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Abstract This paper tackles the problem of scalable video indexing.pvépose a new framework combining
spatial and motion patch descriptors. The spatial descgpire based on a multiscale description of the im-
age and are calle8Sparse Multiscale Patche¥/e propose motion patch descriptors based on block mdtiain t
describe the motion in a Group of Pictures. The distribitiohthese sets of patches are compared combining
weighted Kullback-Leibler divergences between spatial amotion patches. These divergences are estimated
in a non-parametric framework using a k-th Nearest Neigldstimator. We evaluate this weighted dissimi-
larity measure on selected videos from the ICOS-HD ANR mtojExperiments show that the spatial part of
the measure is relevant to detect different sequencesg wthimotion part allows to detect clips within a se-
guence. Experiments combining the spatial and temporéd péthe dissimilarity measure show its robustness
to resampling and compression; thus exhibiting the spstihbility of the method on heterogeneous networks.

Keywords Scalable video indexing sparse multiscale patches descriptonsotion patches descriptors
Kullback-Leibler divergence

1 Introduction

In the last decades, the amount of video documents storedtabases has rapidly grown, together with the
need for efficient tools to order, explore and use such datasbdn addition, video documents, which generally
show a large variety of size and formats, are to be availaivlestrieval through heterogeneous networks. Such
networks connect different devices and technologies tteathle to access to the video content with different
performances (e.g., in terms of quality and resolutionhd¢e defining a video indexing framework that is aware
of retrieval capabilities of these different devices is ganahallenge for content-based video retrieval systems.
Based on these motivations, we investigate in this papéatdeadescriptors for video indexing and propose a
new framework for similarity-based video retrieval. Wewase that no manual annotation of video documents
is available, thus constraining the video search enginamalle content-based indices.

Several approaches have been proposed in the recentuitetattackle this problem. A first category of
content based video indexing methods developed recenilyiynsses global features of the video content such
as the dominant color in still images or video key-framegd.[TRese methods do not explicitly take into account
the motion present in a video, and thus are not suitable tdepusegarding the motion in a sequence (e.g. the
task of finding videos with object having similar trajeces). Other methods explicitly take into account the
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motion and visual information in the video. Amongst these @bject based video indexing methods [13,6,9,
5,3] that rely on a segmentation of the semantic objectsedrvitteo. The object is usually segmented spatially
(except in [5] where foreground objects are segmented ukagiotion of MPEG-2 macroblocs) and the object
motion is followed through the video. This spatio-tempaeaak is difficult to achieve since the objects undergo
various transformations or may be occulted through theesscpi

Our objective in this paper is to provide a framework that efilable 1) to answer to different search tasks
on video databases (e.g. find videos with similar motionsadgas containing similar objects) and 2) to provide
coherent answers with the various data formats that aréableito the user through a heterogeneous network
(scalability). I.e. we assume that the video data are adailarough a heterogeneous network. In this case, the
end-user may have the video content in various formats doapto his own device (PDA, desktop computer,
etc.). TheScalable Video Codin¢SVC) [10] standard in particular allows this variability the network. We
intend to design a method that is scalable in the sense thaei similar answers whatever the format is that
the end-users uses. Note that here, we focus on spatiabsitglave show that the proposed method gives a
similar answer whatever the spatial format is that the usersothe temporal scalability is not taken care of).
To do so, we define a statistical dissimilarity measure betw&roups of Picture{GoPs) that is based on a
complete spatio-temporal description of the video. We @efimo kinds of descriptors, 1) spatial descriptors
that capture the visual content of a scene in a multiscaleidasand 2) temporal or motion descriptors that
capture the motion in a GoP at the level of the block. Both &iofidescriptors are patch descriptors that exploit
the spatial or temporal coherence present in the video. &tseaf descriptors are compared statistically by a
dissimilarity measure so that loose transformations ofttieo are not penalized (e.g. geometric or radiometric
transformations, compression, etc.). We test this metihazbtected videos from the ICOS-HD ANR corpus that
is designed specifically to probe the scalability of methomsparing videos and their robustness to radiometric
and geometric transforms. We study the influence of theapatd temporal parts of the proposed dissimilarity
both separately and jointly.

The rest of the paper is organized as follows. Section 2 de=scthe descriptors we propose (both spatial and
temporal). The dissimilarity measure is defined in SectipitsJractical implementation using the k-th nearest
neighbors approach is detailed, and its scalability isudised. Experiments showing the influence of both the
temporal aspect and the spatial aspect of the proposed reesugiven in Section 4, showing in particular its
scalability on heterogeneous networks.

