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Existence and regularity of extremal solutions for

a mean-curvature equation

Antoine Mellet∗and Julien Vovelle†

Abstract

We study a class of semi-linear mean curvature equations Mu = H +
λf(u) where M is the mean curvature operator. We show that there
exists an extremal parameter λ∗ such that this equation admits a minimal
weak solutions for all λ ∈ [0, λ∗], while no weak solutions exists for λ >

λ∗. In the radial case, we then show that minimal solutions are classical
solutions for all λ ∈ [0, λ∗] and that another branch of solution exists in
a neighborhood [λ∗ − η, λ∗] of λ∗.

2000 Mathematics Subject Classification: 49F10 (35J60)

Keywords: Mean curvature operator, semilinear equation, minimal solutions,
regularity.

1 Introduction

Let Ω be a bounded open subset of R
n with smooth boundary ∂Ω. The aim of

this paper is to study the existence and regularity of non-negative solutions for
the following mean-curvature problem:

{

−div(Tu) = H + λf(u) in Ω,

u = 0 on ∂Ω,
(1)

where

Tu :=
∇u

√

1 + |∇u|2

and
f(u) = |u|p−1u, p ≥ 1.
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Formally, Equation (1) is the Euler-Lagrange equation for the minimization of
the functional

Fλ(u) :=

∫

Ω

√

1 + |∇u|2 −
∫

Ω

(Hu + λF (u)) dx +

∫

∂Ω

|u| dHn−1(x) (2)

with F (u) = 1
p+1 |u|p+1 (convex function).

When λ = 0, Problem (1) reduces to a simple mean-curvature problem,
which has been studied by many mathematicians (see for instance Bernstein
[Ber10], Finn [Fin65], Giaquinta [Gia74], Massari [Mas74] or Giusti [Giu76,
Giu78]). In particular, it is well known that a necessary condition for the exis-
tence of a minimizer in that case is

∣

∣

∣

∣

∫

A

H dx

∣

∣

∣

∣

< P (A), for all proper subset A of Ω, (3)

where P (A) is the perimeter of A (see (6) for the definition of the perimeter),
and Giaquinta [Gia74] proves that the following is a sufficient condition:

∣

∣

∣

∣

∫

A

H dx

∣

∣

∣

∣

≤ (1 − ε0)P (A), for all measurable set A ⊂ Ω, (4)

for some ε0 > 0.

In that respect, the mean-curvature equation (1) is very different from the
Laplace equation (or any other uniformly elliptic equations), which would have
a solution for any H ∈ L1(Ω).

Equation (1) has also been studied for λ < 0 and p = 1 (f(u) = u), in
particular in the framework of capillary surfaces (in that case, the Dirichlet
condition is often replaced by a Neumann condition, see R. Finn [Fin86]). The
existence of minimizers of (2) when λ < 0 is proved, for instance, by Giusti
[Giu76] and M. Miranda [Mir64].

In this paper, we are interested in the case λ > 0, which, to our knowledge,
has not been thoroughly investigated. One of the main difficulty in that case is
that the functional Fλ is no longer convex (in fact, it is not bounded below and
global minimizers clearly do not exists). However, under certain assumptions
on H (which guarantee the existence of a solution for λ = 0), it is still possible
to show that solutions of (1) exist for small values of λ. We will then show that
there exists an extremal parameter λ∗ such that (1) admits a minimal weak
solutions uλ for all λ ∈ [0, λ∗], while no weak solutions exists for λ > λ∗. Here
minimal solution means smallest and weak solutions will be defined as critical
points of the energy functional that satisfy the boundary condition (see (2.1)
for a precise definition). We will also show that minimal solutions are uniformly
bounded in L∞ by a constant depending only on Ω and the dimension.

We also investigate the regularity of the minimal solutions, and prove that
in the radially symmetric case, then {uλ ; 0 ≤ λ ≤ λ∗} is a branch of classical
solutions (here classical means Lipschitz). We stress out the fact that, the
extremal solution uλ∗ , which is the increasing limit of uλ as λ → λ∗, is itself a
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classical solution. This implies the existence of another branch of (non-minimal)
solutions for λ in a neighborhood [λ∗ − η, λ∗] of λ∗.

Problem (1) has to be compared with the following classical problem:

{ −∆u = gλ(u) in Ω

u = 0 on ∂Ω.
(5)

It is well known that if gλ(u) = λf(u), with f superlinear, then there exists a
critical value λ∗ ∈ (0,∞) for the parameter λ such that one (or more) solution
exists for λ < λ∗, a unique weak solution u∗ exists for λ = λ∗ and there is no
solution for λ > λ∗ (see [CR75]). And one of the key issue in the study of (5) is
whether the extremal solution u∗ is a classical solution (in that case, classical
means bounded) or uλ blows up when λ → λ∗ (see [KK74, BCMR96, MR96,
Mar97]).

Classical examples that have been extensively studied include power growth
gλ(u) = λ(1 + u)p and the celebrated Gelfand problem gλ(u) = λeu (see [JL73,
MP80, BV97]). For such nonlinearities, the minimal solutions, including the
extremal solution u∗ can be proved to be classical, at least in low dimension. In
particular, for gλ(u) = λ(1 + u)p, u∗ is regular if

n − 2 < F (p) :=
4p

p − 1
+ 4

√

p

p − 1

(see Mignot-Puel [MP80]) while when Ω = B1 and n−2 ≥ F (p), it can be proved
that u∗ ∼ Cr−2 (see Brezis-Vázquez [BV97]). For very general nonlinearities of
the form gλ(u) = λf(u) with f superlinear, Nedev [Ned00] proves the regularity
of u∗ in low dimension while Cabré [Cab06] and Cabré-Capella [CC06, CC07]
obtain optimal regularity results for u∗ for radially symmetric solutions.

Other examples of nonlinearity have been studied, such as gλ(x, u) = f0(x, u)+
λϕ(x) + f1(x) (see Berestycki-Lions [BL81]) or gλ(x, u) = λf(x)/(1 − u)2 (see
Ghoussoub et al. [GG07, EGG07, GG08]).

Despite all this interest for (5), the corresponding problem with the mean-
curvature operator does not seem to have been investigated (not even in the
case p = 1), which is fairly surprising in view of the importance of the minimal
surface equation. As it turns out, the behavior of (1) is very different from the
analogous Laplace equation. In particular we will see that the extremal solution
u∗ is always bounded in L∞ for any values of n and p. Furthermore, u∗ is a
classical solution (for any values of n and p), at least in the radially symmetric
case.

Note finally that the analysis of the corresponding evolution problem, at
least when p = 1, has been performed by Ecker [Eck82]. Note also the analysis
in [Ser09] of the Dirichlet Problem for an equation Mu = f(u,∇u) where M is
the mean curvature operator.
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2 Definitions and Main theorems

We recall that BV(Ω) denotes the set of functions in L1
loc(Ω) with bounded

variation over Ω, i.e.

∫

Ω

|Du| := sup

{
∫

Ω

u(x)div(g)(x) dx; g ∈ C1
c (Ω)N , |g(x)| ≤ 1

}

< +∞.

If A is a Lebesgue subset of R
n, its perimeter P (A) is defined as the variation

of its characteristic function ϕA:

P (A) :=

∫

Rn

|DϕA|, ϕA(x) =

{

1 if x ∈ A,
0 otherwise.

(6)

For u ∈ BV(Ω), we define the “area” of the graph of u by

A (u) :=

∫

Ω

√

1 + |Du|2 = sup

{
∫

Ω

g0(x) + u(x)div(g)(x) dx

}

, (7)

where the supremum is taken over all functions g0 ∈ C1
c (Ω), g ∈ C1

c (Ω)N such
that |g0| + |g| ≤ 1 in Ω. An alternative definition is A (u) =

∫

Ω×R
|DϕU | where

U is the subgraph of u. We have, in particular

∫

Ω

|Du| ≤
∫

Ω

√

1 + |Du|2 ≤ |Ω| +
∫

Ω

|Du|.

A major difficulty, when developing a variational approach to (1), is to deal
with the boundary condition. It is well known that even when λ = 0, mini-
mizers of Fλ may not satisfy the homogeneous Dirichlet condition (we need an
additional condition on H and the curvature of ∂Ω, see below). Furthermore,
the usual technics to handle this issue, which work when λ < 0 do not seem
to generalize easily to the case λ > 0. For this reason, we will not use the
functional Fλ in our analysis. Instead, we will define the solutions of (1) as the
“critical points” (the definition is made precise below) of the functional

Jλ(u) :=

∫

Ω

√

1 + |∇u|2 −
∫

Ω

H(x)u + λF (u) dx (8)

which satisfy u = 0 on ∂Ω.
By a “critical point” of Jλ, we mean a function u ∈ Lp+1 ∩BV(Ω) solution

of the equation

L(u)(ϕ) =

∫

Ω

(H + λf(u))ϕ

for all ϕ ∈ C∞
c (Ω), where

L(u)(ϕ) := lim
t↓0

1

t
(A (u + tϕ) − A (u)) (9)
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(note that this limit exists for every ϕ ∈ BV(Ω) since the area functional is
convex).

