinitely manyv ∈ Di(p).

The following result was stated in [ATW03].

Theorem 2.9. Anω-picture languageL ⊆ Σω,ω is Büchi-recognized by a tiling system if and only
if it is Büchi-recognized on the diagonal by a tiling system.

We can state some links with classical notions of tiling of the (quarter of the) plane, see for instance
[BJ08].

We denoteΓ = Σ̂ × Q whereΣ is the alphabet of pictures andQ is the set of states of a tiling
systemA=(Q,Σ,∆). We consider configurations which are elements ofΓω×ω. One can imagine
that each cell of the quarter of the plane contains a letter ofthe alphabetΓ.
Let ∆ ⊆ (Σ̂ × Q)4 = Γ4 be a finite set of tiles. We denote its complement by∆− = Γ4 − ∆. A
tiling of the (quarter of the) plane with∆− as set of forbidden patterns is simply a configuration
c ∈ Γω×ω such that for all integersi, j ∈ ω:

(

c(i, j + 1) c(i+ 1, j + 1)
c(i, j) c(i + 1, j)

)

∈ ∆.

Then theω-picture languageL ⊆ Σω,ω which is Büchi-recognizedon the diagonalby the tiling
system(A,F ) is simply the set ofω-picturesp ∈ Σω,ω which are projections of configurations
c ∈ Γω×ω which are tilings of the (quarter of the) plane with∆− as set of forbidden patterns such
that for infinitely manyi ∈ ω the second component ofc(i, i) is inF .

3. TOPOLOGY

We assume the reader to be familiar with basic notions of topology which may be found in [Mos80,
LT94, Kec95, Sta97, PP04]. There is a natural metric on the set Σω of infinite words over a finite
alphabetΣ containing at least two letters which is called theprefix metricand defined as follows.
For u, v ∈ Σω andu 6= v let δ(u, v) = 2−lpref(u,v) wherelpref(u,v) is the first integern such that
the (n + 1)st letter ofu is different from the(n + 1)st letter ofv. This metric induces onΣω the
usual Cantor topology for whichopen subsetsof Σω are in the formW.Σω, whereW ⊆ Σ⋆. A set
L ⊆ Σω is aclosed setiff its complementΣω − L is an open set. Define now theBorel Hierarchy
of subsets ofΣω:

Definition 3.1. For a non-null countable ordinalα, the classesΣ0
α andΠ

0
α of the Borel Hierarchy

on the topological spaceΣω are defined as follows:
Σ

0
1 is the class of open subsets ofΣω, Π0

1 is the class of closed subsets ofΣω,
and for any countable ordinalα ≥ 2:
Σ

0
α is the class of countable unions of subsets ofΣω in

⋃

γ<α Π
0
γ .

Π
0
α is the class of countable intersections of subsets ofΣω in

⋃

γ<α Σ
0
γ .
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Recall some basic results about these classes. The Borel classes are closed under finite intersections
and unions, and continuous preimages. Moreover,Σ

0
ξ is closed under countable unions, andΠ

0
ξ

under countable intersections. As usual the ambiguous class∆
0
ξ is the classΣ0

ξ ∩ Π
0
ξ .

The class ofBorel setsis ∆
1
1 :=

⋃

ξ<ω1
Σ

0
ξ =

⋃

ξ<ω1
Π

0
ξ , whereω1 is the first uncountable ordinal.

The class of Borel sets is the closure of the class of open setsunder countable union and countable
intersection. It is also the closure of the class of open setsunder countable union (respectively,
intersection) and complementation.

TheBorel hierarchyis as follows:

Σ
0
1 =open Σ

0
2 . . . Σ

0
ω . . .

∆
0
1 =clopen ∆

0
2 ∆

0
ω ∆

1
1

Π
0
1 =closed Π

0
2 . . . Π

0
ω . . .

This picture means that any class is contained in every classto the right of it, and the inclusion is
strict in any of the spacesΣω.
For a countable ordinalα, a subset ofΣω is a Borel set ofrank α iff it is in Σ

0
α ∪ Π

0
α but not in

⋃

γ<α(Σ0
γ ∪ Π

0
γ).

There are also some subsets ofΣω which are not Borel. Indeed there exists another hierarchy beyond
the Borel hierarchy, which is called the projective hierarchy and which is obtained from the Borel
hierarchy by successive applications of operations of projection and complementation. The first
level of the projective hierarchy is formed by the class ofanalytic setsand the class ofco-analytic
setswhich are complements of analytic sets. In particular the class of Borel subsets ofΣω is strictly
included into the classΣ1

1 of analytic setswhich are obtained by projection of Borel sets.

Definition 3.2. A subsetA of Σω is in the classΣ1
1 of analyticsets iff there exists another finite set

Y and a Borel subsetB of (Σ × Y )ω such thatx ∈ A ↔ ∃y ∈ Y ω such that(x, y) ∈ B, where
(x, y) is the infinite word over the alphabetΣ×Y such that(x, y)(i) = (x(i), y(i)) for each integer
i ≥ 1.

