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Abstract

In this paper, we define a similarity measure to compare

images in the context of (indexing and) retrieval. We use the

Kullback-Leibler (KL) divergence to compare sparse mul-

tiscale image descriptions in a wavelet domain. The KL

divergence between wavelet coefficient distributions has al-

ready been used as a similarity measure between images.

The novelty here is twofold. Firstly, we consider the de-

pendencies between the coefficients by means of distribu-

tions of mixed intra/interscale neighborhoods. Secondly,

to cope with the high-dimensionality of the resulting de-

scription space, we estimate the KL divergences in the k-

th nearest neighbor framework, instead of using classical

fixed size kernel methods. Query-by-example experiments

are presented.

1. Introduction

Comparing two images in the context of (indexing and)

retrieval often relies on global descriptions such as domi-

nant colors or color distribution, or on extracted information

such as salient points/regions together with local features or

segmentation along with region arrangement [5, 12]. The

philosophy here is to use a synthetic, multiscale image de-

scription based on the sparse representation in a wavelet

domain. Such experiments have been conducted using the

marginal distributions of the wavelet coefficients at differ-

ent scales associated with the Kullback-Leibler (KL) di-

vergence as a similarity measure between distributions [3].

Nevertheless, independence between the coefficients was

assumed, preventing from taking into account local image

structures such as texture. In contrast, we propose to con-

sider dependency by means of distributions of mixed in-

tra/interscale neighborhoods of coefficients. However, this

approach implies to deal with a high-dimensional statistical

description space. The number of samples being too small

to reasonably fill this space, fixed size kernel options to es-

timate distributions or divergences fail. Alternatively, we

propose to estimate the KL divergence in the k-th nearest

neighbor (kNN) framework [2], i.e., adapting to the local

sample density and directly from the samples.

2. Similarity between images

A central question in content-based image indexing is to

define a similarity measure between images that matches -

or at least is close enough to - our perception of the similar-

ity of images. Once this is done, the images in the database

can be simply ranked in increasing order of their similarity

to the reference (or example) image for a query-by-example

task. Perceptual studies to understand how human perceive

the similarity between images are still a topic of ongoing

research. Therefore, content-based image indexing system

relying on such studies may be subjective and hard to im-

plement. Here, we focus on developing an objective and

mathematically defined measure that will be easily imple-

mentable.

2.1. Neighborhoods of wavelet coefficients

Let us denote byw(I)j,k the wavelet coefficient of image

I at scale j and location k. I.e. it is the scalar product

w(I)j,k = 〈ψj,k, I〉 of I with ψj,k, the mother wavelet ψ
translated at location k and dilated at scale j.

The wavelet transform enjoys several properties that

have made it quite successful in signal processing and that

are relevant for the definition of similarity between images.

Indeed, it provides a sparse representation of images, mean-

ing that it concentrates the informational content of an im-

age into few coefficients of large amplitude while the rest of

the coefficients are small. This combined with a fast trans-

form is what makes wavelet thresholding methods so pow-

erful: in fact just identifying large coefficients is sufficient

to extract where the information lies in the image. Thus



it seems natural to define the feature space in the wavelet

domain.

Initial thresholding wavelet methods treated each coef-

ficient separately relying on the decorrelation of these co-

efficients. However, they are not independent and these

dependencies are the signature of structures present in the

image. For example, a discontinuity between smooth re-

gions at point k0 will give large coefficients at this point

at all scales j (w(I)j,k0
large for all j). The most signif-

icant dependencies are seen between a wavelet coefficient

w(I)j,k and its closest neighbors in scale (w(I)j−1,k) or

space (w(I)j,k±(0,1), w(I)j,k±(1,0)). Several models us-

ing these dependencies have been proposed and used in

image enhancement [8, 9]. Here we use the concept of

wavelet neighborhoods introduced in [8]; these are vectors

of wavelets coefficients of the form:

w(I)j,k =
(
w(I)j,k, w(I)j−1,k,
w(I)j,k±(1,0), w(I)j,k±(0,1)

) . (1)

It was shown that the probability density function (pdf) of

such neighborhoods allow to characterize and estimate fine

spatial structures in images [8, 7]. Hence we will define

our feature space on the set of neighborhoods of wavelet

coefficients of the form of (1).

Critically sampled tensor wavelet transforms lack of

translation and rotation invariance and so would the neigh-

borhoods made of such coefficients. Since it is desirable to

find rotated and translated versions of an image to be simi-

lar to the original one, we prefer to use a slightly more re-

dundant transform, namely the steerable pyramid [8]. This

is the decomposition on the set of dilated, translated and

(Fourier-)rotated version of a mother wavelet. The image

I is then represented by a set of wavelet coefficients of

the form: {w(I)j,o,k}j∈Z,k∈Z2,o=1..No
, o indexing the ori-

entations. Subsampling is not performed on the first level

of decomposition (but is done subsequently) thus allowing

that all subbands are aliasing-free (translation invariance in

each scale). Moreover the different orientations allow to

get some rotation invariance. Although this transform is re-

dundant (with a factor 4No/3), it is fast and enforces spar-

sity of image decomposition as do the critically sampled

wavelet transforms, but it also enjoys more invariance prop-

erties than the latter.