2 Spatio-temporal descriptors

We have previously developed spatial descriptors calfdse multiscale patches (SM&)d showed that they
characterize the visual features of still images (see }J78]ese descriptors provide a sparse description of the
features of an image by grouping the coefficients of its racitie transform into patches. To accurately describe
videos, we also need descriptors of the apparent motioreashifects in the scene. We generalize the concept of
SMPs to obtain descriptors of the apparent motion in each GoPrinfe sequence.

2.1 Sparse multiscale patch&MP

Here is a brief review of our spatial descriptors descrilvedatails in [7,8]. To capture the local structure of an
image at a given scale and at a specific location, we use asgalttitransform such as wavelet transform or Gabor
transform to represent the image. We then form a patch ofphese multiscale patches SMPdescription by
grouping multiscale coefficients of all color channels @& timage that are neighbors across scale and location.
More precisely, we notw' « the multiscale coefficient of channelof imagel at scalej and locatiork (this
would be the dot product of channebf imagel with a waveform of scalé centered at locatiok). We f|rstly
group the coefficients of closest scale and location for eattr channel to form the intermediate patclm%%
(see Fig. 1): ’
Cc Cc [ [ Cc Cc Cc
Wiy = (le,kvwlj.kJr(l,O)7WIj.k7(1,0)7WIj.k+(0,1)7WIj.,k—(O,1)7Wijl,k) (1)

(Note that scalg — 1 is a coarser than scaje
To take into account the coherence of the local structur@gsade through color channels, interchannel patches
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Fig. 1 Building a patch of multiscale coefficients, for a single ecalbannel image.

le,k for color images in the YUV space are then formed groupingpiiitehes of the three channw’f,Tk,w'j?k,

andw'j\fk:
W= (W] W]y W) )

A single patchW']-,k captures the inter/intrascale and interchannel deperetehetween neighboring mul-
tiscale coefficients which are the signature of local stes in the image. We use the Laplacian pyramid as
a multiscale transform for its near-invariance propert@sgards rotations and translations and its reduced re-
dundancy. Each path'j « has length 18. The picture would not be complete without arijeson of the
low frequency part of the image (the patches of Eq.(2) ark bxclusively from the band-pass and high-pass
subbands). Low-frequency patches are the concatenatioesachannels of 3 by 3 neighborhoods of the low-
frequency coefficients of each color channel (making patctigength 27). To simplify the notation, let us from
now on, denote byV'Lk either a low-pass or a high-pass or band-pass patch.

The sparsity properties of the multiscale transform trantf the description by multiscale patches. Indeed,
1) the set of patches of large energy (sum of squared coeffi}ies a small - or sparse - subset of the large set of
all multiscale patche$W'j iz iokez and 2) this small subset describes well the content of the@énfthis is a
sparsity property: a smali group yields a good represemtatiVe select the so-calleparse multiscale patches
by thresholding the energy level at each sgaded thus obtain our spatial descriptors of an image i.e.radraf
a video. (For example, for videos in HD format as in Sectiothd,images are decomposed on five scales of the
Laplacian pyramid and/b of the patches are kept at each scales, except for the lowestwhere all patches
are used). The cost of the extraction of 8ldPscales aslogn wheren is the number of pixels in the image.

2.2 GoP motion patche&pP-MP)

In this section, we present new temporal patch descriplarslescribe the motion in a video, we also use the

concept of patches. Here, the patches are understood gssgrbmotion vectors that behave coherently. Since

objects have naturally relatively smooth motion trajeie®macross restricted periods of time, the coherence is
sought through time. The idea is to group in a patch the matsaors that describe a coherent motion through

the GoP. In video standards such as 8walable Video CodingSVC) standard [10], the motion information

is encoded by coding macroblock motion. A first approachimesipby the compression standards is to encode
block motion in the temporal patches. This can be done in taygsw

— Either one fixes the location of the block to a pogny) and estimates the motion from this point for each
pair of frames of the GoP.
— Or one follows the trajectory of the block which is locate@at) in the first frame of the GoP.
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Other approaches are possible, where the motion of the védeansidered at a different spatial level than the
block. For example:

— Assuming we have a coarse segmentation of the scene intdfésedt objects and an estimation of the
apparent motion of each of them; we could build a motion p&icleach object that follows its trajectory
through the GoP. The patch would then be the concatenatittre&uccessive displacements of the object.