Remark 3.3. In the above definition we could takeB in the classΠ0
2. Moreover analytic subsets

of Σω are the projections ofΠ0
1-subsets ofΣω × ωω, whereωω is the Baire space, [Mos80].

By Suslin’s Theorem it holds that a subsetA of Σω is Borel iff it is analyticand coanalytic, i.e.
∆

1
1 = Π

1
1∩Σ

1
1. A setA which is analytic but not coanalytic, or equivalently analytic but not Borel,

is called atrue analytic set.

We now define completeness with regard to reduction by continuous functions. For a countable
ordinalα ≥ 1, a setF ⊆ Σω is said to be aΣ0

α (respectively,Π0
α, Σ1

1)-complete setiff for any set
E ⊆ Y ω (with Y a finite alphabet):E ∈ Σ

0
α (respectively,E ∈ Π

0
α, E ∈ Σ

1
1) iff there exists a

continuous functionf : Y ω → Σω such thatE = f−1(F ).
Recall that a setX ⊆ Σω is aΣ

0
α (respectivelyΠ0

α)-complete subset ofΣω iff it is in Σ
0
α but not

in Π
0
α (respectively inΠ0

α but not inΣ
0
α), [Kec95].Σ0

n (respectivelyΠ0
n)-complete sets, withn an

integer≥ 1, are thoroughly characterized in [Sta86].

In particular, the singletons of2ω areΠ
0
1-complete subsets of2ω. Theω-languageR = (0⋆.1)ω is a

well known example ofΠ0
2-complete subset of{0, 1}ω . It is the set ofω-words over{0, 1} having
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infinitely many occurrences of the letter1. Its complement{0, 1}ω − (0⋆.1)ω is a Σ
0
2-complete

subset of{0, 1}ω .

We recall now the definition of the arithmetical hierarchy ofω-languages which form the effective
analogue to the hierarchy of Borel sets of finite ranks.
Let X be a finite alphabet. Anω-languageL ⊆ Xω belongs to the classΣn if and only if there
exists a recursive relationRL ⊆ (N)n−1 ×X⋆ such that

L = {σ ∈ Xω | ∃a1 . . . Qnan (a1, . . . , an−1, σ[an + 1]) ∈ RL}

whereQi is one of the quantifiers∀ or∃ (not necessarily in an alternating order). Anω-languageL ⊆
Xω belongs to the classΠn if and only if its complementXω − L belongs to the classΣn. The
inclusion relations that hold between the classesΣn andΠn are the same as for the corresponding
classes of the Borel hierarchy. The classesΣn andΠn are included in the respective classesΣ

0
n and

Σ
0
n of the Borel hierarchy, and cardinality arguments suffice toshow that these inclusions are strict.

As in the case of the Borel hierarchy, projections of arithmetical sets (of the secondΠ-class) lead
beyond the arithmetical hierarchy, to the analytical hierarchy ofω-languages. The first class of this
hierarchy is the (lightface) classΣ1

1 of effective analytic setswhich are obtained by projection of
arithmetical sets. Anω-languageL ⊆ Xω belongs to the classΣ1

1 if and only if there exists a
recursive relationRL ⊆ N × {0, 1}⋆ ×X⋆ such that:

L = {σ ∈ Xω | ∃τ(τ ∈ {0, 1}ω ∧ ∀n∃m((n, τ [m], σ[m]) ∈ RL))}

Then anω-languageL ⊆ Xω is in the classΣ1
1 iff it is the projection of anω-language over the

alphabetX × {0, 1} which is in the classΠ2. The (lightface) classΠ1
1 of effective co-analytic sets

is simply the class of complements of effective analytic sets. We denote as usual∆1
1 = Σ1

1 ∩ Π1
1.

Recall that anω-languageL ⊆ Xω is in the classΣ1
1 iff it is accepted by a non deterministic Turing

machine (readingω-words) with a Büchi or Muller acceptance condition [CG78,Sta97].

4. THE LARGEST THIN EFFECTIVE COANALYTIC SET

We now recall some basic notions of set theory which will be useful in the sequel, and which are
exposed in any textbook on set theory, such as [Jec02].

The usual axiomatic systemZFC is Zermelo-Fraenkel systemZF plus the axiom of choiceAC. A
model (V, ∈) of the axiomatic systemZFC is a collectionV of sets, equipped with the membership
relation∈, where “x ∈ y” means that the setx is an element of the sety, which satisfies the axioms
of ZFC. We shall often say “ the modelV” instead of “the model (V, ∈)”.

The axioms ofZFC express some natural facts that we consider to hold in the universe of sets. For
instance a natural fact is that two setsx andy are equal iff they have the same elements. This is
expressed by the sentence:

∀x∀y [ x = y ↔ ∀z(z ∈ x↔ z ∈ y) ]

The above sentence is theAxiom of Extensionality.
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Another natural axiom is thePairing Axiomwhich states that for all setsx andy there exists a set
z = {x, y} whose elements arex andy:

∀x∀y [ ∃z(∀w(w ∈ z ↔ (w = x ∨ w = y)))]

Similarly thePowerset Axiomstates the existence of the set of subsets of a setx.

