
HAL Id: hal-00374798
https://hal.science/hal-00374798

Submitted on 9 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Timing Analysis of Combinational Circuits
Ramzi Ben Salah, Marius Bozga, Oded Maler

To cite this version:
Ramzi Ben Salah, Marius Bozga, Oded Maler. On Timing Analysis of Combinational Circuits. Formal
Modeling and Analysis of Timed Systems First International Workshop, FORMATS 2003, Sep 2003,
Marseille, France. pp.204-219, �10.1007/b12025�. �hal-00374798�

https://hal.science/hal-00374798
https://hal.archives-ouvertes.fr


On Timing Analysis of Combinational Circuits⋆

Ramzi Ben Salah, Marius Bozga and Oded Maler

VERIMAG, 2, av. de Vignate, 38610 Gieres, France
Ramzi.Salah@imag.fr Marius.Bozga@imag.fr Oded.Maler@imag.fr

Abstract. In this paper we report some progress in applying timed automata
technology to large-scale problems. We focus on the problemof finding maximal
stabilization time for combinational circuits whose inputs change only once and
hence they can be modeled using acyclic timed automata. We develop a “divide-
and-conquer” methodology based on decomposing the circuitinto sub-circuits
and using timed automata analysis tools to build conservative low-complexity
approximations of the sub-circuits to be used as inputs for the rest of the system.
Some preliminary results of this methodology are reported.

1 Introduction

It is well known that timed automata (TA) [AD94] are well suited for model-
ing delays in digital circuits [D89,L89,MP95]. Although some applications of
TA technology for solving timing-related problems for suchcircuits have been
reported [MY96,BMPY97,TKB97,TKY+98,BMT99,BJMY02], the state- and
clock-explosion associated with such models, restricted the applicability of TA
to small circuits. In this work we try to treat larger combinational circuits by
using the old-fashioned recipe of abstraction and approximation. When viewed
from a purely-functional point of view, combinational circuits realize instanta-
neous Boolean functions. However, when gate delays are taken into account, the
computation of that function is not considered anymore as anatomic action but
rather as a process where changes in the inputs are graduallypropagated to the
outputs. The question of finding the worst-case propagationdelay of the circuit,
that is, the maximal time that may elapse between a change in the inputs and the
last change in the outputs, is of extreme practical importance as it determines,
for example, the frequency of the clock with which a circuit can operate. Static
techniques currently practiced in industry are based on finding the longest (in
terms of accumulated delays) path from inputs to outputs in the circuit. While
these bounds are easy to compute (polynomial in the size of the circuit), they can
be over pessimistic because they abstract from the particular logic of the circuit
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which may prevent such longest paths from being exercised.1 On the other hand,
models based on timed automata do express the interaction between logic and
timing and hence can lead to more accurate results. Alas, TA-based techniques
are still very far from being applicable to industrial-sizecircuits.

The present paper attempt to find a better trade-off between accuracy and
tractability by using timed automata as an underlying semantic model and by
applying abstraction techniques to parts of the circuit in order to build for them
small over-approximating timed automata that can be plugged as inputs to other
parts of the circuit. Our abstraction technique takes advantage of the acyclic
nature of the circuits and their corresponding automata, which implies, among
other things, that every variable changes finitely many times before stabilization
in every run of the automaton.

The rest of the paper is organized as follows: in Section 2 we give a formal
definition of circuits, their “languages” and the maximal stabilization time prob-
lem. In section 3 we explain the modeling of such circuits as timed automata.
Section 4 is devoted to our abstraction technique, its properties and the way it is
implemented using the tools IF/Kronos and Aldebaran. Preliminary experimen-
tal results are reported in Section 5 followed by a discussion of related work and
future directions.

2 Timed Boolean Circuits

Throughout this paper we restrict ourselves to acyclic circuits.

Definition 1 (Boolean Circuits).A Boolean circuit isC = (V, ;, F ) whereV
is a set of nodes,; is an irreflexive and anti-symmetric binary relation andF
is a function that assigns to every non-input nodev a Boolean functionFv

Herev ; v′ means thatv influencesv′ directly. The transitive closure of;,
∗
;, induces a strict partial order(V,

∗
;) where the minimal elements are called

input nodes and are denoted byVx. The rest of the nodes are called non-input
nodes and denoted byVy. A subsetVz of V consists of output nodes, those that
are observable from the outside. An example appears in Figure 1-(a). The set of
immediatepredecessorsof a node isπ(v) = {v′ : v′ ; v} and the set of its
predecessors (backward cone) isπ∗(v) = {v′ : v′

∗
; v}.

