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Abstract

In this paper we address the problem of scalable video
indexing. We propose a new framework combining sparse
spatial multiscale patches and Group of Pictures (GoP) mo-
tion patches. The distributions of these sets of patches are
compared via the Kullback-Leibler divergence estimated in
a non-parametric framework using a k-th Nearest Neigh-
bor (kNN) estimator. We evaluated this similarity measure
on selected videos from the ICOS-HD ANR project, probing
in particular its robustness to resampling and compression
and thus showing its scalability on heterogeneous networks.

1 Introduction

In the last decades, the number of video databases avail-
able through different heterogeneous networks has grown
rapidly, together with the need for efficient tools to order,
explore and use these databases of videos with a variety of
size and formats. In this paper, we tackle the problem of
video indexing which consists in finding a suitable descrip-
tion of the video content for effective search in databases.
The search is content-based meaning that no prior man-
ual annotation has taken place on the video database. A
first category of content based video indexing methods de-
veloped recently mainly uses global features of the video
content such as the dominant color in still images or video
key-frames [9]. These methods do not explicitly take into
account the motion present in a video, and thus are not suit-
able to queries regarding the motion in a sequence. Other
methods explicitly take into account the motion and visual
information in the video. Amongst these are object based
video indexing methods [10, 4, 7] that rely on a segmenta-
tion of the semantic objects in the video. The object is usu-
ally segmented spatially and its motion is followed through
the video. An approach that relies on segmenting video
sequences in spatio-temporal “volumes” has been recently

∗This work is supported by the French ANR grant “ICOS-HD”.

proposed [1]. This approach aims to extract features from
relevant spatio-temporal regions of a video scene and match
them to find similar videos.

Recognizing spatio-temporal similarities between video
sequences is a difficult task, since the objects undergo var-
ious transformations or may be occulted through the se-
quence. Our objective in this paper is to provide a frame-
work that will enable 1) to answer to different search task
on video databases (e.g. find videos with similar motion or
videos containing a similar object) and 2) to provide coher-
ent answers with the various data formats that are available
to the user through a heterogeneous network (i.e. give simi-
lar answer whether the user is sending its query from a PDA
or his desktop computer). To do so, we define two kinds of
descriptors, 1) global visual descriptors - also called spatial
descriptors - that capture the visual content of a scene and 2)
temporal or motion descriptors that capture the trajectories
of objects in the videos. Both kinds of descriptors are patch
descriptors that exploit respectively the spatial and tempo-
ral coherence present in the video. The sets of descriptors
are compared statistically by a dissimilarity measure so that
loose transformations of the video are not penalized.

Section 2 specifies the descriptors we propose (both spa-
tial and temporal). The dissimilarity measure is defined in
Section 3, and its practical implementation using the k-th
nearest neighbors approach is detailed. Experiments show-
ing the influence of both the temporal aspect and the spa-
tial aspect of the proposed measure are given in Section 4,
showing in particular its scalability on heterogeneous net-
works.

2 Spatio-temporal descriptors

We have previously developed spatial descriptors called
sparse multiscale patches (SMP)that characterize the visual
features of still images (see [5, 6]). To accurately describe
videos, we also need descriptors of the apparent motion of
the objects in the scene. We generalize the concept ofSMPs
to obtain descriptors of the apparent motion in each GoP of
a video sequence.
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Figure 1. Building a patch of multiscale coef-
ficients, for a single color channel image.

2.1 Spatial descriptors: sparse multiscale patches
(SMP)

We rapidly present here our spatial descriptors described
in details in [5, 6]. EachSMP of an image captures the
local structure of a given scale at a specific location since its
contains multiscale coefficients of all color channels of the
image that are neighbors across scale and location. More
precisely, notingwIc

j,k the coefficient of channelc of image
I at scalej and locationk, we firstly group the coefficients
of closest scale and location for each color channel to form
the intermediate patcheswIc

j,k (see Fig. 1):

w
Ic

j,k =
(
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Interchannel patchesWI
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A single patchWI
j,k captures the inter/intrascale and

interchannel dependencies between neighboring multiscale
coefficients which are the signature of local structures in the
image. We use the Laplacian pyramid as a multiscale trans-
form for its near-invariance properties towards rotationsand
translations and its reduced redundancy. The picture would
not be complete without a description of the low frequency
part of the image (the patches of Eq.(2) are built exclu-
sively from the band-pass and high-pass subbands). Low-
frequency patches are the concatenation across channels of
3 by 3 neighborhoods of the low-frequency coefficients of
each color channel. (From now on,W