The sampling of orientations is rather coarse (usually

No = 4). Therefore dependencies between coefficients at

different orientations are less significant than across scale

or space. Thus we confine the neighborhoods to each orien-

tation, i.e the neighborhood of w(I)j,o,k is:

w(I)j,o,k =
(
w(I)j,o,k, w(I)j−1,k,o,
w(I)j,o,k±(1,0), w(I)j,o,k±(0,1)

) . (2)

Hence our feature space is the set of the neighborhoods as

in (2) for all scales j, orientations o and locations k. Let us

now turn to the measure of similarity on this space.

2.2. Similarity measure between images

Since geometrically modified or slightly degraded ver-

sions of the same image as well as images containing sim-

ilar objects should be close, one cannot define a mea-

sure comparing directly the neighborhoods one by one, but

rather their probability distribution. More specifically, we

consider the pdf of the neighborhoods of (2) for each scale

and orientation, i.e. we consider the pdf p
wj,o(I) of the set

neighborhoods {w(I)j,o,k}k for each fixed j and o.

The considered pdf are those of coefficients that carry

the informational content of the signal. The natural way to

compare such pdf is to use measures derived from informa-

tion theory. Here we use the KL divergence between pdfs,

an approach that has also been successfully taken for other

applications [2]. This was also done in [3, 11] in the con-

text of evaluating the similarity between images using the

marginal pdf of the wavelet coefficients. We propose to use

this measure on the multidimensional pdf of the neighbor-

hoods of coefficients: the similarity between images I1 and

I2 is a weighted sum over orientations and scales of the KL

divergences between the pdf p
wj,o(I1) and p

wj,o(I2):

S(I1, I2) =
∑

j,o

αjDkl(pwj,o(I1)||pwj,o(I2)) (3)

with p
wj,o(Ii) the pdf of the wavelet neighborhoods of im-

age Ii at scale j and orientation o and αj > 0 are weights

(chosen according to the redundancy of the transform).

Previous works on neighborhoods of wavelet coefficients

or indexation using marginal pdf of these coefficients all

assumed a parametric model for the pdf involved. In the

marginal case, efficient models (e.g. generalized Gaussians

[3, 11]) lead to an analytic expression of the KL divergence

as a function of the model parameter; but they are not eas-

ily generalizable to the multidimensional correlated case of

wavelet neighborhoods. On the other hand, efficients multi-

dimensional models accounting for correlations (e.g. Gaus-

sian mixtures [7]) fit a wide variety of multidimensional

pdf but impose to estimate the KL divergence after estimat-

ing the model parameters. Besides the heavy computational

cost of the consecutive estimations, the numerical stability

of such cascading estimates is difficult to obtain. We prefer

to make no hypothesis on the pdf at hand, hence sparing the

cost of fitting the model parameters but needing to estimate

the KL divergences in this non-parametric case.

2.3. Estimation of the Kullback­Leibler divergences

Let us first remind the reader that the KL divergence be-

tween two continuous pdf p1 and p2 is:

Dkl(p1||p2)=

∫
p1(x) log

p1(x)

p2(x)
dx = Hx(p1, p2)−H(p1)

(4)



where H is the differential entropy and Hx is the cross en-

tropy.

The estimation of statistical measures in the multidimen-

sional case is hard. In particular, kernel-based methods such

as Parzen estimates become unadapted due to the sparsity

of samples in high dimension (curse of dimensionality): the

tradeoff between a kernel with a large bandwidth to perform

well in low local sample density (which oversmoothes the

estimator) and a kernel with a smaller bandwidth to preserve

local statistical variabilities (which results in an unstable es-

timator) cannot always be achieved. We use instead the kth

nearest neighbor (kNN) framework [10] to compute the KL

divergence. Indeed it follows the dual approach to the above

fixed size kernel: the bandwidth adapts to the local sample

density by letting the kernel contain exactly k neighbors of

a given sample. Moreover it allows direct estimation of the

divergence without explicitly estimating the pdf.

Assume that ǫ is a set of Nǫ samples w1, w2,..,wNǫ
of

pdf pǫ. Fix a non-zero integer k. Denote by vd the vol-

ume of the unit sphere in R
d, and ψ the digamma function.