It is readily seen that L(u) is locally bounded on BV(Ω). However it is not
linear on BV(Ω), since, for any set A with finite perimeter, we have L(u)(ϕA) =
L(u)(−ϕA) = P (A). Nevertheless, the application ϕ 7→ L(u)(ϕ) is linear if u
and ϕ have enough regularity. For instance, if u ∈ W 1,1(Ω) and ϕ ∈ C∞

c (Ω),
then we have:

L(u)(ϕ) =

∫

Ω

Tu · ∇ϕdx, Tu :=
∇u

√

1 + |∇u|2
.

Finally, we note that L(u) is also convex and locally Lipschitz continuous on
L1 ∩ BV(Ω).

With this definition of L(u), it is readily seen that local minimizers of A (u)−
∫

Ω
Hu dx in L1 ∩ BV(Ω) satisfy

L(u)(ϕ) ≥
∫

Ω

Hϕ for all ϕ ∈ L1 ∩ BV(Ω)

with equality if u and ϕ are smooth enough (but with strict inequality, for
instance, if ϕ = ϕA). We thus take the following definition:

Definition 2.1. A measurable function u : Ω → [0,+∞] is said to be a weak
solution of Problem (1) if it satisfies











u ∈ Lp+1 ∩ BV(Ω), u ≥ 0

L(u)(ϕ) ≥
∫

Ω
(H + λf(u))ϕ, ∀ϕ ∈ Lp+1 ∩ BV(Ω) with ϕ = 0 on ∂Ω,

u = 0 on ∂Ω.
(Pλ)

When u and ϕ are smooth enough (so that L(u)(−ϕ) = −L(u)(ϕ)), then
the following equality holds:

L(u)(ϕ) =

∫

Ω

(H + λf(u))ϕ.

Note that the boundary condition makes sense here because functions in
L1∩BV(Ω) have a unique trace in L1(∂Ω) provided ∂Ω is Lipschitz (see [Giu84]).

Before we state our main result, we recall the following theorem concerning
the case λ = 0, which plays an important role in the sequel:

Theorem 2.2 (Giaquinta [Gia74]).

(i) Let Ω be a bounded domain with Lipschitz boundary and assume that H(x) is
a measurable function such that (4) holds for some ε0 > 0. Then the functional

F0(u) :=

∫

Ω

√

1 + |∇u|2 −
∫

Ω

H(x)u(x) dx +

∫

∂Ω

|u| dH n−1

has a minimizer u in BV(Ω).
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(ii) Furthermore, if ∂Ω is C1, H(x) ∈ Lip(Ω) and

|H(y)| ≤ (n − 1)Γ(y) for all y ∈ ∂Ω (10)

where Γ(y) denotes the mean curvature of ∂Ω (with respect to the inner normal),
then the unique minimizer of F0 belongs to C2,α(Ω) ∩ C0(Ω) for all α ∈ [0, 1)
and is a classical solution of

{

−div(Tu) = H in Ω,

u = 0 on ∂Ω,
(11)

(iii) Finally, if ∂Ω is C3 and the hypotheses of (ii) hold, then u ∈ Lip(Ω).

The key in the proof of (i) is the fact that (4) and the coarea formula for
BV functions yield

ε0‖u‖BV(Ω) ≤
∫

Ω

|Du| −
∫

Ω

H(x)u(x) dx

for all u ∈ BV(Ω). This is enough to guarantee the existence of a minimizer.
The condition (10) is a sufficient condition for the minimizer to satisfy u = 0
on ∂Ω. In the sequel, we assume that Ω is such that (4) holds, as well as the
following strong version of (10):

|H(y)| ≤ (1 − ε0)(n − 1)Γ(y) for all y ∈ ∂Ω (12)

Remark 2.3. When H(x) = H0 is constant, Serrin proves in [Ser69] that (10)
is necessary for the equation −div(Tu) = H to have a solution for any smooth
boundary data. However, it is easy to see that (10) is not always necessary
for (11) to have a solution: when Ω = BR and H = n

R , (11) has an obvious
solution given by an upper half sphere, even though (10) does not hold since
(n − 1)Λ = (n − 1)/R < H = n/R.

Several results in this paper only require Equation (11) to have a solution
with (1 + δ)H in the right hand side instead of H. In particular, this is enough
to guarantee the existence of a minimal branch of solutions and the existence of
an extremal solution. When Ω = BR, we can thus replace (12) with

|H(y)| ≤ (1 − ε0)nΓ(y) for all y ∈ ∂BR.

However, the regularity theory for the extremal solution will require the stronger
assumption (12).

Finally, we assume that there exists a constant H0 > 0 such that:

H ∈ Lip(Ω) and H(x) ≥ H0 > 0 for all x ∈ Ω. (13)
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This last condition will be crucial in the proof of Lemma 4.2 to prove the
existence of a non-negative solution for small values of λ. Note that P. Pucci
and J. Serrin [PS86] proved that if H = 0 and p ≥ (n + 2)/(n− 2), then (1) has
no non-trivial solutions for any values of λ ≥ 0 when Ω is star-shaped.

Our main theorem is the following:

Theorem 2.4. Let Ω be a bounded subset of R
n such that ∂Ω is C3. Assume

that H(x) satisfies conditions (4), (12) and (13). Then, there exists λ∗ > 0
such that:

1. if λ > λ∗, there is no (weak) solution to Problem (1),

2. if λ ≤ λ∗, there is at least one minimal (weak) solution to Problem (1).

The proof of Theorem 2.4 is done in two steps: First we show that the
set of λ for which a weak solution exists is a non empty bounded interval (see
Section 4). Then we prove the existence of the extremal solution for λ = λ∗

(see Section 6). The key result in this second step is the following uniform L∞

estimate:

Proposition 2.5. There exists a constant C depending only on Ω and H, such
that the minimal solution uλ of (Pλ) satisfies

‖uλ‖L∞(Ω) ≤ C for all λ ∈ [0, λ∗].

Next we investigate the regularity of minimal solutions: We want to show
that minimal solutions are classical solutions of (1). In the case of the Laplace
operator (5), this would be an immediate consequence of the L∞-bound. In our
case, classical results of the calculus of variation (see [Mas74]), imply that for
n ≤ 6, the surface (x, uλ(x)) is regular (analytic if H is analytic) and that uλ is
continuous almost everywhere in Ω. However, to get further regularity, we need
to show that uλ is Lipschitz continuous in Ω.

This, it seems, is a much more challenging problem and we obtain some re-
sults only in the radially symmetric case. More precisely, we show the following:

Theorem 2.6. Assume that Ω = BR ⊂ R
n (n ≥ 1), H = H(r), and that the

conditions of Theorem 2.4 hold. Then the minimal solution of (Pλ) is radially
symmetric, and there exists a constant C such that

|∇uλ(x)| ≤ C

λ∗ − λ
in Ω ∀λ ∈ [0, λ∗). (14)

In particular uλ is a classical solution of (1), and if H(x) is analytic in Ω, then
uλ is analytic in Ω for all λ < λ∗.

Note that the Lipschitz constant in (14) blows up as λ → λ∗. However, we
are then able to show the following:
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Theorem 2.7. Assume that the conditions of Theorem 2.6 hold. Then there
exists a constant C such that for any λ ∈ [0, λ∗], the minimal solution uλ

satisfies
‖∇uλ‖L∞(Ω) ≤ C.

In particular the extremal solution u∗ is a classical solution of (1).

It is now fairly classical to show, using Crandall-Rabinowitz’s continuation
theory [CR75], that there exists a second branch of solution in the neighborhood
of λ∗:

Theorem 2.8. If the extremal solution uλ∗ is Lipschitz continuous, then there
exists λ∗ ∈ (0, λ∗) such that for λ∗ < λ < λ∗ there is at least two solutions to
Problem (Pλ).

In the radially symmetric case, we can thus summarize our results in the
following corollary:

Corollary 2.9. Assume that Ω = BR ⊂ R
n (n ≥ 1), H = H(r), and that the

conditions of Theorem 2.4 hold. Then there exists λ∗ > λ∗ > 0 such that

1. if λ > λ∗, there is no weak solution to Problem (Pλ),

2. if λ ≤ λ∗, there is at least one minimal classical solution to Problem (Pλ).

3. if λ∗ < λ < λ∗, there is at least two classical solutions to Problem (Pλ).

Finally, we point out that numerical computation suggest that for some
values of n and H, a third branch of solutions may arise (and possibly more).

The paper is organized as follows: In Section 3, we give some a priori prop-
erties of weak solutions. In Section 4 we show the existence of a branch of
minimal solutions for λ ∈ [0, λ∗). We then establish, in Section 5, a uniform L∞

bound for these minimal solutions (Proposition 2.5), which we use, in Section 6,
to show the existence of an extremal solution as λ → λ∗ (thus completing the
proof of Theorem 2.4). In the last Section 7 we prove the regularity of the
minimal solutions, including that of uλ∗ , in the radial case (Theorems 2.6 and
2.7). In appendix, we prove a comparison lemma that is used several times in
the paper.

Remark 2.10. It might be interesting to consider other right hand sides in (1):

(i) For right hand sides of the form H +λf(u), all the results presented here still
holds (with the same proofs) if f is a C2 function satisfying:

(H1) f(0) = 0, f ′(u) ≥ 0 for all u ≥ 0.

(H2) There exists C and α > 0 such that f ′(u) ≥ α for all u ≥ C.

