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From Asyn
hronous to Syn
hronousSpe
i�
ations for Distributed Program SynthesisJulien Bernet and David JaninLaBRI, Université de Bordeaux I351, 
ours de la Libération33 405 Talen
e 
edex FRANCE{bernet|janin}�labri.frAbstra
t. Distributed games [7℄ allow the spe
i�
ation of various dis-tributed program synthesis problems. In su
h games, a team of Pro-
ess players 
ompete against a unique Environment player, ea
h Pro
essplaying on its own arena, without expli
it 
ommuni
ations with its team-mates.The standard de�nition of distributed games allows some degree of asyn-
hrony : the Environment 
an play only on part of the arenas, therefore
on
ealing to some Pro
ess players that the play is going on. While thisis 
onvenient for modeling distributed problems (espe
ially those thatthemselves make use of asyn
hrony), these games are by no means easyto manipulate, and the existing 
onstru
tions are mu
h more tedious.In this paper, we provide a uniform redu
tion of any �nite state dis-tributed game, syn
hronous or asyn
hronous, to a syn
hronous one withthe same number of players. This redu
tion is shown to be 
orre
t in thesense that it preserves the existen
e of �nite state distributed winningstrategies for the team of Pro
esses. It is uniform in the sense that it isdesigned for arbitrary input distributed game without any prior knowl-edge about its satis�ability. The size of the resulting syn
hronous gameis also linear in the size of the original asyn
hronous one and, moreover,there is no blowup of the size of the winning strategies. Additional ex-pe
ted preservation properties (e.g. information �ows) are studied. Sur-prisingly, it seems that no su
h redu
tion exists for arbitrary (in�nitestate) strategies.Introdu
tionAsyn
hrony in a distributed environment 
an be de�ned in an abstra
t way asthe ability of some pro
esses or agents to perform some a
tion in the distributedsystems while other pro
esses or agents not only perform no a
tion but are evennot aware that they are staying idle. In other words, in a model where everyevent in a pro
ess (e.g. a lo
al a
tion or an in
oming or outgoing message) istriggered by the ti
k of a lo
al 
lo
k, asyn
hrony o

urs when there is no global
lo
k on whi
h lo
al 
lo
ks are syn
hronized.However, if the memory of a distributed system has �nitely many possiblestates, it is 
ommonly understood that syn
hronous and asyn
hronous behaviors



are, to some extent, equivalent. In fa
t, the number of relevant asyn
hronousevents between any two syn
hronous events 
an be bounded by the number ofglobal states. More pre
isely, the (presumably asyn
hronous) distributed system
an be modeled (at a more abstra
t level) by an equivalent syn
hronous one.For instan
e, within a distributed system with an asyn
hronous messagepassing me
hanism, if the number of messages that have been sent but notyet re
eived is bounded, there 
annot be an unbounded number of (relevant)asyn
hronous events between any two syn
hronizations.Of 
ourse asyn
hrony makes a di�eren
e at the implementation level. Forinstan
e 
ommuni
ation proto
ols do have to 
ope with asyn
hrony to be 
orre
t.However, at some more abstra
t level, provided the global memory of a systemis �nite, it seems that, in some sense, asyn
hronous and syn
hronous systemshave the same 
omputational power.The main obje
tive of this paper is to substantiate this intuition. More pre-
isely, in the setting of distributed program synthesis problem, we aim at provingthat (1) when the distributed environment is �nite state and (2) when one 
on-siders only �nite state programs, any syn
hronous or asyn
hronous distributedprogram synthesis problem is equivalent to a syn
hronous distributed programsynthesis problem.An immediate di�
ulty for this task is however to �nd the appropriate for-malism.In fa
t, there exists plenty of models of distributed systems and behaviors;
onsider for instan
e the diversity of models of 
ommuni
ations between pro-
esses or agents: from 
ommuni
ation via global shared memory me
hanisms tomany types of message passing systems. For distributed program synthesis spe
-i�
ation, where one not only aims at modeling a single behavior but a full 
lassof behaviors that may, or may not, ful�ll the design obje
tives, there may beeven more formalisms. See for instan
e Pnueli and Rosner's notion of distributedar
hite
ture [10, 4℄ or Wonham et al.'s distributed 
ontrol theory [5, 6℄.In this paper, we 
hoose to study the relationship between syn
hronous andasyn
hronous distributed synthesis problems in a fairly abstra
t though generalmodel: the model of distributed games [7℄.These games, designed after Peterson and Reif's partial information games [9℄,rely on an expli
it modeling of the lo
al information - proje
tion of the globalstate - available to every agent (or pro
ess) for guiding its own behaviors. As amatter of fa
t, no expli
it 
ommuni
ation is modeled, hen
eforth no 
ommitmenthas to be done in favor of su
h or su
h 
ommuni
ation me
hanism. Moreover,most distributed synthesis problem 
an be en
oded and solved within distributedgames problem [2, 7℄.In a distributed game, a team of Pro
ess players 
ompete against a uniqueEnvironment player, ea
h Pro
ess playing on its own arena - with its own proje
-tion of the global state of the system - while Environment player has a 
ompleteknowledge of the global state.Communi
ations are impli
itly modeled as follows. In a distributed gamede�nition, one may restri
t Environment player. From a given global state -2