By substitution we define for every nodev a functionGv defined on the in-
puts in its backward cone, for example,Gy3(x1, x2) = f3(x1, f2(x1, x2)). We
will use X = B

|Vx|, Y = B
|Vy | andZ = B

|Vz | to denote the sets of possible

1 A lot of effort has been invested in the problem of detecting such “false paths”.
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Fig. 1. (a) A Boolean circuit; (b) A timed Boolean circuit.

assignments to input, non-input and output nodes, respectively. The whole cir-
cuit can be viewed as computing a functionG : X → Y . Thestable stateof the
circuit associated with an input vectorx ∈ X is y = G(x).

This concludes the formalization of Boolean circuits and their functions.
These functions areinstantaneouswith no notion of time. The next step is to
lift them to functions (operators) on signals, that is, on functions that specify the
evolution of a value over (continuous) time.

Definition 2 (Signals).Let A be a set and letT = R+ be a time domain. An
A-valued signal overT is a partial functionα : T → A whose domain of
definition is an interval[0, r) for somer ∈ T .

We useα[t] to denote the value ofα at t, andα[t] = ⊥ to denote the fact that
a is not defined att. WhenA is finite, signals are piecewise-constant and make
discontinuous jumps at certain points in time. This is formalized as follows. The
left limit of a signalα at timet is defined asα[t−] = limt′→t α[t′]. For every
piecewise-constant signalα we define:

– The ordered set ofjump points, J (α) = {t : α[t−] 6= α[t]} = {t0, t1, . . .}.
– The set ofmaximally-uniform intervalsI(α) = {I1, I2, . . .} whereIi =

[ti−1, ti) for ti−1, ti ∈ J (α).

Clearly, the value ofα is uniform over any subset of a maximally-uniform inter-
val. We restrict our attention to well-behaving signals i.e. those for whichJ (α)
has finitely-many elements in any finite interval. We denote the set ofA-valued
signals byS(A).

When a gate or any other I/O device gets a signal as an input, ittransforms
it into an output signal. This is captured mathematically bywhat is called a
transducer, or a signal operator, a function that maps signals to signals. We
restrict such functions to becausal, that is, the value of the output at timet can



depend only on the value of the input in times[0, t] and not on later values. The
simplest type of operators are memoryless (instantaneous)operators defined as
follows.

Definition 3 (Memoryless Operators).A memoryless signal operator is a func-
tion f : S(A) → S(B) obtained as a pointwise extension of a functionf : A →
B, that is,β = f(α) if β[t] = f(α[t]) for everyt in the domain ofα.

In reality, since gates are realized by continuous physicalprocesses, it takes
some time to propagate changes from input to output ports. Todefine this phe-
nomenon mathematically we need the basic operator with memory for discrete-
valued signals, the delay, which takes a signal and “shifts”it in time. One can
define a variety of delay operators differing from each otherin complexity and in
physical faithfulness. The class of models that we consideris calledbi-bounded
inertial delays [BS94] and is characterized by an intervalI = [l, u] which gives
lower and upper bounds on the propagation delay. For the purpose of this pa-
per we will use the model introduced in [MP95] but since the choice of the
delay model is orthogonal to the rest of the methodology we will defer the ex-
act definition of the operator to Section 3 where it will be defined in terms of
its corresponding timed automaton and use meanwhile a general semi-formal
definition.

Definition 4 (Delay Operators).A delay operator is a non-deterministic func-
tion of the formDI : A × S(A) → 2S(A) whereI = [l, u] is a parameter of the
operator withl > 0. A signalβ is in ∆I(b, α) if

1. The value ofβ is b at the initial interval[0, t);
2. Changes inα are not propagated toβ beforel time elapses;
3. Changes inα must be propagated toβ if they persist foru time;
4. Changes inα that persist for less thenl time are not propagated at all toβ.