(H3) If u ∈ Lq(Ω) for all q ∈ [0,∞) then f(u) ∈ Ln(Ω).
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The last condition, which is used to prove the L∞ bound (and the Lipschitz
regularity near r = 0) of the extremal solution uλ∗ is the most restrictive. It
excludes in particular nonlinearities of the form f(u) = eu−1. However, similar
results hold also for such nonlinearities, though the proof of Proposition 2.5 has
to be modified in that case. This will be developed in a later work.

(ii) We can also consider right hand sides of the form λ(1+u)p. In that case, ev-
ery results above hold with very similar proofs, except for the boundary regularity
of the extremal solution uλ∗ (Lemma 7.3) which relies heavily on condition (12).

3 Properties of weak solutions

3.1 Weak solutions as global minimizers

Non-negative minimizers of Jλ that satisfy u = 0 on ∂Ω are in particular
critical points of Jλ, and thus solutions of (Pλ). But not all critical points are
minimizers. However, the convexity of the perimeter yields the following result:

Lemma 3.1. Assume that ∂Ω is C1 and let u be a non-negative function in
Lp+1 ∩ BV(Ω). The following propositions are equivalent:

(i) u is a weak solution of (Pλ),

(ii) u = 0 on ∂Ω and for every v ∈ Lp+1 ∩ BV(Ω), we have

A (u) −
∫

Ω

(H + λf(u))u dx ≤ A (v) −
∫

Ω

(H + λf(u)) v dx +

∫

∂Ω

|v| dH N−1,

(iii) u = 0 on ∂Ω and for every v ∈ Lp+1 ∩ BV(Ω), we have

Jλ(u) ≤ Jλ(v) +

∫

Ω

λG(u, v) dx +

∫

∂Ω

|v| dH N−1

where
G(u, v) = F (v) − F (u) − f(u)(v − u) ≥ 0.

In particular, any weak solution u of (Pλ) is a global minimizer in Lp+1 ∩
BV(Ω) of the functional (which depends on u)

F
[u]
λ (v) := Jλ(v) +

∫

∂Ω

|v| dH N−1 +

∫

Ω

λG(u, v) dx.

Proof. The last two statements are clearly equivalent and (iii) immediately im-

plies (i) since F
[u]
λ (u) = minv∈L2∩BV(Ω) F

[u]
λ (v) implies J ′

λ(u) = (F
[u]
λ )′(u) =

0.
So we only have to show that (i) implies F

[u]
λ (u) = minv∈L2∩BV(Ω) F

[u]
λ (v).

By definition of weak solutions, (i) implies J ′
λ(u) = 0, i.e.

L(u)(ϕ) ≥
∫

Ω

(H + λf(u))ϕ dx

9



for all ϕ ∈ Lp+1∩BV(Ω) with ϕ = 0 on ∂Ω. Furthermore, by convexity of A (u)
and the definition of L(u) (see (9)), we have

A (u) + L(u)(v − u) ≤ A (v),

for every v ∈ Lp+1 ∩ BV(Ω) with v = 0 on ∂Ω. We deduce (using 2.1):

A (u) +

∫

Ω

(H + λf(u))(v − u) dx ≤ A (v),

which implies

F
[u]
λ (u) ≤ F

[u]
λ (v) (15)

for all v ∈ Lp+1 ∩ BV(Ω) satisfying v = 0 on ∂Ω.
It thus only remains to show that (15) holds even when v 6= 0 on ∂Ω. For

that, the idea is to apply (15) to the function v − wε where (wε) is a sequence
of functions in Lp+1 ∩ BV(Ω) converging to 0 in Lp+1(Ω) such that wε = v on
∂Ω. Heuristically the mass of wε concentrates on the boundary ∂Ω as ε goes
to zero, and so A (v − wε) converges to A (v) +

∫

∂Ω
|v|dH N−1. This type of

argument is fairly classical, but we give a detailed proof below, in particular to
show how one can pass to the limit in the non-linear term.

First, we consider v ∈ BV(Ω) ∩ L∞(Ω). Then, for every ε > 0, there exists
wε ∈ BV(Ω) such that wε = v on ∂Ω and satisfying the estimates:

‖wε‖L1(Ω) ≤ ε

∫

∂Ω

|v|dH N−1,

∫

Ω

|Dwε| ≤ (1 + ε)

∫

∂Ω

|v|dH N−1

and ‖wε‖L∞(Ω) ≤ 2‖v‖L∞(Ω) (see Theorem 2.16 in [Giu84]). In particular we
note that

‖wε‖p+1
Lp+1(Ω) ≤ 2p‖v‖p

L∞(Ω)‖w
ε‖L1(Ω) → 0 (16)

when ε → 0. Using (15) and the fact that A (v − wε) ≤ A (v) +
∫

Ω
|Dwε|, we

deduce:

F
[u]
λ (u) ≤ F

[u]
λ (v − wε)

≤ Jλ(v) +

∫

Ω

|Dw| + λ

∫

Ω

F (v) − F (v − wε) dx +

∫

Ω

λG(u, v − wε)

= Jλ(v) +

∫

Ω

λG(u, v) +

∫

∂Ω

|v|dH N−1 +

∫

Ω

f(u)wε dx

= F
[u]
λ (v) +

∫

Ω

f(u)wε dx.

Taking the limit ε → 0, using (16) and the fact that f(u) ∈ L
p+1

p if u ∈ Lp+1,
we obtain (15) for any v ∈ L∞ ∩ BV(Ω).

We now take v ∈ Lp+1 ∩ BV(Ω). Then, the computation above shows that
for every M > 0 we have:

F
[u]
λ (u) ≤ F

[u]
λ (TM (v)),
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where TM is the truncation operator TM (s) := min(M,max(s,−M)). Clearly,
we have TM (v) → v in Lp+1(Ω). Furthermore, one can show that A (TM (v)) →
A (v). As a matter of fact, the lower semi-continuity of the perimeter gives
A (v) ≤ lim inf A (TM (v)), and the coarea formula implies:

A (TM (v)) ≤ A (v) +

∫

Ω

|D(v − TM (v))|

= A (v) +

∫ +∞

0

P ({v − TM (v) > t})dt

= A (v) +

∫ +∞

M

P ({v > t})dt

−→ A (v) when M → +∞.

We deduce that F
[u]
λ (TM (v)) −→ F

[u]
λ (v), and the proof is complete.

3.2 A priori bounds

Next, we want to derive some a priori bounds satisfied by any weak solutions u
of (Pλ).

First, we have the following lemma:

Lemma 3.2. Let u be a weak solution of (Pλ), then

∫

A

H + λf(u) dx ≤ P (A)

for all measurable sets A ⊂ Ω.

Proof. When u is smooth, this lemma can be proved by integrating (1) over
the set A and noticing that | ∇u·ν√

1+|∇u|2
| ≤ 1 on ∂A. If u is not smooth, we use

Lemma 3.1 (ii): For all A ⊂ Ω, we get (with v = ϕA):

A (u)−
∫

Ω

[H +λf(u)]u ≤ A (u+ϕA)−
∫

Ω

[H +λf(u)](u+ϕA)+H 1(∂Ω∩A).

We deduce

0 ≤
∫

Ω

|DϕA| + H 1(∂Ω ∩ A) −
∫

A

H + λf(u) dx.

and so

0 ≤ P (A) −
∫

A

H + λf(u) dx.

Lemma 3.2 suggests that λ can not be too large for (Pλ) to have a solution.
In fact, we can get a bound on λ, provided we can show that

∫

Ω
u dx is bounded

below. This is done in the next lemma:
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Lemma 3.3. Let u be a weak solution of (Pλ) for some λ ≥ 0. Then

u ≥ u in Ω

where u is the solution corresponding to λ = 0:

{

−div(Tu) = H in Ω
u = 0 on ∂Ω

(P0)

Proof. For δ > 0, let uδ be the solution to the problem

{

−div(Tu) = (1 − δ)H in Ω
u = 0 on ∂Ω

(Pδ)

Problem (Pδ) has a solution uδ ∈ Lip(Ω) ∩ L∞ ∩ BV(Ω) (by Theorem 2.2) and
(uδ) is increasing to u when δ → 0. We also recall [Giu76] that the function uδ

is the unique minimizer in L2 ∩ BV(Ω) of the functional

Fδ(u) =

∫

Ω

√

1 + |∇u|2 −
∫

Ω

(1 − δ)H(x)u(x) dx +

∫

∂Ω

|u|.

The lemma then follows easily from the comparison principle, Lemma A.1, with
G−(x, s) = −(1 − δ)H(x)s, G+(x, s) = −H(x)s − λF (s) + λG(u(x), s), K− =
K+ = Lp+1 ∩ BV(Ω). More precisely, we get:

0 ≤
∫

Ω

−δH(max(uδ, u) − u) + λ[F (u) − F (max(u, uδ)) + G(u, max(u, uδ))]

= −
∫

Ω

(δH + λf(u)) (uδ − u)+,

where v+ = max(v, 0). Since H > 0 and u ≥ 0 in Ω, this implies uδ ≤ u a.e. in
Ω. Taking the limit δ → 0, we obtain u ≤ u a.e. in Ω.