I
j,k will denote either

a low-pass or a high-pass or band-pass patch).
The sparsity properties of the multiscale transform trans-

fer to the description by multiscale patches. Indeed, the set
of patches of large energy (sum of squared coefficients) is
a small - or sparse - subset of the large set of all multiscale
patches{WI

j,k}j≥j0,k∈Z that describes well the content of

the image. We select the so-calledsparse multiscale patches
by thresholding the energy level at each scalej and thus
obtain our spatial descriptors of an image i.e. a frame of a
video.

2.2 Temporal descriptors: GoP motion patches
(GoP-MP)

To describe accurately the motion of objects in a video,
we also use the concept of patches. Here, the patches are
understood as group of motion vectors that behave coher-
ently. Since objects have naturally relatively smooth motion
trajectories across restricted periods of time, the coherence
is sought through time. To do so, we compute the apparent
motion of each particular block(x,y) through a short period
of time, typically a GoP (of around 8 to 10 pictures). This
way, each block(x,y) is bound to belong to a single object
that we follow through the GoP. More precisely, for a GoP
of n consecutive framesf1, . . . , fn, we compute the follow-
ing motion patches for each block of center(x,y):

m(x,y)=
(
x, y,u1,2(x,y),u2,3(x,y), . . . ,un−1,n(x,y)

)
(3)

whereun−1,n(x,y) is the apparent motion of point(x,y) from
framefn−1 to framefn (see Fig. 2). Note that we include
in the motion patch its location(x,y). This localization of
the motion patches reflects the geometry of the underlying
objects. We will exploit this property to compare sets of
motion patches when defining our dissimilarity measure in
the next section.

The motion vectorsu are computed via a diamond-
search block matching algorithm. For each GoP studied, we
compute the motion patchesm(x,y) for each location(x,y).
As is the case for spatial patches, in fact only a few motion
patches effectively describe motion (sparsity). Thus, we se-
lect the significant motion patches by a thresholding that
keeps only the patches having the largest motion amplitude
(sum of square of theu components in Eq. (3)). Sequences
longer than a GoP are divided in GoPs from which we ex-
tract the significant motion patches.

3 Measuring the dissimilarity between videos

Since the natural unit of time of our temporal descrip-
tors is the GoP, we define a dissimilarity measure that com-
pares GoPs on the basis of both temporal and spatial de-
scriptors. To compare longer sequences such as clips, we
simply add up the dissimilarity measure between their con-
secutive GoPs.

3.1 Comparing two GoPs

For a single GoPG, we consider both temporal and spa-
tial descriptors. The set of temporal descriptors calledMG
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Figure 2. Building a motion patch.

is selected as in Section 2.2. To represent the spatial infor-
mation in a GoP of a video, we use the spatial descriptors
of its first frame (this is sufficient since a GoP has a short
duration). These are furthermore divided into several sets,
more exactly, we group theSMPs W

G
j,k according to their

scale indexj. We obtain a set ofSMPs notedWG
j for each

scalej of the multiscale decomposition.

We intend to define a dissimilarity that is scalable (in
the sense that it adapts to the different formats available
on heterogeneous networks) and robust to geometric defor-
mations. Hence, given a query GoPGq and a reference
GoPGr, we do not expect their descriptors to match ex-
actly, but rather correspond loosely. In this context, a sta-
tistical measure of the dissimilarity of the different setsof
descriptors is adapted. We use the Kullback-Leibler (KL)
divergence (notedDkl) to evaluate the dissimilarity be-
tween the probability density functions (pdf) of each set
of descriptors of the query and reference GoP (reminder:
Dkl(p1||p2) =

∫
p1 log(p1/p2)). Noting pj(G) the pdf of

the setWG
j of spatial descriptors at scalej of GoPG and

pm(G) the pdf of its setMG of temporal descriptors, we
thus consider the following dissimilarity measure:

D(Gq , Gr) = α1

spatial term
︷ ︸︸ ︷

Ds(Gq, Gr) + α2

temporal term
︷ ︸︸ ︷

Dt(Gq , Gr) (4)

with

Dt(Gq, Gr) = Dkl

(
pm(Gq)||pm(Gr)

)

Ds(Gq, Gr) =
∑

j≥j0

Dkl

(
pj(Gq)||pj(Gr)

)
.