Figure 2 illustrates such an operator which, typically, will have uncountably-
many output signals for an input signal. All signal operators can be lifted natu-
rally into operators on sets of signals.

A timed circuit model is obtained from a Boolean circuit by connecting
the output of every non-input node to a delay operator which models the delay
associated with the computation of that node (see Figure 1-(b). In other words,
a gate with a propagation delay is modeled as a composition ofa memoryless
Boolean operator and a delay operator (see [MP95]).

Definition 5 (Timed Boolean Circuits).A timed Boolean circuit isC = (V, ;
, F, I) where(V, ;, F ) is a Boolean circuit andI is a function assigning to
every non-input nodev a delay intervalIv = [lv, uv] such that0 < lv ≤ uv <
∞.
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Fig. 2.An input signalα and few of the elements ofD[2,3](0, α).

The semantics of a timed circuit is given in terms of a non-deterministic
transducerFC : Y × S(X) → 2S(Y ) such thatβ ∈ FC(y, α) if α andβ satisfy
the set of signal inclusions associated naturally with the circuit [MP95] andy is
the initial state of the non-input part of the circuit.

The stabilization time problem is motivated by the use of Boolean circuits
in synchronous sequential machines (the hardware name for automata). At the
beginning of every clock cycle new input values together with the values of
memory elements (computed in the previous cycle) are fed into the circuit and
the changes are propagated until the circuit stabilizes andthe clock falls. The
“width” of the clock needs to be large enough to cover the longest possible stabi-
lization time of the circuit over all admissible inputs. In our modeling approach
we will consider primary inputs that change at most once and within a bounded
amount of time and hence, due to acyclicity and the finite upper-bounds associ-
ated with the delays, they induce finitely many changes throughout the circuit.

Definition 6 (Ultimately-Constant Signals).A signalα is ultimately-constant
(u.c.) if it has a finite number of jump points (i.e. there is some timet such
that the signal remains constant aftert). The minimal sucht for α is called
its stabilization time and is denoted byθ(α). This definition extends to sets of
signals by lettingθ(L) = max{θ(α) : α ∈ L}.

The following properties hold for everyu.c. signalα:

1. The signalf(α) is also u.c. for every Boolean functionf .
2. For a delay operatorDI with I = [l, u] and for everyβ ∈ DI(α), θ(β) ≤

θ(α) + u.

Consequently, u.c. inputs to acyclic timed circuits produce u.c. outputs. Con-
stant signals constitute a special class of u.c. signals andwe will use αx to
denote a signal whose value is constantlyx.

We can now define the problem of maximal stabilization time ofa circuit
with respect to a pair of input vectorsx andx′ wherex is the input presented in
the preceding cycle, and which determines the initial (stable) state, andx′ is the



value of a new constant signal. We denote byL(C, x, x′) the set ofY -signals
β ∈ FC(y, αx′) when the circuit is initialized with the stable statey = G(x).

Definition 7 (Stabilization Time of a Circuit). Given a timed Boolean circuit
C = (V, ;, F, I) and two input vectorsx, x′ ∈ X the stabilization time associ-
ated with(x, x′) is θ(C, x, x′) = max{θ(β) : β ∈ L(C, x, x′)} and the maximal
stabilization time of the circuit isθ(C) = max{θ(C, x, x′) : x, x′ ∈ X}.

3 Modeling with Timed Automata

Timed automata are automata augmented with continuous clock variables whose
values grow uniformly at every state. Clocks can be reset to zero at certain transi-
tions and tests on their values can be used in conditions for enabling transitions.

Definition 8 (Timed Automaton). A timed automaton isA = (Q, C, I, ∆)
whereQ is a finite set of states,C is a finite set of clocks,I is the staying
condition (invariant), assigning to everyq ∈ Q a conjunctionIq of inequalities
of the formc ≤ u, for some clockc and integeru, and∆ is a transition relation
consisting of elements of the form(q, φ, ρ, q′) whereq andq′ are states,ρ ⊆ C
andφ (the transition guard) is a conjunction of formulae of the form (c ≥ l) for
some clockc and integerl.