Finally, we note that u is a classical solution of (P0), and (13) implies u > 0
in Ω. We deduce

∫

Ω

u dx ≥
∫

Ω

u dx > 0

and so Lemma 3.2 yields the following a priori bounds on λ:

Lemma 3.4. If (Pλ) has a solution for some λ ≥ 0, then

λ ≤ P (Ω) −
∫

Ω
H dx

∫

Ω
u dx

with u solution of (P0).
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4 Existence of minimal solutions for λ ∈ [0, λ∗)

In this section, we prove the following proposition:

Proposition 4.1. Suppose that (4), (12) and (13) hold. Then, there exists
λ∗ ∈ (0,+∞) such that

(i) For all λ ∈ [0, λ∗), (Pλ) has one minimal solution uλ.

(ii) For λ > λ∗, (Pλ) has no solution.

(iii) The application λ 7→ uλ is non-decreasing.

To prove Proposition 4.1, we will first show that solutions exist for small
values of λ. Then, we will prove that the set of the values of λ for which
solutions exist is an interval.

4.1 Existence of uλ for small values of λ

We start with the following lemma:

Lemma 4.2. Suppose that (4), (12) and (13) hold. Then there exists λ0 > 0
such that (Pλ) has at least one minimal solution for all λ < λ0.

Proof. We will show that for small λ, the functional Jλ has a local minimizer
in BV(Ω) that satisfies u = 0 on ∂Ω. Such a minimizer is a critical point for
Jλ, and thus (see Definition 2.1) a solution of (Pλ).

Let δ be a small parameter such that (1 + δ)(1− ε0) < 1 where ε0 is defined
by the conditions (4) and (12). Then there exists ε′ > 0 such that

∣

∣

∣

∣

∫

A

(1 + δ)H dx

∣

∣

∣

∣

≤ (1 + δ)(1 − ε0)H
n−1(∂A) ≤ (1 − ε′)P (A),

and
|(1 + δ)H(y)| ≤ (1 − ε′)(n − 1)Γ(y) ∀y ∈ ∂Ω.

Theorem 2.2 thus gives the existence of w ≥ 0 local minimizer of

Gδ(u) = A (u) −
∫

Ω

(1 + δ)H(x)u dx +

∫

∂Ω

|u| dσ(x).

with w ∈ C2,α(Ω) ∩ C0(Ω) and w = 0 on ∂Ω.
It is readily seen that the functional Jλ has a global minimizer u in

K = {v ∈ Lp+1 ∩ BV(Ω) ; 0 ≤ v ≤ w + 1}.

We are now going to show that if λ is small enough, then u satisfies

u(x) ≤ w(x) in Ω. (17)
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For this, we use the comparison principle (Lemma A.1) with G−(x, s) = −H(x)s−
λF (s) and G+(x, s) = −(1 + δ)H(x)s (i.e. F− = Jλ and F+ = Gδ), and
K− = Lp+1 ∩ BV(Ω), K+ = K. Since max(u, w) ∈ K, we obtain

0 ≤
∫

Ω

−δH(max(u, w) − w) + λ(F (max(u, w)) − F (w)) dx

≤
∫

Ω

−δH(max(u, w) − w) + λ sup
s∈[0,‖w‖∞+1]

|f(s)|(max(u, w) − w) dx

≤
∫

Ω

−(u − w)+ [δH − f(‖w‖∞ + 1)] dx.

Therefore, if we take λ small enough such that λ < δ inf H
f(‖w‖∞+1) = δ H0

f(‖w‖∞+1) ,

we deduce (17).
Finally, (17) implies that u = 0 on ∂Ω and that u is a critical point of Jλ

in BV(Ω), which completes the proof.

4.2 Existence of uλ for λ < λ∗

We now define
λ∗ = sup{λ ; (Pλ) has a weak solution}.

Lemmas 3.4 and 4.2 imply
0 < λ∗ < ∞.

In order to complete the proof of Proposition 4.1, we need to show:

Proposition 4.3. For all λ ∈ [0, λ∗) there exists a minimal solution uλ of (Pλ).
Furthermore, the application λ 7→ uλ is nondecreasing.

Proof of Proposition 4.3. Let us fix λ0 ∈ [0, λ∗). By definition of λ∗, there exists
λ ∈ (λ0, λ

∗] such that (Pλ) has a solution u ∈ Lp+1 ∩ BV(Ω) for λ = λ.
Let also u be the solution to (P0). We then define the sequence un as follows:

We take
u0 = u

and for any n ≥ 1, we set

In(v) = A (v) −
∫

Ω

[H + λ0f(un−1)]v dx +

∫

∂Ω

|v|

and let un be the unique minimizer of In in Lp+1 ∩ BV(Ω).
In order to prove Proposition 4.3, we will show that this sequence (un) is

well defined (i.e. that un exists for all n), and that it converges to a solution of
(Pλ) with λ = λ0.

This will be a consequence of the following Lemma:

Lemma 4.4. For all n ≥ 1, un is well defined (i.e. the functional In admits a
global minimizer un on Lp+1∩BV(Ω)). Moreover, un ∈ Lip(Ω) and un satisfies

u ≤ un−1 < un ≤ u in Ω. (18)
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We can now complete the proof of Proposition 4.3: By Lebesgue’s monotone
convergence Theorem, we have that (un) converges almost everywhere and in
Lp+1 to a function u∞ satisfying

0 ≤ u∞ ≤ u.

In particular, it satisfies u∞ = 0 on ∂Ω. Furthermore, for every n ≥ 0, we have

In(un) ≤ In(0) = |Ω|

and so
‖un‖BV ≤ 2|Ω| + sup(H)‖u‖L1 + λ0‖u‖p+1

Lp+1(Ω)

hence u∞ ∈ BV(Ω). Finally, for all v ∈ BV(Ω) and for all n ≥ 1, we have

In(un) ≤ In(v)

and using the lower semi-continuity of the perimeter, and the strong Lp+1 con-
vergence, we deduce

∫

Ω

√

1 + |∇u∞|2 dx −
∫

Hu∞ + λf(u∞)u∞ dx

≤
∫

Ω

√

1 + |∇v|2 dx −
∫

Hv + λf(u∞)v dx

We conclude, using Lemma 3.1 (ii), that u∞ is a solution of (Pλ).

The rest of this section is devoted to the proof of Lemma 4.4:

Proof of Lemma 4.4. We recall that u denotes the unique minimizer of F0 in
BV(Ω). Note that, by Lemma 3.3, we have the inequality u ≤ u a.e. on Ω.

Assume now that we constructed un−1 satisfying un−1 ∈ Lip(Ω) and

u ≤ un−1 ≤ u.

We are going to show that un exists and satisfies (18) (this implies Lemma 4.4
by first applying the result to n = 1 and proceeding from there by induction).

First of all, Lemma 3.2 implies
∫

A

H + λ f(u) dx ≤ P (A)

for all measurable sets A ⊂ Ω. Since un−1 ≤ u and λ0 < λ, we deduce that
∫

A

H + λ0f(un−1) dx < P (A) (19)

for all measurable sets A ⊂ Ω. Following Giusti [Giu78], we can then prove (a
proof of this lemma is given at the end of this section):
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Lemma 4.5. There exists ε > 0 such that
∫

A

H + λ0f(un−1) dx < (1 − ε)P (A)

for all measurable sets A ⊂ Ω. In particular (4) holds with H = H + λf(un−1)
instead of H

This lemma easily implies the existence of a minimizer un of In (using Theo-
rem 2.2 with H instead of H). Furthermore, since un−1 ∈ Lip(Ω) and un−1 = 0
on ∂Ω condition (10) is satisfied with H instead of H and so (by Theorem 2.2):

un = 0 on ∂Ω

and
un ∈ Lip(Ω).

Finally, we check that the minimizer un satisfies

u ≤ un ≤ u.

Indeed, the first inequality is a consequence of the comparison Lemma A.1
applied to F− = F0, F+ = In, K+ = K− = Lp+1 ∩ BV(Ω), which gives

0 ≤ −
∫

Ω

λ0f(un−1)(max(u, un) − un) dx.

The second inequality is obtained by applying Lemma A.1 to F− = In, F+ =

F
[u]

λ
, K+ = K− = L2 ∩ BV(Ω):

0 ≤
∫

Ω

(λ0f(un−1) − λf(u))(max(u, un) − u) dx

and using the fact that un−1 ≤ u and λ0 < λ.

Since un is Lipschitz continuous in Ω, in particular W 1,1(Ω), it satisfies the
Euler-Lagrange equation associated to the minimization of In: −div(T (∇un)) =
H + λ0f(un−1). If n ≥ 2 and un−1 ≥ un−2, we then obtain the inequality
un > un−1 by the strong maximum principle (37) for Lipschitz continuous
functions.

Proof of Lemma 4.5. The proof of the lemma is similar to the proof of Lemma 1.1
in [Giu78]: Assuming that the conclusion is false, we deduce that there exists a

sequence Ak of (non-empty) subsets of Ω satisfying

∫

Ak

H ≥ (1 − k−1)P (Ak),

H := H + λ0f(un−1). In particular P (Ak) =

∫

RN

|DϕAk
| is bounded, so there

exists a Borel subset A of Ω such that, up to a subsequence, ϕAk
→ ϕA in L1(Ω)
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and, by lower semi-continuity of the perimeter,

∫

A

H ≥ P (A). This is a contra-

diction to the strict inequality (19) except if A is empty. But the isoperimetric
inequality gives

|Ak|
n

n−1 ≤ P (Ak) ≤ (1 − k−1)−1

∫

Ak

H ≤ (1 − k−1)−1‖H‖Ln(Ak)|Ak|
n

n−1

hence
(1 − k−1) ≤ ‖H‖Ln(Ak) for all k ≥ 2.