— We could also consider computing the optical flow betweerh eaccessive frame to obtain the apparent
motion of each single pixel through time. In this case, we Mfabtain a patch that follows the motion of
this pixel.

Obtaining a coarse spatio-temporal segmentation of moomjgcts in a video or the optical flow is more
complex and computationally more intensive than the blockion solutions. Moreover, we are here seeking
a sparse representation of the GoP motion, therefore amgdde apparent motion of all pixels through the
optical flow is not appropriate. Thus, in this paper we focogytion patches at the block level, inspired by
compression standards. Note that we consider here thdtdéwe all of the same size through the GoP (which
may not be the case in compression standards). Moreové isett of experiments presented in Section 4, we
keep the block location fixed through the GoP (experimerltsviing block trajectories are not reported here as
they give similar results).

The motion patches are computed as follows. We compute therapt motion of each particular blocky)
of a GoP (of around 8 to 10 pictures). More precisely, for a @bRconsecutive framef, ..., f,, we compute
the following motion patches for each block of centey):

M(x,y) = (X, ¥, U1,2(xy), U2 3(x.y), - - -, Un-1,n(x.)) (3)

whereun_1n(x.y) is the apparent motion of bloak.y) from frame f,_; to frame f, (see Fig. 2). Note that we
include in the motion patch its locatiar,y) so that each patch has length-22 (which is 18 for GoPs of 8
frames). This localization of the motion patches reflectsgbometry of the underlying objects. We will exploit
this property to compare sets of motion patches when defminglissimilarity measure in the next section.
The motion vectorsi are computed via a diamond-search block matching algorifaneach GoP studied,
we compute the motion patche¥x,y) for each block(x,y). As is the case for spatial patches, in fact only a
few motion patches effectively describe motion (sparsityjus, we select the significant motion patches by a
thresholding that keeps only the patches having the langegbn amplitude (sum of square of taeomponents
in Eq. (3)).(For example, for videos in HD format as in Secth the motion patches kept are those for which
the motion amplitude is non-zero). The cost of the extractibthe motion patches is the cost of performing
the diamond-search block matching algorithm on the lowesatesof the Laplacian pyramid decompaosition.
Sequences longer than a GoP are divided in GoPs from whicktngecethe significant motion patches.

3 Measuring the dissimilarity between videos

Since the natural unit of time of our temporal descriptorghis GoP, we define a dissimilarity measure that
compares GoPs on the basis of both temporal and spatialigtessr To compare longer sequences such as
clips, we simply add up the dissimilarity measures betwaeir tonsecutive GoPs.

3.1 Comparing two GoPs

For a single GoR5, we consider both temporal and spatial descriptors. Thefgeimporal descriptors called
MEC is selected as in Section 2.2. To represent the spatialniwftion in a GoP of a video, we use the spatial
descriptors of its first frame (this is sufficient since a G@R h short duration). These are furthermore divided
into several sets, more exactly, we groupfﬂMFSWfk according to their scale indgxWe obtain a set dbMPs
notedW‘f for each scalg of the multiscale decomposition.

We intend to define a dissimilarity that is scalable (in thesgethat it adapts to the different formats available
on heterogeneous networks) and robust to geometric defimmsaHence, given a query G@R and a reference
GoP G;, we do not expect their descriptors to match exactly, buteratorrespond loosely. In this context,
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Fig. 2 Building a motion patch.

a statistical measure of the dissimilarity of the differsats of descriptors is adapted. In particular, entropic
measures have proved relevant for image indexation [2,8]u¥¢ the Kullback-Leibler (KL) divergence (noted
Dy)) to evaluate the dissimilarity between the probability slgnfunctions (pdf) of each set of descriptors of
the query and reference GoP (remind®;(p1||p2) = [ p1log(p1/p2)). Noting pj(G) the pdf of the seWﬁ3 of
spatial descriptors at scajef GoPG andpm(G) the pdf of its seM® of temporal descriptors, we thus consider
the following dissimilarity measure:

spatial term temporal term
——N— ——N—
D(GQaGr) = alDS(anGr)JFaZDt(anGr) (4)
with
Dt(Gq,Gr) = Dkl(pm(Gq)Hpm(Gr)) )
Ds(Gq,Gr) = 3 Dui(pi(Ga)llpj(Gr))- ©6)
i=Jo

The parameters; anda; allow us to modulate the influence of the spatial versus timpteal term @1, a» > 0).
jo is the coarsest scale of the decomposition (low-pass sdpban

The temporal part of the dissimilarity measub® (Gq, Gr)) compares the pdfs of the motion patches. Note
that since those contain motion vectors plus their locagign, this term does not only indicate whether the
sets of motions vectors are similar through time but it atd@$ into account whether they are organized sim-
ilarly through space (indicating roughly whether similaapes move the same way). A single spatial term in
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Ds(Gq, Gr) at scalej indicates whether local structures of spatial sgaaee similar in the key frames of the two
compared GoPs. Thus their suB(Gq, Gr)) indicates whether similar objects are present.