A clock valuationis a functionv : C → R+ ∪ {0} and aconfigurationof
the automaton is a pair(q, v) consisting of a discrete state (location) and a clock
valuation. Every subsetρ ⊆ C induces a reset functionResetρ on valuations
which resets to zero all the clocks inρ and leaves the other clocks unchanged.
We use1 to denote the unit vector(1, . . . , 1) and0 for the zero vector. We will
use the termconstraintsto refer to both guards and staying conditions. Astep
of the automaton is one of the following:

– A discrete step:(q, v)
δ

−→ (q′, v′), for some transitionδ = (q, φ, ρ, q′) ∈ ∆,
such thatv satisfiesφ andv′ = Resetρ(v).

– A time step:(q, v)
t

−→ (q, v + t1), t ∈ R+ such thatv + t1 satisfiesIq.

A run of the automaton starting from a configuration(q0, v0) is a finite sequence
of steps

ξ : (q0, v0)
t1−→ (q1, v1)

t2−→ · · ·
tn−→ (qn, vn).

We model timed circuits as a composition of timed automata such that each
automaton may observe the states of other automata and referto them in its
transition guards and staying conditions.2 The automaton for a Boolean gate of

2 To avoid over-formalization we do not define “open” interacting automata. Such definitions
can be found in [MP95].



the formy = f(x1, x2) is just a trivial one-state automaton that has self-looping
transitions for all tuples(x1, x2, y) that satisfy the equation. In fact, this is not
really an automaton but an instantaneous logical constraint that must always be
satisfied. The automaton for the delay operatorD[l,u] (Figure 3) has four states,
0, 0′, 1, 1′. The0 and1 states are stable, that is, the values of the output of the
delay is consistent with its inputx. When at state0, if the input changes to1, the
automaton moves to an unstable state0′ and resets a clockC to zero. It can stay
at 0′ as long asC < u and can switch to stable state1 as soon asC ≥ l. If the
input changes back to0 before the transition to1 the automaton returns to0. We
call these three types of transitionsexcite, stabilizeandregret, respectively. Note
that states0 and0′ are indistinguishable from the outside and another automaton
will see a change from0 to 1 only after the “stabilize” transition.

x = 0/C := 0

0

1

x = 1

x = 0
x = 1∧
C < u

x = 0∧
C < u

x = 1∧
l ≤ C∧
C ≤ u

x = 0 ∧ C < u

x = 1 ∧ C < u

x = 1/C := 0

x = 0∧
l ≤ C∧
C ≤ u

1′

0′

Fig. 3. The timed automaton for a delay element. Thex variable refers to the observable state of
the input automaton which is0 at{0, 0′} and1 at{1, 1′}.

Composing all the automata, together with the model of theirinputs we ob-
tain a closed automaton as in Definition 8 whose semantics is identical to that
of the timed circuit [MP95]. To be more precise, an automatonwhose semantics
is L(C, x, x′) is obtained by letting the initial state be the stable state corre-
sponding toG(x) and composing it with a static automaton for the inputx′. The
obtained automaton is acyclic and all paths converge in finite time to the only
stable state that corresponds toG(x′). The maximal stabilization time is hence
the maximal time that the automaton can stay in any unstable state. Note that



in such a state at least one of the components is in a0′ or 1′ state and hence its
staying condition forces it to leave the state.

We recall some definitions commonly-used in the verificationof timed au-
tomata [HNSY94,Y97,LPY97,BDM+98,A99]. A zoneis a set of clock valua-
tions consisting of points satisfying a conjunction of inequalities of the form
ci−cj ≥ d or ci ≥ d. A symbolic stateis a pair(q, Z) whereq is a discrete state
andZ is a zone. It denotes the set of configurations{(q, z) : z ∈ Z}. Symbolic
states are closed under the following operations:

– Thetime successorof (q, Z) is the set of configurations which are reachable
from (q, Z) by letting time progress without violating the staying condition
of q:

Postt(q, Z) = {(q, z + r1) : z ∈ Z, r ≥ 0, z + r1 ∈ Iq}.

We say that(q, Z) is time-closedif (q, Z) = Postt(q, Z).
– The δ-transition successorof (q, Z) is the set of configurations reachable

from (q, Z) by taking the transitionδ = (q, φ, ρ, q′) ∈ ∆:

Postδ(q, Z) = {(q′, Resetρ(z)) : z ∈ Z ∩ φ}.