The parametersα1 andα2 allow us to modulate the influ-
ence of the spatial versus the temporal term (α1, α2 ≥ 0).
j0 is the coarsest scale of the decomposition (low-pass sub-
band).

3.2 Scalability of the method

In this paper, we consider the problem of scalability of
the measure in the following sense. We assume that the
videos are available to the user through a heterogeneous
network. Different persons thus may download the same
videos under different format, e.g. using their PDA or their
personal computer. More precisely, we assume that differ-
ent users may download the same video with different levels
of resolution; this is done by decoding more or less scales
in the SVC stream for example. We consider that we know
that minimal encoded resolutionj0.

We expect our dissimilarity measure to be robust to res-
olution changes, meaning that users having different ver-
sions of the same video, should obtain similar answers to
the same query submitted to the server. Indeed, the motion
part of the dissimilarity is computed on large blocks corre-
sponding to the lowest scale which is the same for all users,
while the sum in the spatial part of the dissimilarity can be
truncated to the scale available to the user (we showed in
[5] that these truncations yield coherent results). The exper-
iments presented in Section 4 also show that the proposed
dissimilarity is robust to changes of resolution and hence is
scalable.

3.3 Computing the KL divergence

The dimension of our descriptors (both spatial and tem-
poral) is high (from 16 to 27). Estimating the pdf and a
fortiori the KL divergence in these large dimensions is not
easy for at least two reasons: 1) in high dimensions, there is
a lack of samples to accurately recover the pdf and 2) there
is no multidimensional parametric models of the pdf that
would both reflect the dependencies in our patches and al-
low for an analytic expression of the KL divergence in func-
tion of the model parameters. To alleviate both problems,
we estimate the KL divergences in Eq. (4) directly, with-
out estimating first the pdfs and without imposing a model
on the pdf (this is a non-parametric model) by using a k-th
Nearest Neighbor (kNN) approach.

This amounts to combining the Ahmad-Lin approxima-
tion of the entropies necessary to compute the divergences
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with “balloon estimates” of the pdfs using the kNN ap-
proach [8]. This is a dual approach to the fixed size kernel
methods and was firstly proposed in [3]: the kernel band-
width adapts to the local sample density by letting the ker-
nel contain exactlyk neighbors ofx among a given sample
set, so that the estimated pdfp̂ from a sample setW reads:

p̂(x) =
∑

w∈W

1

vd ρd
k,W(x)

δ
[
||x − w|| < ρk,W (x)

]
(5)

with vd the volume of the unit sphere inRd andρk,W (x) the
distance ofx to its k-th nearest neighbor inW . Plugging
Eq.(5) in the Ahmad-Lin (cross-)entropy estimators and
correcting for the bias, we obtain the following estimators
of the KL divergence between two sets of d-dimensional
pointsW1 andW2 of underlying pdfp1 andp2 (and con-
tainingN1 andN2 points) [2]:

Dkl(p1||p2) = log
[

N2

N1−1

]

+ d
N1

∑N1

n=1 log[ρk,W2(w1
n)]

− d
N1

∑N1

n=1 log[ρk,W1(w1
n)].

(6)
Note that this estimator is robust to the choice ofk. For
more details on the derivation of this estimators, we refer
the reader to [5, 6] and the references therein.

4 Experiments

In this section we provide some initial results of our GoP
similarity measure. These experiments were performed on
two video sequences from the ICOS-HD project database.
After a brief description of the database, we present results
of retrieval based on either spatial frame descriptors or on
temporal/motion descriptors.