3.2 Computing the KL divergence

The dimension of our descriptors (both spatial and tempadligh (from 16 to 27). Estimating the pdf and a

fortiori the KL divergence in these large dimensions is ragyefor at least two reasons: 1) in high dimensions,
there is a lack of samples to accurately recover the pdf anke2§ is no multidimensional parametric models

of the pdf that would both reflect the dependencies in ourhgst@nd allow for an analytic expression of the

KL divergence in function of the model parameters. To allevboth problems, we estimate the KL divergences
in Eq. (4) directly, without estimating first the pdfs and lwatit imposing a model on the pdf (this is a non-

parametric model) by using a k-th Nearest Neighbor (kNNyaaph.

This amounts to combining the Ahmad-Lin approximation & émtropies necessary to compute the diver-
gences with “balloon estimates” of the pdfs using the kNNrapph [11]. This is a dual approach to the fixed
size kernel methods and was firstly proposed in [4]: the Rdraedwidth adapts to the local sample density by
letting the kernel contain exactk/neighbors ofk among a given sample set, so that the estimateg@dfn a
sample se¥” reads:

R 1
pe) = zw Vd P;?y(x)

we

3[|x—wl| < py (X)] (7)

with vq the volume of the unit sphere iRY and py » (x) the distance ok to its k-th nearest neighbor iw .
Plugging Eq.(7) in the Ahmad-Lin (cross-)entropy estinsitend correcting for the bias, we obtain the following
estimators of the KL divergence between two sets of d-dimoeas points#; and#5 of underlying pdfp; and

p2 (and containindN; andN; points) [1]:

N
Dia(Pal|P2) =log | g2z ] + & Tht: 10gly 2 (W) -
N
_N% ¥ nta l0g[py 1 (W)
Note that this estimator is robust to the choicé&.dfor more details on the derivation of this estimators, Vierre
the reader to [1,7,8] and the references therein.

3.3 Scalability of the method

In this paper, we consider the problem of scalability of treasure in the following sense. We assume that the
videos are available to the user through a heterogeneowsrkeDifferent persons thus may download the same
videos under different format, e.g. using their PDA or thprsonal computer. More precisely, we assume that
different users may download the same video with differemels of resolution; this is done by decoding more
or less scales in the SVC stream for example. We considewth&how the minimal encoded resolutigs

We expect our dissimilarity measure to be robust to spa&dlution changes, assuming that the time reso-
lution remains the same. This means that users havingelifferersions of the same video should obtain similar
answers to the same query submitted to the server. Indezmdydtion part of the dissimilarity is computed on
large blocks corresponding to the lowest sdalevhich is assumed to be the same for all users. On the opposite,
the spatial part of the dissimilarity measure involves edllesj, some of which are not always accessible to the
user. The sum in the spatial part of the dissimilarity is tated to the scale available to the user. This trunca-
tion yields coherent result (see [7]) when comparing imagésoretically, we thus obtain a spatially scalable
measure. The experiments presented in Section 4 confirnhéharoposed dissimilarity is robust to changes of
resolution and hence is spatially scalable. Note that ttmpoeal scalability is not taken care of here (i.e. when
the temporal resolution changes with the format).
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4 Experiments

In this section we provide some initial results of our GoPikirity measure. These experiments were performed
on two video sequences from the ICOS-HD project databager Abrief description of the database, we present
results of retrieval based on either spatial frame desspir on temporal/motion descriptors or on both sets of
descriptors.

4.1 ICOS-HD video database

The ICOS-HD project provides a large database of both original and re-editegloveiquences. We used two
of these sequences to test our similarity measiian in Restaurant”(S1) and“Street with trees and bicycle”
(S22. (Thumbnails of the two sequences are shown in Figure 3.)

Fig. 3 Thumbnails of the video sequencg$“Man in Restaurant’an®2“Street with trees and bicycle”.