partially known by every Pro
ess player - this may for
e the Environment playerto rea
h some global states with more informative lo
al proje
tions than otherglobal states.Asyn
hrony, that indu
es an extra layer of partial information - absen
e ofglobal 
lo
k - is modeled as follows: in a distributed game, the Environment mayplay only on part of the arenas, therefore 
on
ealing to some Pro
ess players thatthe play is going on elsewhere.In this paper we prove that, as far as �nite systems and programs are 
on-
erned, asyn
hrony does not yield extra expressive power.More pre
isely, we provide a redu
tion of any asyn
hronous �nite state dis-tributed game to a syn
hronous one with the same number of players. Thisredu
tion is shown to be 
orre
t in the sense that it preserves the existen
e of �-nite state distributed winning strategies for the team of Pro
esses. The size of theresulting syn
hronous game is also linear in the size of the original asyn
hronousone and, moreover, there is no blowup of the size of the winning strategies. Addi-tional expe
ted preservation properties (e.g. information �ows) are also studied.For strategies with unbounded memory, it is 
onje
tured that there is nosu
h a redu
tion. Still; one may ask whether su
h a result 
ould be extendedto more general 
lasses of programs with in�nite memory su
h as, for instan
e,pushdown strategies. This remains an open problem. However, even de
idabilityquestions are yet not settled for these more general strategies.1 NotationsFor any �nite alphabet A, a word over A is a fun
tion w : N → A whose domainis an initial segment of N. The only word su
h with empty domain is 
alled theempty word, and denoted by ǫ.The following notations are used : A∗ is the set of �nite words (i.e. whosedomain is �nite) over A, Aω is the set of in�nite words over A, A∞ = A∗ ∪ Aωis the set of �nite and in�nite words over A, and A+ = A∗ − {ǫ} is the set of�nite non-empty words over A.For any �nite word w, its length |w| is the 
ardinal of its domain. For anywords u ∈ A∗ and v ∈ Aω, the word u · v is the 
on
atenation of words u and
v. For any integer k, the word uk is built by 
on
atenating k 
opies of u. When
u 6= ǫ, the in�nite word uω is the in�nite 
on
atenation of u with itself.These operations are extended to the languages. Given X ⊆ A∗ and Y ⊆ A∞,we use the notations X · Y = {u · v : u ∈ X, v ∈ Y }, X0 = {ǫ}, Xk = {w · u :
w ∈ Xk−1, u ∈ X} for any k > 0, X∗ =

⋃
k≥0 Xk and, when ǫ /∈ X , Xω for theset of all words that 
an be de�ned as an in�nite produ
t of words of X . Thefollowing additional notations are also used : X + Y = X ∪ Y , X − Y = X\Yand X? = {ǫ} ∪ X .Given n sets X1, . . . , Xn, 
onsider their dire
t produ
t X = X1 × · · · × Xn.For every set I = {i1, . . . , ik} ⊆ {1, . . . , n}, 
onsider the natural proje
tion