– Theδ-successorof a time-closed symbolic state(q, Z) is the set of configu-
rations reachable by aδ-transition followed by passage of time:

Succδ(q, Z) = Postt(Postδ(q, Z)).

The forward reachability algorithm for TA starts with an initial zone and gener-
ates all successors until termination, while doing so it generates thereachability
graph(also known as the simulation graph).

Definition 9 (Reachability Graph). The reachability graph associated with a
timed automaton starting from a states is a directed graphS = (N,→) such
thatN is the smallest set of symbolic states containingPostt(s, {0}) and closed
underSuccδ. The edges are all pairs of symbolic states related bySuccδ.

The fundamental property of the reachability graph is that it admits a path from
(q, Z) to (q′, Z ′) if and only if for everyv′ ∈ Z ′ there existsv ∈ Z and a run of
the automaton from(q, v) to (q′, v′). Hence the union of all reachable symbolic
states gives exactly the reachable configurations.

To compute the maximal stabilization time we add an auxiliary clock T
which is never reset to zero and hence in every reachable configuration its value
represents the total time elapsed since the beginning of therun. The maximal
value ofT over all reachable symbolic states(q, Z) with q unstable is the max-
imal stabilization time (note that due to acyclicity the value ofT is bounded in
all unstable states). Hence, the problem of maximal stabilization time can, in
principle, be solved using standard TA verification tools.



4 The Abstraction Technique

Given the complexity of TA verification we move to an abstraction methodology
based on the following simple idea. We decompose the circuitinto sub-circuits
small enough to be handled completely by TA verification tools. We take the
automatonA which corresponds to such a sub-circuit and use its reachability
graph to construct an automaton̂A having two important properties:

1. The setL(Â) of signals that it generates is a reasonable over-approximation
of the projection ofL(A) on the output variables of the circuit.

2. It is much smaller thanA in terms of states and clocks.

Hence if we replaceA by Â as a model of the sub-circuit we are guaranteed
to over-approximate the semantics of the circuit and hence to over-approximate
the stabilization time.

/C2 := 0

C1 ∈ [l1, u1] C2 ∈ [l2, u2] T ∈ [l1, u1] T ∈ [l1 + l2, u1 + u2]

(a) (b)

Fig. 4.Projection on the absolute time introduces spurious runs.

To better understand the technique it is worth looking at thereachability
graph from a different angle. In timed automata, as in any other automata aug-
mented with auxiliary variables, the transition graph is misleading because a
discrete state stands for many possible clock valuation which may differ in the
constraints they satisfy and hence in the behaviors that canbe generated from
them. It might be the case that a stateq will never be reached with a clock val-
uation satisfying some transition guard and hence the corresponding transition
will never be taken. By performing the reachability algorithm for A starting
from an initial state we obtain a graph which represents the “feasible part” of
A, excluding behaviors that violate timing constraints. Figure 5-(a) shows the
reachability graph for the circuit of Figure 1-(b) where theinputs change from
(0, 1) to (1, 0). In fact the reachability graph can serve as a skeleton of another
timed automatonA′ whose semantics in terms of runs is equivalent to that ofA.
To see that, one just has to associate with each symbolic state (q, Z) the staying

conditionZ and label each transition(q, Z)
δ

−→ (q′, Z ′) by the guard and reset
of δ. The resulting automatonA′ differs fromA in two aspects: certain states of
A are split into several copies according to clock values, andall transitions that
are not possible inA due to timing constraints do not appear inA′ at all.



Now if we relax some timing constraints inA′ we may introduce spuri-
ous behaviors that violate these constraints, however we will not add any new
qualitativebehavior (sequence of events) that was not possible inA because
such behaviors have already been eliminated while computing the reachability
graph. The most straightforward way to relax timing constraints is to project
the constraints on a subset of the clocks and discard the rest. In particular if we
throw away all clocks exceptT which measures the absolute time, the relaxed
guard for any transition will be of the formT ∈ [t1, t2]. Clearly, a transition
can be taken in the new automaton iff there is a run of the original automaton
in which the corresponding transition could be taken at sometime t ∈ [t1, t2].
However, this abstraction can add additional runs which areimpossible in the
original automaton as the following example shows. Consider the automaton of
Figure 4-(a) where the first transition could take place in[l1, u1] while the sec-
ond can take place betweenl2 andu2 after the occurrence of the first. Applying
the above procedure we obtain the automaton of Figure 4-(b) where the second
transition could be taken anywhere in[l1 + l2, u1 +u2] regardless of the time of
the first.