Each original sequence contains 72 Full HD frames (292080 pixels) and has been manually split up
into two clips, such that the boundary between the two clipghly corresponds to a relevant motion transition,
e.g. direction change of movement of an object or personddiitian, some common geometric and radiometric
deformations were applied to the original HD video sequentteus obtaining different versions of each video
clip. In this paper we consider only two of these transforaret either a scaling to lower frame definition; or
a quality degradation by high JIPEG2000 compression. Eacisformation was applied with two levels, as a
result we used five different versions of each video sequence

— original Full HD (1920x 1080 pixels), referenced asoin the figures;
— two rescaled versions (960540 and 480 270 pixels), referenced asoandsao,
— two JPEG2000 coded versions (low and very low quality) exieed agpeg2k 1andjpeg2k2

Each sequence being divided in two clip$ andC2, our test set contained exactly ten clips for each sequence.

As explained in Section 2, we used GoPs of 8 consecutive Baméasic units of video information to
extract spatial and temporal descriptors for each clip. SgaialSMP descriptors were extracted from the first
frame of each GoP using 4 resolution levels of the Laplacjaamid as well as the low-frequency residual. The
temporal descriptors were extracted using a diamond4sddock matching algorithm to estimate inter-frame
motion vectors on 1& 16 blocks (corresponding to the lowest spatial resolution)

4.2 Spatial dissimilarity

In this paper we consider the task of retrieving the mostlain@oPs to a query GoP. (Note that GoP retrieval
can be easily generalized to retrieve even longer videaepja.e. collections of consecutive frames, such as

1 1COS-HD (Scalable Joint Indexing and Compression for Higtifition Video Content) is a research project funded by ANR
(French Research Agency).

2 Original HD sequence®Warner Bros issued from the Dolby 4-4-4 Film Content Kit One.
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clips of multiple GoPs.) When performing this task, all soarmed versions of the query GoP itself are expected
to be ranked first by the dissimilarity measure defined abBsea query GoR5, and a reference GoB;, the
dissimilarity measur® defined in Eq. (4) is a combination of a spatial tdbgtaking into account only spatial
features and a temporal tefq defined over temporal features. While spatial descriptareasentially useful
for comparing statistical scene information of two videegas, motion descriptors are expected to highlight
similarities based on dynamical patterns like the movenoéribjects or persons in a scene. The weighting
factorsa; andas in Eq. (4) are used to privilege either term when performimgiery.

Firstly we considered the case @f = 1, a, = 0, i.e. only spatial descriptors were used to retrieve simil
GoPs. In these experiments, tABIPdescriptors proved to be crucial for distinguishing GoPthefsame video
sequence as the query from those belonging to differenovégguences. The results obtained are shown in
Figure 4, where the dissimilarity of GoPs from both sequsigshown with respect to a query GoP taken from
S1 (Namely the query is always the first GoP of the dif of sequencé&, in thegeo version. Each blue star
in this figure is the dissimilarity to a particular referer@eP, which is identified by the sequence indicated in
the middle of the figure, by the version of the sequence andlihéndicated on the x-label and finally by its
occurrence in the clip, the 9 GoPs of a particular clip beirdgced chronologically).

1407 T
video 1

1207 clip1 clip 2 i !
I

lip 1 clip 2
100 el —

80— . .l
960x540 960x540 video 2
ipeg-al ipeg-a1

ipeg-q10 ipeg-q10
60~ -

960x540 - 960x540
jpeg-a1 jpeg-a1
a0 jpeg-q10 ipeg-q10

i J g

0 W!aﬁ I I I I I I

1 10 19 28 37 46 55 64 73 82 91 100
GoP label

Fig. 4 GoP retrieval based d®BMP. The query is GoP 1 from C1 of versi@soof S1

Even when frame transformations are applied - either rieggahd very lossy compression - all GoPs orig-
inating from the same video sequen&d)(have small distances to the query, whereas all GoPs of seg82
are far more dissimilar to the query. These results confiahSMPdescriptors are relevant for retrieving video
scenes that share overall visual similarity with a querynecand show in particular that the spatial part of the
measure is robust to scaling and very lossy compression aifteplar sequence (spatial scalability).