πI : X → Xi1 × · · · × Xik
de�ned by πI((x1, . . . , xk) = (xi1 , . . . , xik

). For any
x ∈ X , we also use the more 
onvenient notation x[I] = πI(x).3



Following the same idea, for any set Y ⊆ X , denote by Y [I] the set πI(Y ).If R ⊆ Xm is a m-ary relation over X , we should also write use R[I] =
{(x1[I], . . . , xm[I]) : (x1, . . . , xm) ∈ R}. When I in an interval of integers of theform [i, j] we use the notations x[i, j], Y [i, j], R[i, j]. Whenever I is redu
ed to asingle integer i, these notations simplify to x[i], Y [i], R[i].Moreover, these notations are extended to words and languages : for anyword w = x0 · x1 · · · ∈ X∞, then w[I] = x0[I] · x1[I] · · · .2 Distributed gamesA n-pro
ess distributed arena is a game arena built from some produ
t of n lo
alstandard game arena.De�nition. Given n arenas Gi = 〈Pi, Ei, TP,i, TE,i〉 for i ∈ [1, n] with disjointsets of Pro
ess position Pi, sets of Environment position Ei, sets of Pro
essmoves TP,i ⊆ Pi × Ei and sets of Environment moves TE,i ⊆ Ei × Pi, an n-Pro
ess distributed game arena built from the lo
al game arenas {Gi}i∈[1,n] isany game arena G = 〈P, E, TP , TE〉 su
h that:� Environment positions : E =

∏
i∈[1,n] Ei,� Pro
esses positions : P =

∏
i∈[1,n](Ei ∪ Pi) −

∏
i∈[1,n] Ei,� Pro
esses moves : TP is the set of all pairs (p, e) ∈ (P × E) su
h that, for

i ∈ [1, n]:
• either p[i] ∈ Pi and (p[i], e[i]) ∈ TP,i (Pro
ess i is a
tive in p),
• or p[i] ∈ Ei and p[i] = e[i] (Pro
ess i is ina
tive in p),� and Environment moves : TE is some subset of the set of all pairs (e, p) ∈

(E × P ) su
h that, for i ∈ [1, n]:
• either p[i] ∈ Pi and (e[i], p[i]) ∈ TP,i (Environment a
tivates Pro
ess i),
• or p[i] ∈ Ei and p[i] = e[i] (Environment keeps Pro
ess i ina
tive).When the set TE of Environment moves is maximal, we 
all su
h an arena the freeasyn
hronous produ
t of arenas {Gi}i∈[1,n] and it is written G1⊗G2⊗· · ·⊗Gn.Remark. The essential idea behind this de�nition is to get a de�nition ofa multiplayer game in whi
h a team of Pro
esses 
ompete against a uniqueEnvironment to a
hieve some in�nitary goal. The following point is important: this de�nition allows the Environment to play only on a subset of the arenas,therefore hiding that the play is going on to the Pro
esses on whi
h arenas itdoes not play. This will be referred in the following as asyn
hronous move, andallows to en
ode neatly many distributed synthesis problems from the literature,su
h as [10, 4℄ or [5℄.In distributed games, asyn
hrony o

urs when Environment player de
idesto keep one or more Pro
ess players ina
tive. A syn
hronous distributed arena
an thus be de�ned as follows.De�nition. An n-pro
ess distributed arena G = 〈P, E, TP , TE〉 is a syn
hronousdistributed arena when TE ⊆ E ×

∏
i∈[1,n] P [i].Sin
e a distributed arena is built upon n simple arenas, we need a de�nitionto speak about its lo
al 
omponents:De�nition. Given a distributed arena G = 〈P, E, TP , TE〉 as above, given anon empty set I ⊆ [1, . . . , n] we de�ne the 
anoni
al proje
tion G[I] of G on I4



as the arena G[I] = 〈P ′, E′, T ′
P , T ′

E〉 given by: P ′ = P [I]−E[I] (possibly smallerthan P [I] !), E′ = E[I], T ′
P = TP [I] ∩ (P ′ × E′), and T ′

E = TE [I] ∩ (E′ × P ′).A distributed game arena is, at �rst sight, a parti
ular 
ase of standarddis
rete and turn base two player game arena. Standard notions of plays andstrategies are still de�ned. However, in order to avoid 
onfusion with what mayhappen in the lo
al arena a distributed game is build upon, we shall speak nowof a global play and global and lo
al strategy. Partial information is then 
apturedby means of the notion of lo
al view of play and distributed strategy.De�nition. Given an n-pro
ess distributed arena G, a global play from aninitial position e ∈ E is de�ned as a path in G (seen as a bipartite graph)emanating from position e that is built alternatively by the Environment playerand the Pro
ess team.More pre
isely, from a 
urrent position x ∈ P ∪ E, either x ∈ E and it isEnvironment player turn to play by 
hoosing some position y ∈ P su
h that
(x, y) ∈ TE or x ∈ P and it is Pro
ess team turn to play by 
hoosing someposition y ∈ E su
h that (x, y) ∈ TP .A