Denote by µǫ(g) the mean of g over ǫ:

µǫ(g) = 1
Nǫ

Nǫ∑

n=1

g(wn). (5)

ρk,ǫ(s) is the distance for s ∈ R
d to its kth nearest neighbor

in ǫ− {s}.

kNN balloon estimates are based on the principle that

pǫ(s) is inversely proportional to the volume of the sphere

containing the k nearest neighbors of s in ǫ [10]:

pǫ(s) ∼
k

vd ρd
k,ǫ(s)

(6)

An unbiased estimator of the Ahmad-Lin approximation of

entropy [1]

Hal(pǫ) = − 1

Nǫ

Nǫ∑

n=1

log
[
pǫ(wn)

]
= −µǫ

(
log

[
pǫ

])
(7)

in the kNN framework was proposed in [4] by replacing

log k by ψ(k):

Ĥ(pǫ) = log[(Nǫ −1)vd] − ψ(k) + d µǫ(log[ρk,ǫ]) (8)

The cross entropy estimate is then [2]:

Ĥx(pǫ1 , pǫ2) = log[Nǫ2vd]−ψ(k)+dµǫ2(log[ρk,ǫ1 ]). (9)

And the KL divergence estimate is:

D̂kl(pǫ1 ||pǫ2) = log
[

Nǫ2

Nǫ1
−1

]
+ d µǫ2(log[ρk,ǫ1 ])

−d µǫ1(log[ρk,ǫ1 ])
(10)

This expression is valid in any dimension and it is robust to

the choice of k.

3. Numerical experiments

3.1. Setting

The database used in our numerical experiments contains

twenty five 128x128 color images from the VisTex database

(available at [6]). Given the small size of the images, only

two levels of the decomposition with the steerable pyramid

were computed. The number of orientations is fixed to four

and the number of neighbors in the kNN procedure to ten.

So far, we have described the feature space and simi-

larity measure considering implicitly single channel images

(like gray level images). To extend them to the multichan-

nel case, we consider the luminance/chrominance space (Y,

Cb, Cr). Since the luminance and chrominance channels

are fairly well decorrelated, one can in first approximation

consider them independent. Hence, we simply sum the KL

divergences obtained for each channel separately.

3.2. Retrieval results

The results for 5 of the images in the database are dis-

played in Fig. 1. In this figure, each row displays the re-

trieval result for the example (or reference) image shown on

the leftmost column. From the second column on, one can

see the first three images in the database ranked by our sim-

ilarity distance (the leftmost, the most similar), excluding

the example image (which is always at a distance of zero).

In general, our method seems to perform very well. In

particular, images coming from the same scene (see rows 2

to 4 in Fig. 1) are ranked first. In this database such images

are usually translated versions of one another. Hence this

experiment shows that our method is robust to translation.

Similar textured images such as trees, grass, and grids are

also correctly classified (see the last row of Fig. 1).

3.3. Complexity and computation time

For one query image, the computational cost of the re-

trieval procedure is the number of image in the database

times the cost of computing a similarity between two im-

ages. Denoting by N the number of pixel in an image, the

similarity computation is made in three steps of complexity:

• O(
√
N) for the steerable transform,

• O(N) for the design of the wavelet neighborhoods,

• O(N logN) for the evaluation of kNN distances (via

a classical KD-tree implementation).

Accordingly, most of the computational effort is put in the

evaluation of the kNN distances. To improve this, we re-

duce our feature space by selecting a small proportion of

the neighborhoods to evaluate the KL divergences. We se-

lect those with the largest central coefficient, thus exploiting



Image 1 Dist = 7.30 Dist = 8.62 Dist = 8.64

Image 8 Dist = 3.14 Dist = 3.21 Dist = 10.06

Image 9 Dist = 2.27 Dist = 2.62 Dist = 13.42

Image 10 Dist = 1.61 Dist = 1.94 Dist = 12.53

Image 24 Dist = 5.79 Dist = 6.76 Dist = 7.01

Figure 1. Retrieval results. Left to right: ref-

erence image; first 3 ranked images.

the sparsity of wavelet representation. Fig. 2. shows how

the computational time evolves then in O(M logM) where

M is the number of selected coefficients (green curve with

circles) while the similarity measure remains consistent (the

similarity between image 9 and its 3 closest matches are

displayed). Selecting only 1/32 of the coefficients leaves

us with results of the same accuracy as with all coefficients

while greatly reducing the computation time.

4. Conclusion

In this paper, we proposed a similarity measure between

images based on the KL divergence between multidimen-

sional pdf of wavelet coefficients grouped in coherent sets

called neighborhoods. The KL divergence is estimated non-

parametrically via a kNN approach.

Experiments on small images show good performances

of the proposed measure in the retrieval problem, partic-

ularly its robustness to simple geometric tranforms and to

the sparsity of the feature space. Future works will focus

on dataset with larger images as well as evaluation of the

performances through recall-precision curves.

Figure 2. Evolution of similarity and comput-

ing time with proportion of coefficients used.
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