The Separation Schema is in fact an infinite set of axioms. Foreach first-order formulaϕ, with
free variablez, in the language of set theory with the equality symbol and the binary symbol∈, the
following axiom states the existence of the sety = {z ∈ x | ϕ(z)} of elements of a setx which
satisfyϕ.

∀x[∃y(∀z(z ∈ y ↔ (z ∈ x ∧ ϕ(z))))]

The other axioms ofZFC are the Union Axiom, the Replacement Schema, the Infinity Axiom, the
Foundation Axiom, and the Axiom of Choice. We refer the reader to any textbook on set theory,
like [Jec02], for an exposition of these axioms.

We recall that the infinite cardinals are usually denoted byℵ0,ℵ1,ℵ2, . . . ,ℵα, . . . The cardinalℵα

is also denoted byωα, as usual when it is considered as an ordinal.

The continuum hypothesisCH says that the first uncountable cardinalℵ1 is equal to2ℵ0 which is
the cardinal of the continuum. Gödel and Cohen have proved that the continuum hypothesisCH
is independent from the axiomatic systemZFC. This means that there are some models ofZFC +
CH and also some models ofZFC + ¬ CH, where¬ CH denotes the negation of the continuum
hypothesis, [Jec02].

Let ON be the class of all ordinals. Recall that an ordinalα is said to be a successor ordinal iff
there exists an ordinalβ such thatα = β + 1; otherwise the ordinalα is said to be a limit ordinal
and in that caseα = sup{β ∈ ON | β < α}.

The classL of constructible setsin a modelV of ZF is defined by

L =
⋃

α∈ON

L(α)

where the setsL(α) are constructed by induction as follows:

(1) L(0) = ∅
(2) L(α) =

⋃

β<α L(β), for α a limit ordinal, and
(3) L(α+ 1) is the set of subsets ofL(α) which are definable from a finite number of elements

of L(α) by a first-order formula relativized toL(α).

If V is a model ofZF andL is the class ofconstructible setsof V, then the classL forms a model of
ZFC + CH . Notice that the axiom (V=L ) means “every set is constructible” and that it is consistent
with ZFC.

Consider now a modelV of the axiomatic systemZFC and the class of constructible setsL ⊆ V

which forms another model ofZFC. It is known that the ordinals ofL are also the ordinals ofV.
But the cardinals inV may be different from the cardinals inL .

In the sequel we shall consider in particular the first uncountable cardinal inL ; it is denotedℵL
1 . It

is in fact an ordinal ofV which is denotedωL
1 . It is known that this ordinal satisfies the inequality
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ωL
1 ≤ ω1. In a modelV of the axiomatic systemZFC + V=L the equalityωL

1 = ω1 holds. But
in some other models ofZFC the inequality may be strict and thenωL

1 < ω1. This is explained in
[Jec02, page 202]: one can start from a modelV of ZFC + V=L and construct by forcing a generic
extensionV[G] in which the cardinalsω andω1 are collapsed; in this extension the inequality
ωL

1 < ω1 holds.

We now recall the notion of perfect set.

Definition 4.1. Let P ⊆ Σω, whereΣ is a finite alphabet having at least two letters. The setP is
said to be a perfect subset ofΣω if and only if :
(1) P is a non-empty closed set, and
(2) for everyx ∈ P and every open setU containingx there is an elementy ∈ P ∩ U such that
x 6= y.

So a perfect subset ofΣω is a non-empty closed set which has no isolated points. It is well known
that a perfect subset ofΣω has cardinality2ℵ0 , i.e. the cardinality of the continuum, see [Mos80,
page 66]. We recall now the definition of theperfect set propertyand some known results for Borel
or analytic sets.

Definition 4.2. A classΓ of subsets ofΣω has the perfect set property iff each setX ∈ Γ is either
countable or contains a perfect subset.

Theorem 4.3(see [Mos80, Kec95]). The class of analytic subsets ofΣω has the perfect set property.
In particular, the continuum hypothesis is satisfied for analytic sets: every analytic set is either
countable or has cardinality2ℵ0 .

On the other hand, “the perfect set property for the class of (effective) coanalytic subsets ofΣω”
is actually independent from the axiomatic systemZFC. This fact follows easily, as we shall see
below, from a result about the largest thin effective coanalytic set.

We first recall the notion of thin subset ofΣω.

Definition 4.4. A setX ⊆ Σω is said to be thin iff it contains no perfect subset.

The important following result was proved by Kechris [Kec75] and independently by Guaspari
[Gua73] and Sacks [Sac76].

Theorem 4.5(see [Mos80] page 247). LetΣ be a finite alphabet having at least two letters. There
exists a thinΠ1

1-setC1(Σ
ω) ⊆ Σω which contains every thin,Π1

1-subset ofΣω. It is called the
largest thinΠ1

1-set inΣω.