The next step is to hide transitions which are not observablefrom the out-
side, i.e. all transitions of non-output variable and all non-visible transitions
(“excite” and “regret”) of the output variablesy2 andz. The one-clock automa-
ton thus obtained for our example appears in Figure 5-(b). Wethen apply a min-
imization algorithm which merges states that are indistinguishable with respect
to the remaining visible transitions. More formally we consider the congruence
relation∼ on the nodes of the labeled reachability graph defined as the largest
relation satisfying:

q1 ∼ q2 iff ∀δ, I q1

τ∗·(δ,I)

−→ q′1 ⇒ (∃q′2 s.t. q2

τ∗·(δ,I)

−→ q′2 ∧ q′1 ∼ q′2). (1)

Here(δ, I) stands for a transition-interval pair andτ∗ to an arbitrary sequence of
unobservable transition. This relation is the “safety bisimulation” of [BFG+91].
The minimized automaton, whose states are congruence classes of∼, can be
seen in Figure 6-(a).

Relation (1) looks at transition labels in a purely-syntactic manner, that is,
the label−y2[20, 30] in Figure 6-(a) is considered distinct from−y2[20, 40] and
hence the transitions are not merged. To obtain a more aggressive abstraction
we define a weaker equivalence∼′ that ignores differences in intervals:

q1 ∼′ q2 iff ∀δ, I q1

τ∗·(δ,I)

−→ q′1 ⇒ (∃q′2, I
′ s.t. q2

τ∗·(δ,I′)

−→ q′2 ∧ q′1 ∼′ q′2). (2)

The states of the minimized automaton are equivalence classes of∼′ and the
transitions between these classes are labeled by(δ, Ī) whereĪ is the join (con-
vex hull) of all the intervalsIi such that there are transition labeled by(δ, Ii)



between elements of the corresponding classes (see Figure 7).3 The result of
minimization with respect to∼′ appears in Figure 6-(b) and one can see that it
gives a succinct over-approximation of the behavior ofy2 andz.

We have implemented the above mentioned technique. Our toolchain starts
with a circuit description as Boolean equations with delaysand generates from
it automatically a network of interacting timed automata written in the IF for-
mat [BGM02]. After generating the reachability graph with the interval labels
we apply the Aldebaran tool set ([BFKM97]), slightly modified to implement
minimization with respect to∼′ to obtain the abstract model.

5 Experimental Results

We have conducted some preliminary experiments with our approach on some
sample circuits that we have constructed. First, to demonstrate the semantic ad-
vantage of timed automata we analyzed the circuit of Figure 8which has a false
path. We use delays of[83, 85] for all gates (except the inverters that have zero
delay) and compare our results with static timing analysis which gives stabiliza-
tion time of7× 85 = 594. Since our method works for the moment for one pair
of input vectors, we repeat the analysis for all12 pairs and obtain the results
of Table 1. As one can see, the TA-based analysis discovers that the maximal
stabilization time is only6 × 85 = 510.

x 00 01 10 11
x′ 10 01 11 11 00 10 00 11 01 01 10 00
stab-time510 340340 170 510425 510 0 255 255 0 510

Table 1.Maximal stabilization time for all input pairs for the circuit of Figure 8.

The major set of experiments was conducted on circuits consisting of a se-
quential concatenation of an increasing number of copies ofthe circuit of Fig-
ure 1-(a) (they3 andy4 of stagen are thex1 andx2 of stagen + 1). We assume
that inputx1 may rise anywhere in[10, 35] andx2 in [15, 63]. In general, the
complexity of the reachability graph is sensitive to the choice of delay bounds:
for an interval[l, u], the larger is the ratio(u − l)/l, more “scenarios” are pos-
sible and transitions at “deep” gates can precede transitions in gates closer to
the input.4 Table 2 shows the performance of our technique (computationtime
and size of the reachability graph) as a function of the number of stages for three