4.1 ICOS-HD video database

The ICOS-HD project1 provides a large database of both
original and re-edited video sequences. We used two of
these sequences to test our similarity measure:“Man in
Restaurant”(S1) and“Street with trees and bicycle”(S2)2.
(Thumbnails of the two sequences are shown in Figure 3.)

Each original sequence contains 72 Full HD frames
(1920 × 1080 pixels) and has been manually split up into
two clips, such that the boundary between the two clips
roughly corresponds to a relevant motion transition, e.g. di-
rection change of movement of an object or person. In ad-
dition, some common geometric and radiometric deforma-
tions were applied to the original HD video sequences, thus

1ICOS-HD (Scalable Joint Indexing and Compression for High-Defini-
tion Video Content) is a research project funded by ANR (French Research
Agency).

2Original HD sequencesc©Warner Bros issued from the Dolby 4-4-4
Film Content Kit One.

S1 S2

Figure 3. Thumbnails of the video sequences
S1 “Man in Restaurant”and S2 “Street with
trees and bicycle”.

obtaining different versions of each video clip. In this pa-
per we consider only two of these transformations: either a
scaling to lower frame definition; or a quality degradation
by high JPEG2000 compression. Each transformation was
applied with two levels, as a result we used five different
versions of each video sequence:

• original Full HD (1920 × 1080 pixels), referenced as
1920 in the figures;

• two rescaled versions (960×540 and480×270 pixels),
referenced as960 and540;

• two JPEG2000 coded versions (low and very low qual-
ity) referenced asjpeg2k 1andjpeg2k2.

Each sequence being divided in two clipsC1 andC2, our
test set contained exactly ten clips for each sequence.

As explained in Section 2, we used GoPs of 8 consec-
utive frames as basic units of video information to extract
spatial and temporal descriptors for each clip. SpatialSMP
descriptors were extracted from the first frame of each GoP
using 4 resolution levels of the Laplacian pyramid as well as
the low-frequency residual. Temporal descriptors were ex-
tracted using a diamond-search block matching algorithm
to estimate inter-frame motion vectors on16 × 16 blocks.

4.2 GoP similarity using spatialSMPdescriptors

In this paper we consider the task of retrieving the most
similar GoPs to a query GoP. (Note that GoP retrieval can be
easily generalized to retrieve even longer videos pieces, i.e.
collections of consecutive frames, such as clips of multiple
GoPs.) When performing this task, all transformed versions
of the query GoP itself are expected to be ranked first by the
dissimilarity measure defined above. For a query GoPGq

and a reference GoPGr, the dissimilarity measureD de-
fined in Eq. (4) is a combination of a spatial termDs taking
into account only spatial features and a temporal termDt

defined over temporal features. While spatial descriptors
are essentially useful for comparing statistical scene infor-
mation of two video pieces, motion descriptors are expected
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Figure 4. GoP retrieval based on SMP. The
query is GoP 1 from C1 of version 960 of S1.

to highlight similarities based on dynamical patterns likethe
movement of objects or persons in a scene. The weighting
factorsα1 andα2 in Eq. (4) are used to privilege either term
when performing a query.

Firstly we considered the case ofα1 = 1, α2 = 0, i.e.
only spatial descriptors were used to retrieve similar GoPs.
In these experiments, theSMPdescriptors proved to be cru-
cial for distinguishing GoPs of the same video sequence
as the query from those belonging to different video se-
quences. The results obtained are shown in Figure 4, where
the dissimilarity of GoPs from both sequences is shown
with respect to a query GoP taken fromS1. (Namely the
query is always the first GoP of the clipC1 of sequenceS1,
in the 960 version. Each blue star in this figure is the dis-
similarity to a particular reference GoP, which is identified
by the sequence indicated in the middle of the figure, by
the version of the sequence and the clip indicated on the x-
label and finally by its occurence in the clip, the 9 GoPs of
a particular clip being ordered chronologically).

Even when frame transformations are applied - either
rescaling and very lossy compression - all GoPs originating
from the same video sequence (S1) have small distances to
the query, whereas all GoPs of sequenceS2 are far more
dissimilar to the query. These results confirm thatSMPde-
scriptors are suitable for retrieving video scenes that share
overall visual similarity with a query scene, and show in
particular that the spatial part of the measure is robust to
scaling and very lossy compression of a particular sequence.