Notice that the existence of the largest thinΠ1
1-set inΣω is proved from the axiomatic systemZFC,

i.e. Zermelo-Fraenkel systemZF plus the axiom of choiceAC, and even if we replace the axiom of
choice by a weaker version called the axiom of dependent choiceDC.

An important fact is that the cardinality of the largest thinΠ1
1-set inΣω may depend on the model

of ZFC.

We can now state Kechris’s result on the cardinality of the largest thinΠ1
1-set, proved independently

by Guaspari and Sacks, see also [Kan97, page 171].

Theorem 4.6. (ZFC) The cardinal of the largest thinΠ1
1-set inΣω is equal to the cardinal ofωL

1 .
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Notice that this means that in a given modelV of ZFC the cardinal of the largest thinΠ1
1-set inΣω

is equal to the cardinalin V of the ordinalωL
1 which plays the role of the cardinalℵ1 in the inner

modelL of constructible sets ofV.

There exists also a largest thinΠ1
1-set in the Baire spaceωω. By [Mos80, Exercise 4F.7, page 251]

the cardinal of the largest thinΠ1
1-set in the Baire space is equal to the cardinal of the largestthin

Π1
1-set in any Cantor spaceΣω whereΣ is finite and has at least two elements.

We can now easily state the following result.

Corollary 4.7. The perfect set property for the class of effective coanalytic subsets ofΣω is inde-
pendent from the axiomatic systemZFC. Indeed it holds that :

(1) (ZFC + V=L ). The class of effective coanalytic subsets ofΣω does not have the perfect set
property.

(2) (ZFC + ωL
1 < ω1). The class of effective coanalytic subsets ofΣω has the perfect set

property.

Proof.

(1) Assume first thatV is a model of the axiomatic systemZFC + V=L . In this model the cardinal
of the largest thinΠ1

1-set inΣω is equal toωL
1 = ω1. ThusC1(Σ

ω) is not countable but it
contains no perfect subset, hence the class of effective coanalytic subsets ofΣω does not have
the perfect set property.

(2) Assume now thatV is a model of the axiomatic systemZFC + ωL
1 < ω1. In this model the

largest thinΠ1
1-set inΣω is countable. Thus every effective coanalytic subset ofΣω is either

thin and countable or contains a perfect subset, hence the class of effective coanalytic subsets
of Σω has the perfect set property.

Notice that, by [Kan97, Theorem 14.10, page 184 and Theorem 11.6, page 136], the perfect set
property for the class of all (boldface)Π1

1-subsets ofΣω is equiconsistent with the existence of an
inaccessible cardinal, which is alarge cardinal. The axiom “there exists an inaccessible cardinal”
is a “large cardinal axiom”; its consistency can not be proved in ZFC. Thus the consistency of the
perfect set property for the class ofΠ

1
1-subsets ofΣω can not be proved inZFC. We refer the reader

to [Kan97] for an exposition of these results, which will notbe necessary in this paper.

On the other hand, if in a modelV of ZFC the class ofΠ1
1-subsets ofΣω has not the perfect property,

then we cannot infer from this property that the continuum hypothesis is satisfied forΠ1
1-subsets

of Σω. However every coanalytic set is the union ofℵ1 Borel sets, and this implies that every
coanalytic set is either countable, or of cardinalityℵ1, or of cardinality2ℵ0 , see [Jec02, Corollary
25.16, page 488].

We can now state the following results which will be useful inthe sequel.

Corollary 4.8. (ZFC + V=L ) The largest thinΠ1
1-set inΣω is not a Borel set.

Proof. In the modelL , the cardinal of the largest thinΠ1
1-set inΣω is equal to the cardinal ofωL

1 .
Moreover the continuum hypothesis is satisfied thus2ℵ

L

0 = ωL
1 .

Thus the largest thinΠ1
1-set inΣω has the cardinality of the continuum. But it has no perfect subset

and the class of Borel sets has the perfect set property. Thusthe largest thinΠ1
1-set inΣω can not

be a Borel set.
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Corollary 4.9. (ZFC + ωL
1 < ω1) The largest thinΠ1

1-set inΣω is countable, hence aΣ0
2-set.

Proof. Let V be a model of (ZFC + ωL
1 < ω1). In this modelω1 is the first uncountable ordinal.

ThusωL
1 < ω1 implies thatωL

1 is a countable ordinal inV. Its cardinal isℵ0 and it is also the
cardinal of the largest thinΠ1

1-set inΣω. Thus the setC1(Σ
ω) is countable. But for everyx ∈ Σω

the singleton{x} is a closed subset ofΣω. Thus the largest thinΠ1
1-set inΣω is a countable union

of closed sets, i.e. aΣ0
2-subset ofΣω.

5. COMPLEXITY OF INFINITE COMPUTATIONS

There are several characterizations of the largest thinΠ1
1-set inΣω, see [Kec75, Mos80]. Moschovakis

gave in [Mos80, page 248] aΠ1
1-formulaφ defining the setC1(Σ

ω). Notice that all subformulas of
this formula are themselves given previously in the book [Mos80].

