
HAL Id: hal-00357518
https://hal.science/hal-00357518

Submitted on 30 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IF-2.0: A Validation Environment for Component-Based
Real-Time Systems

Marius Bozga, Susanne Graf, Laurent Mounier

To cite this version:
Marius Bozga, Susanne Graf, Laurent Mounier. IF-2.0: A Validation Environment for Component-
Based Real-Time Systems. Computer Aided Verification (CAV), Jul 2002, Copenhagen, Denmark.
pp.343-348. �hal-00357518�

https://hal.science/hal-00357518
https://hal.archives-ouvertes.fr


IF-2.0: A Validation Environment for

Component-Based Real-Time Systems⋆

Marius Bozga, Susanne Graf, and Laurent Mounier

VERIMAG, Centre Equation, 2 avenue de Vignate, F-38610 Gières

1 Introduction

It is widely recognised that the automated validation of complex systems can hardly
be achieved without tool integration. The development of the IF-1.0 toolbox [3] has
been initiated several years ago, in order to provide an open validation platform
for timed asynchronous systems (such as telecommunication protocols or distributed
applications, in general). The toolbox has been built upon an intermediate represen-

tation language based on extended timed automata. In particular, this representation
allowed us to study the semantics of real-time primitives for asynchronous systems.
Currently, the toolbox contains dedicated tools on the intermediate language (such as
compilers, static analysers and model-checkers) as well as front-ends to various spec-
ification languages and validation tools (academic and commercial ones). Among the
dedicated tools, we focused on static analysis (such as slicing and abstraction) which
are mandatory for an automated validation of complex systems. Finally, the toolbox
was successfully used on several case studies, the most relevant ones being presented
in [4].

In spite of the interest of this toolbox on specific applications, it appears that some
of the initial design choices, which were made to obtain a maximal efficiency, are
sometimes too restrictive. In particular they may prevent its applicability to a wider
context:

– the static nature of the intermediate representation prevents the analysis of dy-
namic systems. More exactly, primitive operations like object (or thread) creation
and destruction, which are widely and naturally used both in specification for-
malisms like UML or programming languages like Java, were not supported.

– the architecture of the exploration engine allowed only the exploration of pure
IF-1.0 specifications. This is too restrictive for complex system specifications
which mix formal descriptions and executable code (e.g, for components already
implemented and tested).

This situation motivated the extension of the IF-1.0 intermediate representation and,
in turn, to re-consider the architecture of the exploration engine. Some of the lan-
guage extensions are derived from existing specification formalisms (UML [11] and

⋆ This work was supported in part by the European Commission FET projects ADVANCE,
contract No IST-1999-29082 and AGEDIS, contract No IST-1999-20218



SDL-2000 [9]) and object oriented programming languages (like Java). Concerning
the exploration engine architecture, the approach we followed is influenced both by
traditional model-checkers such as Spin [8] or Open/Caesar [5] and more recent run-
time validation tools such as Verisoft [6], Java PathFinder [7] or SystemC [12]. The
originality of this architecture is to preserve exhaustive exploration capabilities while
supporting heterogeneous specifications (with external code invocations and dynamic
object creations). These extensions are described in more details in the following sec-
tions, together with some running experiments and perspectives.

2 Dynamic Extended Automata

The formal basis for the IF-2.0 intermediate representation is a dynamic version of
extended timed automata.

We focus on systems composed of several components (called processes), running in
parallel and interacting through message-passing, either via communication channels
(called signalroutes), or by direct addressing. The number of processes and signal-
routes may change over time: they may be created and deleted dynamically, during
the lifetime of the system.

Each process is described by an extended timed automaton. It has a unique process
identifier (pid) value, a local memory consisting of variables (including clocks), con-
trol states and a queue of pending messages (received and not yet consumed). As
usually, processes move from one control state to another by executing transitions,
which are triggered by messages in the input queue and/or some (possibly timed)
guards. Transition bodies are sequential programs consisting of elementary actions
(like variable or clock assignments, message sending, process creation/destruction,
external code invocation, etc) structured using elementary control-flow statements
(like if-then-else, while-do, etc). Control states may be nested (as in statecharts) in
order to factorize common behaviour and obtain modular automata descriptions.
Signalroutes are specialised communication media that transport messages between
processes. The behaviour of the signalroute is defined by its storing policy (FIFO or
multiset), its delivery policy (peer to peer, unicast or multicast), its delaying policy
(“zero delay”, “delay” or “rate”) and finally its reliability (reliable or lossy).