4.3 Similarity using motion descriptors

We also tested the dissimilarity measure of Eq. (4) for
α1 = 0, α2 = 1, i.e. when using only motion descrip-
tors. Since the two clips of each sequence in our database
differentiate from each other mainly for motion informa-
tion, this measure is expected to discriminate GoPs of dif-
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  C2 

Figure 5. GoP retrieval based on motion de-
scriptors. The query is GoP 1 from C1 of ver-
sion 960 of S1.

ferent clips of the same video sequence. This is confirmed
by the experimental results shown in Figure 5, which show
the motion dissimilarity from the query GoP (first GoP of
the first clip of the960version of sequenceS1) to all GoPs of
the two clips of sequenceS1in all versions (same labelling
of the GoPs as for Fig. 4). GoPs originating from clipC1
(the same as the query) have far smaller dissimilarity val-
ues than those originating from clipC2, thus enabling the
detection of a significant motion transition between the two
clips. (Note that the first two GoPs of clipC2 are still not
significantly dissimilar with respect to the previous ones,
thus suggesting that such a manually detected transition is
not abrupt). Namely, the first clip corresponds to a con-
tinuous movement of the person from the scene center to
the right side, whereas an inversion of movement direction
(from right to left) occurs after the first few frames of the
second clip. As previously, we note that the temporal part
of the measure is robust to scaling and lossy compression.

4.4 Combining spatial and temporal similarities

We also tested a combination of the spatial and temporal
terms as a global dissimilarity measure.

We tested two sets of combinations. For the first one, we
setα1 = 1, α2 = 1. Fig. 6 (top) shows that, in this case,
the motion terms mildly modulate the spatial terms and as
a result the global dissimilarity is able to discriminate Clips
within and between sequence. This equal weighting of the
terms stresses the difference between GoPs from different
sequences: this corresponds to the fact that the scale of the
spatial term is intrinsically larger than the motion terms.To
take full advantage of the motion term, its weighting in in-
creased: we setα1 = 1, α2 = 3. The results displayed in
Fig. 6 (bottom) for this case indeed show that the two Clips
within a sequence are discriminated independently of which
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Figure 6. GoP retrieval combining spatial
(weight α1) and temporal (weight α2) dissim-
ilarities. The query is GoP 1 from C1 of ver-
sion 960 of S1. Top: equal weights α1 = α2 = 1.
Bottom: α1 = 1, α2 = 3. The reference GoP
on the x-axis are ordered as in Fig. 4

degradation is applied to the reference GoPs.

5 Conclusion

In this paper, we have proposed both spatial and motion
descriptors and a dissimilarity measure to compare video
sequences. The basic unit to compare videos is the GoP
(circa 8 frames). The spatial descriptors calledsparse mul-
tiscale patchescapture the visual information in a frame.
The motion descriptors calledGoP motion patchescapture
the object trajectories through a GoP. Both kind of descrip-
tors rely on the concept of patches i.e. groups of neighbor-
ing elements whose coherence is exploited in a statistical
dissimilarity measure. This measure is a sum of Kullback-
Leibler divergences between pdfs of sets of patches, that is
estimated in a non-parametric setting via the k-th nearest

neighbor framework.
The dissimilarity contains a motion and a spatial term

that were studied independently on a test set of rescaled
and compressed versions of two videos sequences divided
into two clips. The results obtained using either only spa-
tial descriptors or only motion descriptors show that both
terms are robust to these transformations. This indicates
that the proposed measure contains the scalability proper-
ties required to be coherent when used with the different
data formats available on heterogeneous networks. The
experiments also suggest that, depending on the particu-
lar video retrieval task, a combination of both dissimilarity
terms in Eq. (4) is suitable to detect similar video samples
in a database containing both original and degraded versions
of different video clips. Different search criteria may be tar-
geted by adjusting the weightsα1, α2, e.g. from searching
similar movements of objects in a scene independently of
the background to searching visually similar scenes ignor-
ing the movement of objects or persons in the scene.
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