From now on we shall simply denote byC1 the largest thinΠ1
1-set in{0, 1}ω = 2ω.

This setC1 is aΠ1
1-set defined by aΠ1

1-formulaφ. Thus its complementC−
1 = 2ω − C1 is aΣ1

1-set
defined by theΣ1

1-formulaψ = ¬φ.

Recall that one can construct, from theΣ1
1-formula ψ defining C−

1 , a Büchi Turing machineT
accepting theω-languageC−

1 , see [Sta97]. We can then construct from the Büchi Turing machine
T , using a classical construction (see for instance [HMU01]), a 2-counter Büchi automatonA1

accepting the sameω-language.

We are now going to recall some constructions which were usedin a previous paper [Fin06a] to
study topological properties of context-freeω-languages, and which will be useful in the sequel.

Let Σ = {0, 1}, E be a new letter not inΣ, S be an integer≥ 1, andθS : Σω → (Σ∪ {E})ω be the
function defined, for allx ∈ Σω, by:

θS(x) = x(1).ES .x(2).ES2
.x(3).ES3

.x(4) . . . x(n).ESn

.x(n+ 1).ESn+1
. . .

We proved in [Fin06a] that ifL ⊆ Σω is anω-language in the classBCL(2)ω andk = cardinal(Σ)+
2, S = (3k)3, then one can construct effectively, from a Büchi2-counter automatonA1 accepting
L, a real time Büchi8-counter automatonA2 such thatL(A2) = θS(L).

We used also in [Fin06a] another coding which we now recall. LetK = 2× 3× 5× 7× 11× 13×
17× 19 = 9699690 be the product of the eight first prime numbers. LetΓ be a finite alphabet; here
we shall setΓ = Σ ∪ {E}. An ω-wordx ∈ Γω is coded by theω-word

hK(x) = A.CK .x(1).B.CK2
.A.CK2

.x(2).B.CK3
.A.CK3

.x(3).B . . . B.CKn

.A.CKn

.x(n).B . . .

over the alphabetΓ1 = Γ ∪ {A,B,C}, whereA,B,C are new letters not inΓ. We proved in
[Fin06a] that, from a real time Büchi8-counter automatonA2 acceptingL(A2) ⊆ Γω, one can ef-
fectively construct a Büchi1-counter automatonA3 accepting theω-languagehK(L(A2))∪hK(Γω)−.

Consider now the mappingφK : (Γ∪{A,B,C})ω → (Γ∪{A,B,C, F})ω which is simply defined
by: for all x ∈ (Γ ∪ {A,B,C})ω ,

φK(x) = FK−1.x(1).FK−1.x(2) . . . FK−1.x(n).FK−1.x(n+ 1).FK−1 . . .
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Then theω-languageφK(L(A3)) = φK(hK(L(A2))∪hK(Γω)−) is accepted by a real time Büchi
1-counter automatonA4 which can be effectively constructed from the real time Büchi 8-counter
automatonA2, [Fin06a].

We can now use these previous constructions to obtain our first main result.

From now on we consider that we have obtained, from a Büchi Turing machineT accepting the
ω-languageC−

1 ⊆ Σω = 2ω, a 2-counter Büchi automatonA1 accepting the sameω-language,
and then a real time Büchi8-counter automatonA2 accepting theω-languageL(A2) = θS(C−

1 ),
whereS = (3 × 4)3 = (12)3. Next, following the above construction, we have a Büchi1-counter
automatonA3 accepting theω-languagehK(L(A2))∪hK(Γω)−, and a real time Büchi1-counter
automatonA4 accepting theω-languageφK(L(A3)). In the sequel we shall denote simplyA4 by
A.

Theorem 5.1. LetA be the real-time1-counter B̈uchi automaton constructed above. The topolog-
ical complexity of theω-languageL(A) is not determined by the axiomatic systemZFC. Indeed it
holds that :

(1) (ZFC + V=L ). Theω-languageL(A) is a true analytic set.
(2) (ZFC + ωL

1 < ω1). Theω-languageL(A) is aΠ
0
2-set.

Proof.

(1) Assume first thatV is a model of the axiomatic systemZFC + V=L . In the modelV, by Corol-
lary 4.8 the largest thinΠ1

1-setC1 is not a Borel set. Thus theω-languageC−
1 = L(A1) is

not a Borel set because the class of Borel subsets of2ω is closed under complementation. The
ω-languageL(A2) = θS(C−

1 ) cannot be a Borel set. Indeed the functionθS is continuous
and if L(A2) was Borel then theω-languageC−

1 = θ−1
S (L(A2)) would be Borel too as the

inverse image of a Borel set by a continuous function. Next wecan see that theω-language
L(A3) = hK(L(A2))∪hK(Γω)− is not Borel. Indeed the functionhK is also continuous
and if L(A3) was Borel then theω-languageL(A2) = h−1

K (L(A3)) would be Borel too as
the inverse image of a Borel set by a continuous function. Finally we can see that theω-
languageL(A) = φK(L(A3)) is not Borel. Otherwise, the functionφK being continuous, the
ω-languageL(A3) = φ−1

K (L(A)) would be Borel too as the inverse image of a Borel set by a
continuous function. Thus theω-languageL(A) is an analytic but non Borel set.

