Silica Nanoparticles Dispersed in a Self-assembled Viscoelastic Matrix: Structure, Rheology, and Comparison to Reinforced Elastomers - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Brazilian Journal of Physics Année : 2009

Silica Nanoparticles Dispersed in a Self-assembled Viscoelastic Matrix: Structure, Rheology, and Comparison to Reinforced Elastomers

Résumé

Model self-assembled networks of telechelic polymer C18-PEO(35k)-C18 in water have been studied. The rheology of such transient networks has been investigated as a function of polymer concentration, and a typical percolation law has been observed. The network structure has been characterised by Small Angle Neutron Scattering in D2O, where the interactions between micelles formed by the hydrophobic C18-stickers of the polymer give rise to a peak in the scattered intensity. These model networks have then been used as a matrix for the incorporation of silica nanoparticles (R=10nm), and we have checked individual dispersion by scattering using contrast variation. The rheological response of the networks is considerably modified by the presence of the silica nanoparticles, and in particular an interesting dependence of the relaxation time on silica concentration has been found. The analogy in reinforcement behaviour of such a self-assembled, viscoelastic, and aqueous system with model experiments of elastomers filled with nanoparticles is discussed by comparison to a silica-latex system.
Fichier principal
Vignette du fichier
Publie_2_Version_HAL.pdf (254.79 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00400537 , version 1 (01-07-2009)
hal-00400537 , version 2 (26-08-2010)

Identifiants

  • HAL Id : hal-00400537 , version 2

Citer

Nicolas Puech, Serge Mora, Gregoire Porte, Isabelle Grillo, Ty Phou, et al.. Silica Nanoparticles Dispersed in a Self-assembled Viscoelastic Matrix: Structure, Rheology, and Comparison to Reinforced Elastomers. Brazilian Journal of Physics, 2009, 39 (1A), pp.198-204. ⟨hal-00400537v2⟩
142 Consultations
140 Téléchargements

Partager

Gmail Facebook X LinkedIn More