The semantics of the extended automata model is defined by the graph of its ex-
ecutions 1. This graph is obtained by the interleaved execution of processes, where
process transitions define atomic non-interruptive execution steps.

The semantics of time is similar to the one of timed automata: time progresses in
states (i.e, all running processes wait in some state before selecting and executing
some transition) and transitions take zero time to be executed. In order to control
the time progress, or equivalently, the waiting time in states, we rely on transition
urgencies [2] – explicit deadlines eager, lazy or delayable attached to transitions defin-
ing when they must be executed. More precisely, eager transitions must be executed
as soon as they are enabled and waiting is not allowed; lazy transitions are never

1 For pure IF-2.0 specifications there exists also a formal operational semantics, however,
for specifications using external code we rely on runtime execution results.



urgent, that is, when a lazy transition is enabled the transition may be executed or,
alternatively, the process may wait without any restriction; finally, when a delayable

transition is enabled, waiting is allowed as long as time progress does not disable it.

Example 1. Consider a multi-threaded server which can handle at most N simulta-
neous requests. Thus, if possible, for a request message (received from the envi-
ronment) a thread is created. The server keeps in the thc variable the number of
running threads. Thread processes are quite simple: once created, they work, and
when finished they send a done message back to the server. These messages are de-
layed through a unique signalroute cs (those address is passed as a parameter when
creating a thread process).

signalroute cs(1) #delay[1,2]

from thread to server

with done;

process server(1);

var thc integer;

state idle #start ;

deadline lazy;

provided thc < N;

input request();

fork thread(self, cs0);

task thc := thc + 1;

nextstate idle;

deadline eager;

input done();

task thc := thc - 1;

nextstate idle;

endstate;

endprocess;

process thread(0);

fpar parent pid, route pid;

state init #start ;

deadline lazy;

informal "work";

output done()

via route to parent;

stop;

endstate;

endprocess;

3 State-space exploration

State-space exploration is one of the successful techniques used for the analysis of
concurrent systems and also the core component of any model-based validation tool
(i.e, model-checker, test-generator, etc). Nevertheless, exploration is far from being
trivial for dynamic systems that, in addition, use complex data, involve various com-
munication mechanisms, mix several description languages, and moreover, depend on
time constraints. The solution we propose is an open, modular and extensible explo-
ration platform designed to cope with the complexity and the heterogeneity of actual
concurrent systems.

The IF-2.0 exploration platform relies on a clear separation between the individual
behaviour of processes and processes (i.e, memory update, transition firing) and the
coordination mechanisms between processes (i.e, communication, creation, destruc-
tion). More precisely, each process or signalroute is represented as an object (in the
sense of object-oriented languages) that has an internal state and may have one or
more fireable (local) transitions, depending on its current state. Time is also a spe-
cialised process dealing with the management of all (running) clocks. Coordination is
then realised by a kind of process manager: it scans the set of local transitions, choose



the fireable one(s) with respect to global (system) constraints, ask the corresponding
processes to execute these transitions and update the global state accordingly.

test
generation

model
checking

executableformal
specifications code

instrumentationcompilation

process
behavior state−space

representationinter−process
coordination

exploration
engine

Fig. 1. Functional view of IF-2.0 exploration platform.

This architecture provides the possibility to validate complex heterogeneous systems.
Exploration is not limited to IF-2.0 specifications: any kind of processes may be
run in parallel on the exploration platform as long as they implement the interface
required by the process manager. It is indeed possible to use code (either directly, or
instrumented accordingly) of already implemented components, instead of extracting
an intermediate model to be put into some global specification.

Another advantage of the architecture is the extensibility concerning coordination
primitives and exploration strategies. Presently, the exploration platform supports
asynchronous (interleaved) execution and asynchronous point-to-point communica-
tion between processes. Different execution modes, like synchronous or run-to-completion,
or additional communication mechanisms, such as broadcast or rendez-vous, simply
by extending the process interfaces and the process manager functionality. Concern-
ing the exploration strategies, reduction heuristics such as partial-order reduction
or symmetry reduction are currently incorporated into the process manager. More
specific heuristics may be added depending on the application domain.