(2) Assume now thatV is a model of (ZFC + ωL
1 < ω1). In the modelV, by Corollary 4.9, the

largest thinΠ1
1-setC1 is aΣ

0
2-set. Thus its complementC−

1 = L(A1) is aΠ
0
2-set. It is then

proved in [Fin06a] that theω-languagesL(A2) = θS(C−
1 ), L(A3) = hK(L(A2))∪hK(Γω)−,

and finallyL(A) = φK(L(A3)), are alsoΠ0
2-sets.

We can now improve a recent result from [Fin09b]. It is very natural to ask whether one can
effectively determine the topological complexity of anω-language accepted by a given real-time
1-counter Büchi automaton (respectively, Büchi pushdownautomaton). We had previously shown
that this is not possible: For any countable ordinalα, it is undecidable whether anω-language
accepted by a given Büchi pushdown automaton is aΣ

0
α-set (respectively, aΠ0

α-set, a Borel set),
[Fin03]. Moreover we have recently proved in [Fin09b] that these decision problems are actually
Π1

2-hard. Notice that hereΠ1
2 is a class of the analytical hierarchy on subsets ofN. The notions of

analytical hierarchy and of complete sets for classes of this hierarchy may be found for instance in
the textbooks [Rog67, Odi89, Odi99].
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A real-time1-counter Büchi automatonC has a finite description to which can be associated, in an
effective way, a unique natural number called the index ofC. We have then a Gödel numbering of
real-time1-counter Büchi automata. From now on, we shall denote, as in[Fin09b],Cz the real time
Büchi 1-counter automaton of indexz (reading words overΩ = {0, 1, A,B,C,E, F}). The above
cited result can be now formally stated as follows.

Theorem 5.2([Fin09b]). Letα be a countable ordinal. Then

(1) {z ∈ N | L(Cz) is in the Borel classΣ0
α} is Π1

2-hard.
(2) {z ∈ N | L(Cz) is in the Borel classΠ0

α} is Π1
2-hard.

(3) {z ∈ N | L(Cz) is a Borel set} is Π1
2-hard.

This implies in particular that these decison problems are not in the classΣ1
2, but they still could

have beenΠ1
2-complete. We are going now to prove that this is not the case.

Theorem 5.3. Letα be a countable ordinal. Then

(1) For α > 2, {z ∈ N | L(Cz) is in the Borel classΣ0
α} is not aΠ1

2-set.
(2) For α ≥ 2, {z ∈ N | L(Cz) is in the Borel classΠ0

α} is not aΠ1
2-set.

(3) {z ∈ N | L(Cz) is a Borel set} is not aΠ1
2-set.

Proof. We first prove item (1). LetA be the real-time1-counter Büchi automaton cited in Theorem
5.1 and letz0 be its index so thatA = Cz0 .

Assume now thatV is a model of (ZFC + ωL
1 < ω1). In the modelV, by Theorem 5.1, theω-

languageL(A) is aΠ
0
2-set, hence also aΣ0

α-set for any countable ordinalα > 2. Thus, forα > 2,
the integerz0 belongs to the set{z ∈ N | L(Cz) is in the Borel classΣ0

α}.

But, by Theorem 5.1, in the inner modelL ⊆ V, theω-languageL(A) is an analytic but non Borel
set so the integerz0 does not belong to the set{z ∈ N | L(Cz) is in the Borel classΣ0

α}.

On the other hand, Shoenfield’s Absoluteness Theorem implies that everyΣ1
2-set (respectively,Π1

2-
set) is absolute for all inner models of (ZF + DC), where (DC) is the weak version of the axiom
of choice called the axiom of dependent choice which holds inparticular in the inner modelL, see
[Jec02, page 490].
In particular, if the set{z ∈ N | L(Cz) is in the Borel classΣ0

α} was aΠ1
2-set, then it could not be a

different subset ofN in the modelsV andL considered above. Therefore, for any countable ordinal
α > 2, the set{z ∈ N | L(Cz) is in the Borel classΣ0

α} is not aΠ1
2-set.

Items (2) and (3) follow similarly from Theorem 5.1 and from Shoenfield’s Absoluteness Theorem.

In order to prove similar results for infinitary rational relations accepted by2-tape Büchi automata,
we shall use a construction from [Fin06b]. We proved in [Fin06b] that infinitary rational relations
have the same topological complexity asω-languages accepted by Büchi Turing machines. We used
a simulation of the behaviour of real time1-counter automata by2-tape Büchi automata. We recall
now a coding which was used in [Fin06b].

We first define a coding of anω-word over the finite alphabetΩ = {0, 1, A,B,C,E, F} by an
ω-word over the alphabetΩ′ = Ω ∪ {D}, whereD is an additional letter not inΩ. Forx ∈ Ωω the
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ω-wordh(x) is defined by :

h(x) = D.0.x(1).D.02.x(2).D.03.x(3).D . . . D.0n.x(n).D.0n+1.x(n+ 1).D . . .