Since H is bounded (remember that un−1 is Lipschitz in Ω), we deduce

1

2
≤ C|Ak|1/n

and so |A| > 0 (since ϕAk
→ ϕA in L1(Ω)). Consequently, A cannot be empty,

and we have a contradiction.

5 Uniform L∞ bound for minimal solutions

The goal of this section is to establish the following L∞ estimate, which will be
used in the next section to show that uλ converges to a weak solution of (1) as
λ → λ∗:

Proposition 5.1. There exists a constant C depending only on Ω and H such
that, for every 0 ≤ λ < λ∗, the minimal solution uλ to (Pλ) satisfies

‖uλ‖L∞(Ω) ≤ C.

The proof relies on an energy method à la DeGiorgi. Note that, in general,
weak solutions are not minimizers (not even local ones) of the energy functional
Jλ. But it is classical that the minimal solutions uλ enjoy some semi-stability
properties. More precisely, we will show that uλ is a global minimizer of Jλ

with respect to non-positive perturbations. We will then use classical calculus
of variation methods to prove Proposition 5.1.

5.1 Minimal solutions as one-sided global minimizers

We now show the following lemma:

Lemma 5.2. The minimal solution uλ of (Pλ) is a global minimizer of the
functional Jλ over the set Kλ = {v ∈ BV(Ω); 0 ≤ v ≤ uλ}. Furthermore,
uλ is a semi-stable solution in the sense that J ′′

λ (u) ≥ 0: if uλ is Lipschitz
continuous in Ω, then, for all ϕ in C1(Ω) satisfying ϕ = 0 on ∂Ω, we have:

Qλ(ϕ) =

∫

Ω

|∇ϕ|2
(1 + |∇uλ|2)1/2

− |∇ϕ · ∇uλ|2
(1 + |∇uλ|2)3/2

− λf ′(u)ϕ2 dx ≥ 0. (20)
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Proof. It is readily seen that the functional Jλ admits a global minimizer ũλ on
Kλ. We are going to show that ũλ = uλ by proving, by recursion on n, that ũλ ≥
un for all n, where (un) is the sequence used to construct the minimal solution
uλ in the proof of Proposition 4.3, that is u0 = u and In(un) = minv∈BV(Ω) In(v)
with, we recall,

In(v) = A (v) −
∫

Ω

(H + λf(un−1))v +

∫

∂Ω

|v|dH N−1.

Set u−1 = 0, so that u0 = u is the minimizer of I0. Let n ≥ 0. Applying
Lemma A.1 to F− = In, F+ = Jλ, K− = L2 ∩ BV(Ω), K+ = Kλ, we obtain

0 ≤ λ

∫

Ω

F (ũλ) − F (max(un, ũλ)) + f(un−1)(max(un, ũλ) − ũλ) dx (21)

For n = 0, (21) reduces to:

0 ≤ −
∫

Ω

F (max(u, ũλ)) − F (ũλ) dx

with ũλ ≥ 0 in Ω. We thus have F (max(u, ũλ)) ≥ F (ũλ) and so

F (max(u, ũλ)) = F (ũλ) a.e. in Ω

which implies u ≤ ũλ a.e. in Ω.
For n ≥ 1 and assuming that we have proved that un−1 ≤ ũλ a.e. in Ω, then

f(un−1) ≤ f(ũλ) and (21) implies

0 ≤ −λ

∫

Ω

F (max(un, ũλ)) − F (ũλ) − f(ũλ)(max(un, ũλ) − ũλ) dx (22)

≤ −λ

∫

Ω

G(ũλ,max(un, ũλ)) dx (23)

The strict convexity of F implies ũλ = max(un, ũλ) and thus un ≤ ũλ a.e. in
Ω.

Passing to the limit n → ∞, we deduce

uλ ≤ ũλ in Ω

and thus uλ = ũλ, which completes the proof that uλ is a one sided minimizer.

Next, we note that if ϕ is a non-positive smooth function satisfying ϕ = 0 on
∂Ω, then Jλ(uλ+tϕ) ≥ Jλ(uλ) for all t ≥ 0. Letting t go to zero, and assuming
that uλ is Lipschitz continuous in Ω, we deduce that the second variation Qλ(ϕ)
is non negative. Since Qλ(ϕ) = Qλ(−ϕ), is is readily seen that (20) holds also
for non-negative function. Finally decomposing ϕ into its positive and negative
part, we deduce (20) for any ϕ.
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5.2 L∞ estimate

We now prove:

Proposition 5.3. Let λ ∈ (0, λ∗). There exists a constant C1 depending on
λ−1 and Ω such that

‖uλ‖L∞(Ω) ≤ C1.

Note that this implies Proposition 5.1: Proposition 5.3 gives the existence
of C depending only on Ω such that ‖uλ‖L∞(Ω) ≤ C for every min(1, λ∗/2) ≤
λ < λ∗. And since 0 ≤ uλ ≤ uλ′ if λ < λ′, the inequality is also satisfied when
0 ≤ λ ≤ min(1, λ∗/2).

Proof. This proof is essentially a variation of the proof of Theorem 2.2 in Giusti
[Giu76]. We fix λ ∈ (0, λ∗) and set u = uλ

For some fixed k > 1, we set vk = min(u, k) and wk = u − vk = (u − k)+.
The difference between the areas of the graphs of u and vk can be estimated by
below as follows:

∫

Ω

|Dwk| − |{u > k}| ≤ A (u) − A (vk).

On the other hand, since 0 ≤ vk ≤ u, Lemma 3.1 gives Jλ(u) ≤ Jλ(vk), which
implies

A (u) − A (vk) ≤
∫

Ω

H(u − vk) + λ[F (u) − F (vk)] dx.

Writing

F (u) − F (vk) =

∫ 1

0

f(su + (1 − s)vk) ds (u − vk),

We deduce the following inequality
∫

Ω

|Dwk| ≤ |{u > k}| +
∫

Ω

(

H + λ

∫ 1

0

f(su + (1 − s)vk) ds

)

wk dx. (24)

First, we will show that (24) implies the following estimate:

‖u‖Lq(Ω) ≤ C1(q), (25)

for every q ∈ [1,+∞), where C1(q) depends on q, Ω, λ−1.

Indeed, by Lemma 3.2, we have

∫

A

H +λf(u) dx ≤ P (A) for all Caccioppoli

subset A of Ω. We deduce (using the coarea formula):
∫

Ω

(H + λf(u))wk dx =

∫ +∞

0

∫

{wk>t}

H + λf(u) dx dt

≤
∫ +∞

0

P (wk > t)dt

≤
∫

Ω

|Dwλ|.
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We deduce, with (24), that

0 ≤ |{u > k}| − λ

∫

{u≥k}

[

f(u) −
∫ 1

0

f(su + (1 − s)vk) ds

]

wk dx.

Since u ≥ 1 and vk ≥ 1 on {u ≥ k}, and since f ′(s) ≥ 1 for s ≥ 1, we have
furthermore

f(u) ≥ f(su + (1 − s)vk) + (u − su − (1 − s)vk)

= f(su + (1 − s)vk) + (1 − s)(u − vk).

We deduce (recall that wk = u − vk = (u − k)+):
∫

Ω

[(u − k)+]2 dx ≤ 2

λ
|{u > k}|

which implies, in particular, (25) for q = 2. Furthermore, integrating this
inequality with respect to k ∈ (k′,+∞), we get:

∫

Ω

[(u − k)+]3 dx ≤ 3 · 2

λ

∫

Ω

(u − k)+ dx,

and by repeated integration we obtain:
∫

Ω

[(u − k)+]q dx ≤ q(q − 1)
1

λ

∫

Ω

[(u − k)+]q−2 dx

for every q ≥ 3, which implies (25) by induction on q.

Note however, that the constant C1(q) blows up as q → ∞, and so we cannot
obtain the L∞ estimate that way. We thus go back to (24): Using Poincaré’s
inequality for BV functions and (24), we get

‖wk‖L
n

n−1 (Ω)
≤ C(Ω)

∫

Ω

|Dwk|

≤ C(Ω)

(

|{u > k}| +
∫

Ω

(H + λf(u))wk

)

≤ C(Ω)
(

|{u > k}| + ‖H + λf(u)‖Ln({wk>0})‖wk‖L
n

n−1 (Ω)

)

Inequality (25) implies in particular that H + λf(u) ∈ Ln(Ω) (with bound
depending on Ω, λ−1), so there exists ε > 0 such that C(Ω)‖H +λf(u)‖Ln(A) ≤
1/2 for any subset A ⊂ Ω with |A| < ε. Moreover, Lemma 3.2 gives ‖u‖L1(Ω) ≤
P (Ω)/λ and therefore

|{wk > 0}| = |{u > k}| ≤ 1

k

P (Ω)

λ
.