4 Ongoing work and perspectives

The IF-2.0 representation and the associated environment are currently being used in
several research projects. As example, we mention AGEDIS (see http://www.agedis.de)
where, in cooperation with IBM and IRISA we develop a testing environment for dis-
tributed systems. In this project, IF-2.0 plays a central role, both as an (operational)



representation for system’s behaviour (described in UML at the user level) and as an
exploration engine used by a model-based test generator (an extension of TGV [10]).

In the near future we plan to upgrade the (most effective) static analysis techniques,
already implemented for IF-1.0, to the new intermediate representation IF-2.0. In
particular, slicing and abstraction techniques are mandatory to keep tractable the
state-space exploration. However, due to the dynamic features of IF-2.0, some of
these techniques have to be revisited.

Another perspective is the integration of the scheduling framework of [1] in order
to improve the standard execution modes provided by the exploration engine (e.g,
asynchronous or synchronous). Based on dynamic priorities, this scheduling frame-
work is flexible and general enough to ensure a fine-grained control of execution of
real-time systems, depending on various constraints. This framework fits also well in
our exploration engine architecture. For instance, it is possible to extend the pro-
cess manager with scheduling capabilities, in order to evaluate dynamic priorities at
run-time and to restrict the set of fireable transitions accordingly.

The IF-2.0 package can be downloaded at http://www-verimag.imag.fr/∼async/IF/.

References

1. K. Altisen, G. Gössler, and J. Sifakis. A methodology for the construction of scheduled
systems. In M. Joseph, editor, Proceedings of FTRTFT 2000, volume 1926 of LNCS,
pages 106–120. Springer, September 2000.

2. S. Bornot, J. Sifakis, and S. Tripakis. Modeling Urgency in Timed Systems. In Interna-
tional Symposium: Compositionality - The Significant Difference (Holstein, Germany),
volume 1536 of LNCS. Springer, September 1997.

3. M. Bozga, J.Cl. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, and L. Mounier. IF: A
Validation Environment for Timed Asynchronous Systems. In E.A. Emerson and A.P.
Sistla, editors, Proceedings of CAV’00 (Chicago, USA), volume 1855 of LNCS. Springer,
July 2000.

4. M. Bozga, S. Graf, and L. Mounier. Automated Validation of Distributed Software
using the IF Environment. In Workshop on Software Model-Checking, volume 55. TCS,
July 2001.

5. H. Garavel. OPEN/CÆSAR: An Open Software Architecture for Verification, Simula-
tion, and Testing. In B. Steffen, editor, Proceedings of TACAS’98 (Lisbon, Portugal),
volume 1384 of LNCS, pages 68–84. Springer, March 1998.

6. P. Godefroid. VeriSoft: A Tool for the Automatic Analysis of Concurrent Reactive
Software (short paper). In Proceedings of CAV’97 (Haifa, Israel), volume 1254 of LNCS,
pages 476–479. Springer, June 1997.

7. K. Havelund and T. Pressburger. Model Checking Java Programs Using Java
PathFinder. International Journal on Software Tools for Technology Transfer (STTT),
2(4), April 2000.

8. Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall
Software Series, http://cm.bell-labs.com/cm/cs/what/spin, 1991.

9. ITU-T. Recommendation Z.100. Specification and Description Language (SDL). Tech-
nical Report Z-100, International Telecommunication Union – Standardization Sector,
Genève, November 1999.



10. T. Jéron and P. Morel. Test Generation Derived from Model Checking. In N. Halbwachs
and D. Peled, editors, Proceedings of CAV’99 (Trento, Italy), volume 1633 of LNCS,
pages 108–122. Springer, July 1999.

11. OMG. Unified Modeling Language Specification. Technical Report OMG UML v1.3 –
ad/99-06-09, Object Management Group, June 1999.

12. Stuart Swan. An Introduction to System-Level Modeling in Systemc 2.0. Technical
report, Open SystemC Initiative, 2001.