It is easy to see that the mappingh from Ωω into (Ω ∪ {D})ω is continuous and injective.

Let nowα be theω-word over the alphabetΩ′ which is simply defined by:

α = D.0.D.02.D.03.D.04.D . . . D.0n.D.0n+1.D . . .

The following results were proved in [Fin06b].

Lemma 5.4([Fin06b]). LetΩ be a finite alphabet such that0 ∈ Ω, α be theω-word overΩ ∪ {D}
defined as above, andL ⊆ Ωω be in r -BCL(1)ω . Then there exists an infinitary rational relation
R1 ⊆ (Ω ∪ {D})ω × (Ω ∪ {D})ω such that:

∀x ∈ Ωω (x ∈ L) iff ((h(x), α) ∈ R1)

Lemma 5.5([Fin06b]). The setR2 = (Ω∪{D})ω × (Ω∪{D})ω − (h(Ωω)×{α}) is an infinitary
rational relation.

Considering the unionR1 ∪ R2 of the two infinitary rational relations obtained in the two above
lemmas we get the following result.

Proposition 5.6([Fin06b]). LetL ⊆ Ωω be inr -BCL(1)ω andL = h(L) ∪ (h(Ωω))−. Then

R = L × {α}
⋃

(Ω′)ω × ((Ω′)ω − {α})

is an infinitary rational relation. Moreover one can construct effectively, from a real time1-counter
Büchi automatonA acceptingL, a2-tape B̈uchi automatonB accepting the infinitary relationR.

Let nowA be the real time1-counter Büchi automaton constructed above and cited in Theorem 5.1
andB be the2-tape Büchi automaton which can be constructed fromA by the above Proposition
5.6. We can now state our second main result.

Theorem 5.7. The topological complexity of the infinitary rational relation L(B) is not determined
by the axiomatic systemZFC. Indeed it holds that :

(1) (ZFC + V=L ). The relationL(B) is a true analytic set.
(2) (ZFC + ωL

1 < ω1). The relationL(B) is aΠ
0
2-set.

Proof.

(1) Assume first thatV is a model of the axiomatic systemZFC + V=L . In the modelV, by Corol-
lary 4.8 the largest thinΠ1

1-setC1 is not a Borel set and by Theorem 5.1 theω-languageL(A)
is a true analytic set.
On the other hand the functionh is continuous. Thus the functiong from Ωω into (Ω∪{D})ω×
(Ω ∪ {D})ω defined byg(x) = (h(x), α) is also continuous. If the relationL(B) was a Borel
set then theω-languageL(A) = g−1(L(B)) would be also a Borel set as the inverse image of a
Borel set by a continuous function. Thus the relationL(B) is not a Borel set.

(2) Assume now thatV is a model of (ZFC + ωL
1 < ω1). In the modelV, by Corollary 4.9, the

largest thinΠ1
1-setC1 is aΣ

0
2-set and by Theorem 5.1 theω-languageL(A) is aΠ

0
2-set. It is

easy to prove thatL = h(L(A)) ∪ (h(Ωω))− is also aΠ0
2-set (this is due to the fact thath is

an homeomorphism betweenΩω and its imageh(Ωω) which is a closed subset of(Ω ∪ {D})ω,
see [Fin06b]). Then one can easily see that the setL × {α} is also aΠ0

2-set. But the set
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(Ω′)ω × ((Ω′)ω − {α}) is an open henceΠ0
2-subset of(Ω ∪ {D})ω × (Ω ∪ {D})ω. Thus the

relationR = L×{α}
⋃

(Ω′)ω×((Ω′)ω−{α}) is aΠ
0
2-subset of(Ω∪{D})ω×(Ω∪{D})ω .

From now on we shall denoteTz the2-tape Büchi automaton of indexz. Then we recall the follow-
ing recent result which shows that topological properties of infinitary rational relations are highly
undecidable.

Theorem 5.8( [Fin09b]). Letα be a non null countable ordinal. Then

(1) {z ∈ N | L(Tz) is in the Borel classΣ0
α} is Π1

2-hard.
(2) {z ∈ N | L(Tz) is in the Borel classΠ0

α} is Π1
2-hard.

(3) {z ∈ N | L(Tz) is a Borel set} is Π1
2-hard.

We can now state that these decision problems are not in the classΠ1
2.

Theorem 5.9. Letα be a countable ordinal. Then

(1) For α > 2, {z ∈ N | L(Tz) is in the Borel classΣ0
α} is not aΠ1

2-set.
(2) For α ≥ 2, {z ∈ N | L(Tz) is in the Borel classΠ0

α} is not aΠ1
2-set.

(3) {z ∈ N | L(Tz) is a Borel set} is not aΠ1
2-set.

Proof. We can reason as in the proof of Theorem 5.3 (in the case ofω-languages of1-counter Büchi
automata). We use Shoenfield’s Absoluteness Theorem and Theorem 5.7 instead of Theorem 5.1.