It follows that there exists k0 depending on Ω, λ−1 such that

C(Ω)‖H + λf(u)‖Ln({wk>0}) ≤ 1/2
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for k ≥ k0. For k ≥ k0, we deduce

‖wk‖L
n

n−1 (Ω)
= ‖(u − k)+‖L

n
n−1 (Ω)

≤ 2C(Ω)|{u > k}|.

Finally, for k′ > k, we have 1|{u>k′} ≤
(

(u−k)+
k′−k

)
n

n−1

and so

|{u > k′}| ≤ 1

(k′ − k)
n

n−1

‖(u − k)+‖
n

n−1

L
n

n−1 (Ω)
≤ 2C(Ω)

(k′ − k)
n

n−1

|{u > k}| n
n−1

which implies, by classical arguments (see [Sta66]) that |{uλ > k}| is zero for k
large (depending on |Ω| and λ−1). The proposition follows.

As a consequence, we have:

Corollary 5.4. There exists a constant C depending only on Ω such that

‖uλ‖BV(Ω) ≤ C.

Proof. By Lemma 3.1 (ii) and Proposition 5.3, we get:

A(uλ) ≤ A(v) −
∫

Ω

(H + λf(uλ))v dx +

∫

Ω

(H + λf(uλ))uλ dx

≤ A(v) + C

∫

Ω

|v| dx + C

for any function v ∈ BV(Ω) ∩ L1(Ω) such that v = 0 on ∂Ω. Taking v = 0, the
result follows immediately.

6 Existence of the extremal solution

We can now complete the proof of Theorem 2.4. The only missing piece is
the existence of a weak solution for λ = λ∗, which is given by the following
proposition:

Proposition 6.1. There exists a function u∗ ∈ Lp+1(Ω) ∩ BV(Ω) such that

uλ → u∗ in Lp+1(Ω) as λ → λ∗.

Furthermore, u∗ is a weak solution of (Pλ) for λ = λ∗.

Proof. Recalling that the sequence uλ is nondecreasing with respect to λ, it is
readily seen that Proposition 5.1 implies the existence of a function u∗ ∈ L∞(Ω)
such that

lim
λ→λ∗

uλ(x) = u∗(x).

Furthermore, by the Lebesgue dominated convergence theorem, uλ converges to
u∗ strongly in Lq(Ω) for all q ∈ [1,∞).
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Next, by lower semi-continuity of the area functional A (u) and Corollary 5.4,
we have

A (u∗) ≤ lim inf
λ→λ∗

A (uλ) < ∞.

So, if we write

λ

∫

F (uλ) dx−λ∗

∫

F (u∗) dx = (λ−λ∗)

∫

F (uλ) dx+λ∗

∫

F (uλ)−F (u∗) dx,

it is readily seen that
Jλ∗(u∗) ≤ lim inf

λ→λ∗

Jλ(uλ).

Furthermore, Lemma 3.1 yields

Jλ(uλ) ≤ Jλ(u∗) + λ

∫

Ω

G(uλ, u∗) dx

and so (using the strong Lp+1 convergence):

lim sup
λ→λ∗

Jλ(uλ) ≤ Jλ∗(u∗).

We deduce the convergence of the functionals:

Jλ∗(u∗) = lim
λ→λ∗

Jλ(uλ)

which implies in particular that

A (uλ) → A (u∗)

and so uλ → u∗ in L1(∂Ω). It follows that u∗ satisfies the boundary condition
u∗ = 0 on Ω.

Finally, using Lemma 3.1 again, we have, for any v ∈ Lp+1 ∩ BV(Ω) with
v = 0 on ∂Ω:

Jλ(uλ) ≤ Jλ(v) + λ

∫

Ω

G(uλ, v) dx

which yields, as λ → λ∗:

Jλ∗(u∗) ≤ Jλ∗(v) + λ∗

∫

Ω

G(u∗, v) dx.

for any v ∈ Lp+1 ∩ BV(Ω) with v = 0 on ∂Ω. Lemma 3.1 implies that u∗ is a
solution of (Pλ) for λ = λ∗.
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7 Regularity of the minimal solution in the ra-

dial case: Proof of Theorem 2.6

Throughout this section, we assume that Ω = BR and that H depends on r = |x|
only. Then, for any rotation R that leaves BR invariant, we see that the function
uR

λ (x) = uλ(Rx) is a weak solution of (Pλ), and the minimality of uλ implies

uλ ≤ uR
λ in Ω.

Taking the inverse rotation R−1, we get the opposite inequality and so uR
λ = uλ,

i.e. uλ is radially (or spherically) symmetric. Furthermore, equation (1) reads:

− 1

rn−1

d

dr

(

rn−1ur

(1 + u2
r)

1/2

)

= H + λf(u). (26)

or

−
[

urr

(1 + u2
r)

3/2
+

n − 1

r

ur

(1 + u2
r)

1/2

]

= H + λf(u) (27)

together with the boundary conditions

ur(0) = 0, u(R) = 0.

Note that, by integration of (26) over (0, r), 0 < r < R, we obtain

−rn−1ur(r)

(1 + ur(r)2)1/2
=

∫ r

0

[H + λf(u)]rn−1dr,

which gives ur ≤ 0, provided u is Lipschitz continuous in Ω at least.

It is classical that the solutions of (5) can blow up at r = 0. In our case
however, the functions uλ are bounded in L∞. We deduce the following result:

Lemma 7.1. There exists r1 ∈ (0, R) and C1 > 0 such that for any λ ∈ [0, λ∗],
we have

|∇uλ(x)| ≤ C1 for all x such that |x| ≤ r1.

Proof. First, we assume that uλ is smooth. Then, integrating (1) over Br, we
get:

∫

∂Br

∇uλ · ν
√

1 + |∇uλ|2
dx =

∫

Br

H + λf(uλ) dx.

Since uλ is spherically symmetric, this implies:

|uλr|
√

1 + |uλr|2
(r) =

1

P (Br)

∫

Br

H + λf(uλ) dx (28)

and the L∞ bound on uλ yields:

|uλr|
√

1 + |uλr|2
(r) ≤ C

|Br|
P (Br)

≤ Cr.
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In particular, there exists r1 such that Cr ≤ 1/2 for r ≤ r1 and so

|(uλ)r|(r) ≤ C1 for r ≤ r1. (29)

Of course, these computations are only possible if we already know that u is
a classical solution of (1). However, it is always possible to perform the above
computations with the sequence (un) used in the proof of Proposition 4.3 to
construct uλ. In particular, we note that we have u ≤ un ≤ uλ for all n and

−div(Tun) = H + λf(un−1) in Ω

so the same proof as above implies that there exists a constant C independent
of n or λ such that

|∇un| ≤ C1 for all x such that |x| ≤ r1.

The lemma follows by taking the limit n → ∞ (recall that the sequence un

converges in a monotone fashion to uλ).

Proof of Theorem 2.6. We now want to prove the gradient estimate (14). Thanks
to Lemma 7.1, we only have to show the result for r ∈ [r1, R]. We denote
u∗ = uλ∗ Since u∗ is a weak solution of (Pλ), Lemma 3.2 with A = Br (r ∈ [0, R])
implies

∫

Br

H + λ∗f(u∗) dx ≤ P (Br)

and so, using the fact that u∗ ≥ uλ ≥ u, we have
∫

Br

H +λf(uλ) dx ≤ P (Br)−
∫

Br

(λ∗−λ)f(uλ) ≤ P (Br)−(λ∗−λ)

∫

Br

f(u) dx.

Hence (28) becomes:

|uλr|
√

1 + |uλr|2
(r) ≤ 1 − (λ∗ − λ)

rn−1

∫

Br

f(u) dx.

For r ∈ (r1, R), we have

(λ∗ − λ)

rn−1

∫

Br

f(u) dx ≥ (λ∗ − λ)δ > 0

for some universal δ and so

|(uλ)r|(r) ≤
C

λ∗ − λ
for r ∈ [r1, R].

Together with (29), this gives the result.

Note once again that these computations can only be performed rigorously
on the function (un), which satisfy in particular u ≤ un ≤ u∗ for all n. So (14)
holds for un instead of uλ. The result follows by passing to the limit n → ∞.

Remark 7.2. We point out that the Lipschitz regularity near the origin r = 0 is
a consequence of the L∞ estimate (it is in fact enough to have f(uλ) ∈ Ln), while
the gradient estimate away from the origin only requires f(uλ) to be integrable.
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7.1 Regularity of the extremal solution

In this section, we prove Theorem 2.7, that is the regularity of the extremal
solution u∗. The proof is divided in two parts: boundary regularity and interior
regularity.

7.1.1 Boundary regularity

We have the following a priori estimate:

Lemma 7.3. Assume that Ω = BR, that H depends on r and that condition
(4), (12) and (13) are fulfilled. Let u be any solution of (1) in Lip(Ω). Then
there exists a constant C depending only on R, ε0 and n such that

|ur(R)| ≤ C(1 + λ).

Since we know that uλ ∈ Lip(Ω) for λ < λ∗, we deduce

|(uλ)r(R)| ≤ C(1 + λ) for all λ < λ∗.