3 Another choice might be to join only intervals that have a non-empty intersection.
4 In fact, if we assume no lower-bound on the delay (the “up-bounded” model of [BS94]), events

can happen in any order.
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Fig. 5.(a) The reachability graph for the circuit of Figure 1-(b). The transition labelsexc z,reg
z,+z and-z correspond, respectively, to excitation, regret, rising and falling of the variablez. (b)
The corresponding one-clock automaton after hiding internal transitions. The label+z[20,30]
means thatz may change from0 to 1 anytime inside the interval[20, 30].
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00

-y2 :[20,30] -y2 :[20,40]

11

+z :[20,40]

01

-y2 :[20,40]

-z :[30,90]

10

00

-y2 :[20,40]

11

+z :[20,40]

01

-y2 :[20,40]

-z :[30,90]

(a) (b)

Fig. 6. (a) The results of applying standard minimization. (b) The result of minimization with
interval fusion.

[1, 2]

[1, 7]
[4, 7]

[3, 6]

[3, 5]

Fig. 7.Minimization by joining intervals.

Fig. 8. A circuit with a false path.



choices of gate delay intervals[1, 2], [10, 12] and[100, 102]. All the experiments
were stopped upon memory overflow (1GB). For the[100, 102] interval we were
able to analyze up to22 stages (88 gates).

[l, u] [1, 2] [10, 12] [100, 102]

no. statesmin time statesmin time statesmin time
1 71 4 0:01 65 3 0:01 65 3 0:01
2 934 12 0:02 270 7 0:02 270 7 0:02
3 – – – 2690 11 0:03 2690 11 0:04
4 5397 23 0:05 4080 16 0:06
5 2179511449:44 21498 30 0:12
6 – – – 50543 39 0:30
7 73502 48 1:01
8 95619 57 1:54
9 117736 66 3:12

10 139853 75 5:08
11 161970 84 7:32
12 184087 93 10:05
13 206204102 14:42
14 228321111 20:39
15 250438120 28:15
16 272555129 36:46
17 117736138 49:36
18 316789147 1:04:04
19 338906156 1:21:48
20 361023165 1:42:59
21 383140174 1:58:56
22 405257183 2:30:31
23 – – –

Table 2. Testing our technique with varying delay bounds. The ‘states’ column indicates the
number of symbolic states in the model of stagen before the last minimization and the ‘min’
columns indicate the number of states after minimization. The ‘time’ column indicates the time
for computing the abstraction of all stages up ton − 1 and the reachability graph for stagen.

As the results show, currently the analysis of circuits withfew dozens of
gates for one pair of input vectors is feasible using our technique. This is a sig-
nificant improvement for TA technology but still a small steptoward industrial-
size circuits. The current bottleneck is the memory consumption while generat-
ing the reachability graph and we believe the situation can be improved signifi-
cantly if we modify the algorithm to take advantage of the acyclic nature of the
automata.



6 Discussion

There have been numerous publications on abstraction in general and abstrac-
tion of timed systems in particular, e.g. [AIKY95,WD94,B96,PCKP00], some
based on relaxing the timing constraints and refining them successively if the ab-
stract system cannot be verified. In [TAKB96] an assume-guarantee framework
is defined for timed automata, which is used later to verify a multi-stage asyn-
chronous circuit [TB97] by using small abstractions for each stage. These ab-
stractions are generated manually. The closest work to oursis [ZMM03] which
uses timed Petri nets for describing circuits and their desired properties. To ab-
stract a circuit they apply “safe transformations” that consist of hiding of inter-
nal actions and clocks, and possibly over-approximating the set of behaviors.
This work does is not specialized to acyclic circuits and theformal properties of
the abstraction (defined in terms oftrace theory) seem to be more complicated.
Other attempts to solve the maximal stabilization time using TA are reported in
[TKB97,TKY+98].

Due to space limitation we do not discuss here possible variation of the
techniques such as different abstraction styles, nor otherimportant ingredients
of the methodology such as the partitioning strategy. The adaptation of the tech-
nique to cyclic circuits and to open systems in general is a very challenging goal
whose achievement can have a big impact on the design of timedsystems.
Acknowledgment: Many colleagues have contributed throughout the years to
the work described in this paper. In particular, Sergio Yovine and Stavros Tri-
pakis helped us a lot in understanding various aspects of theverification of timed
automata. They also participated in previous efforts to apply it to circuit analy-
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