We consider now Büchi recognizable languages of infinite pictures. We shall use in the sequel a
result proved in [Fin04, Fin09a] which we now recall.

For σ ∈ Σω = {0, 1}ω we denoteσ0 theω-picture whose first row is theω-word σ and whose
other rows are labelled with the letter0. For anω-languageL ⊆ Σω = {0, 1}ω we denoteL0 the
language of infinite pictures{σ0 | σ ∈ L}.

Lemma 5.10([Fin04]). If L ⊆ Σω is accepted by some Turing machine with a Büchi acceptance
condition, thenL0 is Büchi recognizable by a finite tiling system.

Recall that forΓ a finite alphabet having at least two letters, the setΓω×ω of functions fromω × ω
into Γ is usually equipped with the product topology of the discrete topology onΓ. This topology
may be defined by the following distanced. Letx andy in Γω×ω such thatx 6= y, then

d(x, y) =
1

2n
where

n = min{p ≥ 0 | ∃(i, j) x(i, j) 6= y(i, j) andi+ j = p}.

Then the topological spaceΓω×ω is homeomorphic to the topological spaceΓω, equipped with the
Cantor topology.
The setΣω,ω of ω-pictures overΣ, viewed as a topological subspace ofΣ̂ω×ω, is easily seen to
be homeomorphic to the topological spaceΣω×ω, via the mappingϕ : Σω,ω → Σω×ω defined by
ϕ(p)(i, j) = p(i+ 1, j + 1) for all p ∈ Σω,ω andi, j ∈ ω.

Let nowT be a Büchi Turing machine accepting theω-languageC−
1 . Using Lemma 5.10 we can

construct a Büchi tiling systemS accepting theω-picture language(C−
1 )0. We consider now the

topological complexity of this setL(S) ⊆ Σω,ω
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It is then easy to see that ifL ⊆ Σω = {0, 1}ω is aΠ
0
2-subset ofΣω then theω-picture language

L0 is aΠ
0
2-subset ofΣω,ω. And if L ⊆ Σω = {0, 1}ω is not Borel then theω-picture languageL0

is also not Borel. Then Corollaries 4.8 and 4.9 imply the following result.

Theorem 5.11. The topological complexity of theω-picture languageL(S) is not determined by
the axiomatic systemZFC. Indeed it holds that :

(1) (ZFC + V=L ). Theω-picture languageL(S) is a true analytic set.
(2) (ZFC + ωL

1 < ω1). Theω-picture languageL(S) is aΠ
0
2-set.

We have recently proved that the topological complexity ofω-picture languages accepted by Büchi
tiling systems is highly undecidable. Below the Büchi tiling system of indexz is denoted bySz.

Theorem 5.12( [Fin09a]). Letα be a non null countable ordinal. Then

(1) {z ∈ N | L(Sz) is in the Borel classΣ0
α} is Π1

2-hard.
(2) {z ∈ N | L(Sz) is in the Borel classΠ0

α} is Π1
2-hard.

(3) {z ∈ N | L(Sz) is a Borel set} is Π1
2-hard.

As in the case ofω-languages of1-counter automata or of2-tape automata, we can now infer the
following result from Shoenfield’s Absoluteness Theorem and Theorem 5.11.

Theorem 5.13.Letα be a countable ordinal. Then

(1) For α > 2, {z ∈ N | L(Sz) is in the Borel classΣ0
α} is not aΠ1

2-set.
(2) For α ≥ 2, {z ∈ N | L(Sz) is in the Borel classΠ0

α} is not aΠ1
2-set.

(3) {z ∈ N | L(Sz) is a Borel set} is not aΠ1
2-set.

6. CONCLUDING REMARKS

We obtained surprising results which show that the topological complexity of anω-language ac-
cepted by a1-counter Büchi automaton, of an infinitary rational relation accepted by a2-tape Büchi
automaton, or of a Büchi recognizable language of infinite pictures, is not determined by the ax-
iomatic systemZFC.

We have inferred from the proof of the above results and from Shoenfield’s Absoluteness Theorem
an improvement of the lower bound of some decision problems recently studied in [Fin09b, Fin09a].

Recall that, by [Fin09b, Remark 3.25], ifα is an ordinal smaller than the Church-Kleene ordinal
ωCK

1 , which is the first non-recursive ordinal, then{z ∈ N | L(Cz) is in the Borel classΣ0
α} (re-

spectively,{z ∈ N | L(Cz) is in the Borel classΠ0
α}) is aΣ1

3-set. We now know that forα > 2
(respectively,α ≥ 2), it is actually in the classΣ1

3 \ (Σ1
2 ∪Π1

2) but the question is still open whether
these problems areΣ1

3-complete. The exact complexity of being in the Borel classΣ
0
α (respectively,

Π
0
α), for a countable ordinalα, remains an open problem forω-languages of real time1-counter au-

tomata (respectively, pushdown automata,2-tape automata). and for Büchi recognizable languages
of infinite pictures.
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