Passing to the limit, we obtain:

|u∗
r(R)| ≤ C(1 + λ∗) (30)

Proof of Lemma 7.3: In this proof, Assumption (12) plays a crucial role. When
Ω is a ball of radius R and using the fact that H ∈ Lip(Ω), it implies:

H(r) ≤ (1 − ε0)
n − 1

R

in a neighborhood of ∂Ω (with a slightly smaller ε0). The argument is similar to
the proof of Theorem 2.2 (ii) (to show that u satisfies the Dirichlet condition),
and relies on the construction of an appropriate barrier. We consider a circle
of radius ε−1 (ε to be determined) centered at (M, δ) with δ small and M > R
chosen such that the circle passes through the point (R, 0) (see Figure 1). We
define the function h(r) in [M − ε−1, R] such that (r, h(r)) lies on the circle
(with h(r) < δ).

Then, we note that for r ∈ [M − ε−1, R] and εδ ≤ 1, we have

h′(r)

(1 + h′(r)2)1/2
≤ h′(R)

(1 + h′(R)2)1/2
= −(1 − (δε)2)1/2 ≤ −1 + (δε)2

(this quantity can be interpreted as the horizontal component of the normal
vector to the circle), and

d

dr

(

h′(r)

(1 + h′(r)2)1/2

)

= ε
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(this quantity is actually the one-dimensional curvature of the curve r 7→ h(r)).
Hence we have:

1

rn−1

d

dr

(

rn−1h′(r)

(1 + h′(r)2)1/2

)

=
d

dr

(

h′(r)

(1 + h′(r)2)1/2

)

+
n − 1

r

h′(r)

(1 + h′(r)2)1/2

≤ ε +
n − 1

r
(−1 + (δε)2)

≤ ε +
n − 1

R
(−1 + (δε)2)

We now use a classical sliding method: Let

η∗ = inf{η > 0 ; u(r) ≤ h(r − η) for r ∈ [M − ε−1 + η, R]}.

If η∗ > 0, then h(r+η∗) touches u from above at a point in (M −ε−1 +η, R)
such that u < δ (recall that u is Lipschitz continuous so it cannot touch h(r−η)
at M − ε−1 + η since h = δ and h′ = ∞ at that point). At that contact point,
we must thus have

1

rn−1

d

dr

(

rn−1h′(r)

(1 + h′(r)2)1/2

)

≥ 1

rn−1

d

dr

(

rn−1ur(r)

(1 + ur(r)2)1/2

)

≥ −(H + λf(u))

≥ −(1 − ε0)
n − 1

R
− λδp.

We will get a contradiction if ε and δ are such that

ε +
n − 1

R
(−1 + (δε)2) < −(1 − ε0)

n − 1

R
− λδp

which is equivalent to

ε + λδp +
n − 1

R
(εδ)2 <

n − 1

R
ε0.

This can be achieved easily by choosing ε and δ small enough.
It follows that η∗ = 0 and so u ≤ h in the neighborhood of R. Since

u(R) = h(R) = 0, we deduce:

|u′(R)| ≤ |h′(R)| ≤ C(R,n)(εδ)−1 ≤ C(R,n)
1 + λ

ε2
0

.

Corollary 7.4. There exist η ∈ (0, R) and C > 0 such that

|∇u(r)| ≤ C for all r ∈ [R − η, R].
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δ

M

u(r)
ε−1

R

h(r)

r

Figure 1: Construction of a barrier

Proof. The same proof as that of Lemma 7.3 shows that there exists δ > 0 and
C > 0 such that:

If u(r) ≤ δ for all r ∈ [r0, R] with R − r0 ≤ δ then |ur(r0)| ≤ C. (31)

Furthermore, the proof of Lemma 7.3 implies that u(r) ≤ h(r) in a neighborhood
of R, and so for some small η we have:

u(r) ≤ δ for all r ∈ [R − η, R].

The result follows.

7.1.2 Interior regularity

We now show the following interior regularity result:

Proposition 7.5. Let η ∈ (0, R/2). There exists Cη > 0 depending only on η,
n and ‖uλ‖BV(Ω) such that, for all 0 ≤ λ < λ∗,

|∇uλ(x)| ≤ Cη for all x in Ω with η < |x| < R − η.

Using Lemma 7.1 (regularity for r close to 0), Corollary 7.4 (regularity for r
close to R), and Proposition 7.5 (together with Corollary 5.4 which give the BV
estimate uniformly with respect to λ), we deduce that there exists C depending
only on H and n such that

|∇uλ(x)| ≤ C for all x in Ω

for all λ ∈ [0, λ∗). Theorem 2.7 then follows by passing to the limit λ → λ∗.

Proof of Proposition 7.5. It is sufficient to prove the result for λ∗

2 < λ < λ∗.

Throughout the proof, we fix λ ∈ (λ∗

2 , λ∗), r0 ∈ (η, R − η) and we denote
u = uλ.

Idea of the proof: Let ϕ0 = ϕBr0
(the characteristic function of the set Br0

).
Then for all t ≥ 0, we have:

J (u + tϕ0) ≤ J (u) + t

∫

Ω

|Dϕ0| − t

∫

Ω

Hϕ0 dx − λ

∫

Ω

F (u + tϕ0) − F (u) dx
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Furthermore, since u ≥ u, we have u ≥ µ > 0 in Br0
and so

F (u + tϕ0) − F (u) ≥ f(u)tϕ0 +
α

2
t2ϕ2

0 for all x

(with α such that f ′(s) ≥ α for all s ≥ µ). It follows:

J (u + tϕ0) ≤ J (u) + t

∫

Ω

|Dϕ0| − t

∫

Ω

(H + λf(u))ϕ0 dx − t2
αλ

2

∫

Ω

ϕ2
0 dx

= J (u) + tP (Br0
) − t

∫

Br0

H + λf(u) dx − t2
αλ

2
|Br0

|

= J (u) + tP (Br0
)

(

1 − |ur(r0)|
v(r0)

)

− t2
αλ

2
|Br0

|.

where the last equality follows by integration of (1) over Br0
, which yields:

−P (Br0
)
ur(r0)

v(r0)
=

∫

Br0

H + λf(u) dx.

This would imply Proposition 7.5 if we had J (u) ≤ J (u+tϕ0) for some t >
0. Unfortunately, u is only a minimizer with respect to negative perturbation.
However, we will show that u is also almost a minimizer with respect to some
positive perturbation.

Step 1: First of all, the function ϕ0 above is not smooth, so we need to consider
the following piecewise linear approximation of ϕ0:

ϕε =







1 if r ≤ r0 − ε
ε−1(r0 − r) if r0 − ε ≤ r ≤ r0

0 if r ≥ r0.

We then have (using Equation (1)):

J (u + tϕε) = J (u) + t

∫

Ω

|∇ϕε| dx − t

∫

Ω

(H + λf(u))ϕε dx − t2
αλ

2

∫

Ω

ϕ2
ε dx

= J (u) + t

∫

Ω

|∇ϕε| dx − t

∫

Ω

(u)r(ϕε)r

v
dx − t2

αλ

2

∫

Ω

ϕ2
ε dx

= J (u) + t

∫

Ω

(

1 − |ur|
v

)

|∇ϕε| dx − t2
αλ

2

∫

Ω

ϕ2
ε dx

= J (u) + tωn

∫ r0

r0−ε

(

1 − |ur|
v

)

ε−1rn−1 dr − t2
αλ

2
λ

t2

2

∫

Ω

ϕ2
ε dx

≤ J (u) + tωnε−1

∫ r0

r0−ε

1

v2
rn−1 dr − t2

αλ

2

∫

Ω

ϕ2
ε dx

and so if we denote ρ(ε) = supr∈(r0−ε,r0)
1
v2 , we deduce:

J (u + tϕε) ≤ J (u) + tωnrn−1
0 ρ(ε) − t2

αλ

2
ωn

(r0

2

)n

(32)
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for all ε < r0/2.

Step 2: We now want to control J (u+tϕε) from below: for a smooth function
ϕ, we denote

θ(t) = A(u + tϕ) =

∫

Ω

L(ur + tϕr),

where L(s) = (1 + s2)1/2. Then

θ(3)(t) =

∫

Ω

L(3)(ur + tϕr)ϕ
3
r dx

where

L(3) : s 7→ −3s

(1 + s2)5/2
.

Since L(4)(s) = −3(1−4s2)
(1+s2)7/2 , |L(3)| = −L(3) is non-decreasing on [1/2,+∞), and

so

|L(3)(s)| ≤ 3

(1 + s2)2
.

When ϕ = ϕε, we have |ur + tϕr| ≥ |ur| for all t ≥ 0 and therefore:

|θ(3)(t)| ≤
∫

Ω

3

v4
(ϕε)

3
r dx

≤ ε−3ωn

∫ r0

r0−ε

3

v4
rn−1 dr

≤ ε−2ωn ρ(ε)2 rn−1
0

for all t ≥ 0.
Since the second variation Qλ(ϕε) is non-negative by Lemma 5.2 (recall that

uλ is a semi-stable solution), we deduce that for some t0 ∈ (0, t) we have:

J (u + tϕε) = J (u) +
t2

2
Qλ(ϕε) + θ(3)(t0)

t3

6
− λ

∫

Ω

f ′′(u + t0ϕε)

6
t3ϕ3 dx

≥ J (u) − t3

2
|θ(3)(t0)| − ‖f ′′(u + t0ϕε)‖L∞(Br0

)λt3ωnrn
0

≥ J (u) − t3

2
ε−2ωn ρ(ε)2 rn−1

0 − Cλt3ωnrn
0 , (33)

where we used the fact that f ′′(u + t0ϕε) ∈ L∞(Br0
) (if p ≥ 2, this is a conse-

quence of the L∞ bound on u, if p ∈ (1, 2), then this follows from the fact that
u + t0ϕε ≥ u > 0 in Br0

).