4.3 Temporal dissimilarity

We also tested the dissimilarity measure of Eq. (4)doe= 0, a» = 1, i.e. when using only motion descriptors.
Since the two clips of each sequence in our database diffetrefrom each other mainly for motion information,
this measure is expected to discriminate GoPs of diffedgg of the same video sequence. This is confirmed by
the experimental results shown in Figure 5, which show theéanalissimilarity from the query GoP (first GoP
of the first clip of thessoversion of sequenc®l) to all GoPs of the two clips of sequengéin all versions (same
labeling of the reference GoPs as for Fig. 4). The GoPs atiig from clipC1 (the same as the query) have
far smaller dissimilarity values than those originatingnfr clip C2, thus enabling the detection of a significant
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Table 1 Mean and variance of the spatial and temporal dissmilarities

Spatial term Spatial term Temporal term
(across scenes)  (within a scene)
Mean 122.8 12.1 3.7
Standard deviatiorL 1.7 4.7 25

motion transition between the two clips. Note that the fisgt GoPs of clipC2are still not significantly dissimilar
with respect to the previous ones, thus suggesting thatasutdnually detected transition is not abrupt. Indeed,
the first clip corresponds to a continuous movement of thegueirom the scene center to the right side, whereas
an inversion of movement direction (from right to left) ocswfter the first few frames of the second clip. As
previously, we note that the temporal part of the measurehast to scaling and lossy compression (spatial
scalability).

157 T
video 2

i clip 2
video 1 Epa

clip1 clip 2

ipeg-q10
geoxsa0 ol

ipeg-al ipeg-a1 ipeg-at
960x540

4 960x540 960x540
L
0

1

N v & ipeg-q10 Ipeg-a10 ipeg-a10
oy
1

L 1 L L | L L L L L ‘
19 28 37 46 55 64 73 82 91 100
GoP label

Fig. 5 GoP retrieval based on motion descriptors. The query is Go®m €1 of versiorse0 of S1

4.4 Spatio-temporal dissimilarity

In this section, we combine the spatial and temporal patt@ftiissimilarity measure to obtain a global dissimi-
larity. Considering that the spatial term of the dissiniflais able to differentiate video scenes and the temporal
term allows to characterize different motions within a $ingequence, we expect that the combination of the
two will enable to globally compare two clips whether there ar not from the same sequence.

The typical ranges and variances of the spatial and temgaralarity are quite different (see Table 1).
As seen from the previous experiments, the spatial termtiglisoriminative within a scene but shows a clear
discontinuity marking the difference between scenes,enthié temporal term differentiates GoPs within a video.
We thus rescale the temporal term to ensure that on averagslitlates the spatial term within a scene without
breaking the discontinuity across scenes. To do so, weysetl, a; = 10. The results displayed in Fig. 6 indeed
show that the two clips within a sequence are discriminatddpendently of which degradation is applied to the
reference GoPs.
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jpeg-q1
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Fig. 6 GoP retrieval combining spatial (weigb = 1) and temporal (weight, = 10) dissimilarities. The query is GoP 1 from C1
of versionge0of S1 The reference GoP on the x-axis are ordered as in Fig. 4

5 Conclusion

In this paper, we have proposed both spatial and motion if¢sg and a dissimilarity measure to compare
video sequences. The basic unit to compare videos is the GaR @ frames). The spatial descriptors called
sparse multiscale patchespture the visual information of a reference frame of th® @oa multiscale fashion.
The motion descriptors calledoP motion patchesapture the motion in a GoP at the block level. Both kind
of descriptors rely on the concept of patches i.e. groupeghtoring elements whose coherence is exploited
in a statistical dissimilarity measure. To compare two GaRspropose a statistical measure that combines a
spatial term and a temporal term. It is a sum of Kullback-legiblivergences between pdfs of sets of spatial and
temporal patches, that is estimated in a non-paramettiogeia the k-th nearest neighbor framework.

The motion and a spatial terms of the dissimilarity measueeevstudied independently and jointly. The
test set contained rescaled and compressed versions ofidlosvsequences divided into two clips that are
characterized by different motion. The results obtaineidgugither only spatial descriptors or only motion
descriptors show that both terms are robust to these tnanafmns. This indicates that the proposed measure
contains the spatial scalability properties required tacbleerent when used with the different data formats
available on heterogeneous networks. The spatial termimnis@tes different video scenes while the temporal
term discriminates different motion within a scene. Theesipents using the full dissimilarity also show how
weightings of the spatial and temporal parts of the dissirityf measure allow to discriminate simultaneously
different sequences and different clips within a sequendeanfirms the spatial scalability of the method. These
experiments suggest that, depending on the particulapvielgieval task, a combination of both dissimilarity
terms in Eq. (4) is relevant to detect similar video samptes database containing both original and degraded
versions of different video clips. Different search cridemay be targeted by adjusting the weights a-, e.g.
from searching similar movements of objects in a scene iew@gntly of the background to searching visually
similar scenes ignoring the movement of objects or persotise scene.
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