Step 3: Inequalities (32) and (33) yield:

λ
t2

2
ωnrn

0 ≤ tωnrn−1
0 ρ(ε) +

t3

2
ε−2ωn ρ(ε)2 rn−1

0 + Cλt3ωnrn
0
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and so
λr0

2
(1 − 2Ct)t ≤ ρ(ε) +

ε−2t2

2
ρ(ε)2

for all t ≥ 0. If t ≤ 1/(4C), we deduce

µt ≤ ρ(ε) +
ε−2t2

2
ρ(ε)2

with µ = λr1/4 (recall that r0 > r1).
Let now t = Mε (M to be chosen later), then we get

µMε ≤ ρ(ε) +
M2

2
ρ(ε)2.

If ρ(ε) ≤ µMε
2 , then

ρ(ε) +
M2

2
ρ(ε)2 ≤ µMε

2
+

µ2M4ε2

8

and we get a contradiction if µ2M4ε2

8 < µMε
2 . It follows that

ρ(ε) ≥ µMε

2
for all ε <

4

µM3
. (34)

Step 4: Since ρ(ε) = supr∈(r0−ε,r0)
1
v2 , (34) yields

inf
r∈(r0−ε,r0)

v2 ≤ 2

µMε
for all ε <

4

µM3
.

In order to conclude, we need to use some type of Harnack inequality to control
supr∈(r0−ε,r0) v2. This will follow from the following lemma:

Lemma 7.6. Let v =
√

1 + u2
r. Then v solves the following equation in (0, R):

− 1

rn−1

(

rn−1vr

v3

)

r

+ c2 = Hr
ur

v
+ λf ′(u)

u2
r

v
. (35)

where

c2 =
n − 1

r2

u2
r

v2
+

u2
rr

v6

is the sum of the square of the curvatures of the graph of u.

We postpone the proof of this lemma to the end of this section. Clearly, the
equation (35) is degenerate elliptic. In order to write a Harnack inequality, we
introduce w = 1

v2 , solution of the following equation

1

rn−1

(

rn−1wr

)

r
= 2Hr

ur

v
+ 2λf ′(u)

u2
r

v
− 2c2
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which is a nice uniformly elliptic equation in a neighborhood of r0 ∈ (0, R). In
particular, if ε ≤ R − r0, Harnack’s inequality [GT01] yields:

sup
r∈(r0−ε,r0)

w ≤ C inf
r∈(r0−ε,r0)

w + Cε‖g‖L1(r0−2ε,r0+ε) (36)

where

g = 2Hr
ur

v
+ 2λf ′(u)

u2
r

v
− 2c2.

Next, we note that

|g| ≤ 2|Hr| + Cλ|ur| + 2c2.

It is readily seen that the first (n − 1) curvatures 1
r

ur

v are bounded in a neigh-
borhood of r0 6= 0. Furthermore, since the mean curvature is in L∞, it is easy
to check that the last curvature is also bounded: More precisely, (27) gives

urr

v3
= −H − λf(u) − n − 1

r

ur

v
∈ L∞.

We deduce that c2 ∈ L∞ and since u ∈ BV(Ω), we get

‖g‖L1(r0−2ε,r0+ε) ≤ C‖u‖BV(Ω) + C

Together with (36) and (34), we deduce:

µMε

2
≤ C inf

r∈(r0−ε,r0)
w + C(‖u‖BV(Ω) + 1)ε for all ε <

4

µM3
.

With M large enough (M ≥ C
λr1

(‖u‖BV(Ω) + 1)), it follows that

µMε

4
≤ C inf

r∈(r0−ε,r0)
w for all ε <

4

µM3

and thus (with ε = min( 2
µM3 , (R − r0)/4, 1

4MC ):

v(r0)
2 ≤ sup

r∈(r0−ε,r0)

v2 ≤ C((λr0)
−1, (R − r0)

−1, ‖u‖BV(Ω), ‖u‖L∞(Ω))

which completes the proof.

Proof of Lemma 7.6. Taking the derivative of (26) with respect to r and multi-
plying by ur, we get:

n − 1

rn

(

rn−1ur

v

)

r

ur −
1

rn−1

(

rn−1ur

v

)

rr

ur = Hrur + λf ′(u)u2
r.

Using the fact that

(ur

v

)

r
=

urr

v3
and vr =

ururr

v
,

31



we deduce:

(n − 1)2

rn

rn−2u2
r

v
+

n − 1

r

ururr

v3
− n − 1

rn−1

(

rn−2ur

v

)

r

ur−
1

rn−1

(

rn−1urr

v3

)

r

ur

= Hrur + λf ′(u)u2
r

and so (simplifying and dividing by v):

(n − 1)2

r2

u2
r

v2
− (n − 1)(n − 2)

rn−1

rn−3u2
r

v2
− 1

rn−1

(

rn−1urr

v3

)

r

ur

v
= Hr

ur

v
+λf ′(u)

u2
r

v
.

This yields

(n − 1)

r2

u2
r

v2
− 1

rn−1

(

rn−1urrur

v4

)

r

+
1

rn−1

rn−1urr

v3

(ur

v

)

r
= Hr

ur

v
+ λf ′(u)

u2
r

v

hence
(n − 1)

r2

u2
r

v2
− 1

rn−1

(

rn−1vr

v3

)

r

+
u2

rr

v6
= Hr

ur

v
+ λf ′(u)

u2
r

v

which is the desired equation.

A Comparison principles

It is well known that classical solutions (in C1,1(Ω)) of (1) satisfy a strong
comparison principle namely, if

−div(Tu) ≤ −div(Tv) in Ω, u ≤ v on ∂Ω

with u 6= v, then
u < v in Ω. (37)

If u, v are only in W 1,1(Ω) then we still have a weak comparison principle (see
[Giu84]). But no such principle holds for functions that are only in BV(Ω) (even
if one of the function is smooth). This is due to the lack of strict convexity of
the functional A on BV(Ω) (A is affine on any interval [0, ϕA]). In particular,
we have L(ϕA) = L(−ϕA) = L(0) = 0 for any finite perimeter set A.

Throughout the paper, we consider weak solutions of the equation L(u) =
H + λu, and most such solutions are in BV(Ω). In order to use comparison
principles, we must thus use the properties of the functional Jλ rather than
the Euler-Lagrange equation. We thus use repeatedly the following lemma:

Lemma A.1 (Comparison principle). Let p ≥ 1. Let G± : Ω × R → R satisfy
the growth condition |G±(x, s)| ≤ C1(x)|s|p + C2(x) where C1 ∈ Lp′

(Ω) and
C2 ∈ L1(Ω). Let F± be the functional defined on Lp ∩ BV(Ω) by

F±(v) = A (v) +

∫

∂Ω

|v|dH N−1 +

∫

Ω

G±(x, v) dx.
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Suppose that u± is a global minimizer of F± on a set K± and suppose that

min(u+, u−) ∈ K−, max(u+, u−) ∈ K+,

Then we have

0 ≤ ∆(max(u+, u−)) − ∆(u+), ∆(v) :=

∫

Ω

G+(x, v) − G−(x, v) dx.

Proof of Lemma A.1. We need to recall the inequality

∫

Q

|DϕE∪F | +
∫

Q

|DϕE∩F | ≤
∫

Q

|DϕE | +
∫

Q

|DϕF |, (38)

which holds for any open set Q ⊂ R
m (m ≥ 1) and any sets E,F with locally

finite perimeter in R
m. Applied to Q = Ω×R and to the characteristic functions

of the subgraphs of u and v, Inequality (38) gives:

A (max(u, v)) + A (min(u, v)) ≤ A (u) + A (v), u, v ∈ BV(Ω). (39)

Since
∫

Ω
|Du| ≤ A (u), this shows in particular that max(u, v), min(u, v) and

(u− v)+ = max(u, v)− v = u−min(u, v) ∈ BV(Ω) whenever u and v ∈ BV(Ω).

Since u 7→
∫

Ω
G±(u) is invariant by rearrangement, we deduce:

F−(max(u+, u−)) + F−(min(u+, u−)) ≤ F−(u+) + F−(u−). (40)

Furthermore, we have min(u+, u−) ∈ K−, and so F−(u−) ≤ F−(min(u+, u−)).
Therefore, (40) implies that F−(max(u+, u−)) ≤ F−(u+), which, by definition
of ∆ also reads:

F+(max(u+, u−)) − ∆(max(u+, u−)) ≤ F+(u+) − ∆(u+).

Finally, we recall that u+ is the global minimizer of F+ on K+ and that
max(u+, u−) ∈ K+, and so F+(u+) ≤ F+(max(u+, u−)). We conclude that
∆(max(u+, u−)) − ∆(u+) ≥ 0.
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[Cab06] X. Cabré, Regularity of radial extremal solutions of semilinear ellip-
tic equations, Bol. Soc. Esp. Mat. Apl. S~eMA (2006), no. 34, 92–98.
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discontinus, Séminaire de Mathématiques Supérieures, No. 16 (Été,
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