ordingly, a global strategy for the Pro
ess team is a partial fun
tion σ :
(E.P )+ → E su
h that for every play of the form w.p ∈ dom(σ) with w ∈
E.(P.E)∗ and p ∈ P one has (p, σ(w.p)) ∈ TP .A play w is said 
ompatible with strategy σ when, for every integer n ≥ 0su
h that w[n] ∈ P one has w[n + 1] = σ(w[0, n]) where w[0, n] is the pre�x of
w of length n + 1.De�nition. A game G = 〈P, E, TE , TP , e0,W〉 is a game arena 〈P, E, TE , TP 〉equipped with an extra initial position e0 ∈ E and a distinguished set W ⊆
(E + P )ω 
alled in�nitary 
ondition for the Pro
ess team.We say that global strategy σ is a winning strategy for the Pro
ess team fromposition e0 ∈ E with 
ondition W when every maximal plays starting in e0 and
ompatible with strategy σ is either �nite and ends in an environment positionor is in�nite and belongs to W .A strategy with �nite memory for the Pro
ess team is given as a tuple M =
〈M, m0, µ : M × (P ∪ E) → M, h : M × P → E〉, where M is a �nite set ofmemory states, m0 is the initial memory, µ is the update fun
tion, and h isthe hint fun
tion. The indu
ed strategy σM : (E · P )+ → E is then de�ned,for any play w · p ∈ (E · P )+, by σM = h(µ∗(m0, w), p) (where µ∗ is de�ned by
µ∗(m, ǫ) = m, and µ∗(m, w ·x) = µ(µ∗(m, w), x) for every m ∈ M , w ∈ (E∪P )∗,
x ∈ (E ∪ P )).In distributed games, it is intended that, within the Pro
ess team, everypro
ess has only a partial view of a global play. Not only every pro
ess only seesits own proje
tion of every global positions, but, when idle, a pro
ess is even notaware that the play is going on. This intention is formally de�ned as follows.De�nition. The lo
al view Pro
ess i has of a global play in a distributed game
G is given by the map viewi : (E · P )∗ · E? → (Ei · Pi)

∗ · E?
i de�ned in thefollowing way:� viewi(ǫ) = ǫ� viewi(x) = x[i] 5



� viewi(w · x · y) =

{
viewi(w · x) if x[i] = y[i]
viewi(w · x) · y[i] otherwise.A play w ∈ (E · P )+ is said to be a
tive for Pro
ess i when w ends in aposition p ∈ P su
h that p[i] ∈ P [i].Remark. Observe that in a syn
hronous distributed arena, as expe
ted, forevery play w ∈ (E.P )∗.E? one has viewi(w) = w[i], i.e. the lo
al view of aglobal play is just the proje
tion of this play.De�nition. A global strategy σ for the Pro
ess team is a distributed strategywhen, for every i ∈ [1, n], there is a pro
ess strategy σi : (E[i].P [i])+ → E[i] inthe lo
al game G[i], from now on 
alled lo
al strategy for Pro
ess i, su
h that,for any play of the form w · p ∈ (E · P )+, given the set I ⊆ {1, . . . , n} of a
tivepro
esses in the global Pro
esses position p, σ(w · p) = e if and only if� e[i] = σi(viewi(w) · p[i]) for i ∈ I� e[i] = p[i] for i ∈ {1, . . . , n} − IIn this 
ase, we write σ1 ⊗ σ2 ⊗ · · · ⊗ σn for the distributed strategy σ.Remark. Observe that when G is syn
hronous, the distributed strategy σ =

σ1 ⊗ · · · ⊗ σn 
an simply be de�ned for any global play w ∈ (E · P )∗ by :
σ(w) = (σ1(w[1]), . . . , σn(w[n]))Remark. Global strategies are not always distributed. In parti
ular, there aredistributed games where Pro
ess team has a winning global strategy, but nowinning distributed strategy. For more details, the reader 
an refer to [7℄.3 From asyn
hronous game to syn
hronous gameWe prove here that every (asyn
hronous) distributed game is equivalent in somesense to a syn
hronous distributed game. More pre
isely:Theorem 1. There exists a mapping that maps every distributed game G toexists a distributed game G̃ su
h that the Pro
ess team have a distributed winningstrategy with �nite memory in G if and only if they have one in G̃. Moreover,game G̃ has the same number of Pro
ess players as game G with only a linearin
rease of number of positions. Moreover, this mapping is de�ned uniformly ondistributed games, be them winning for the pro
ess team or not.The remaining of this se
tion is devoted to the proof of this result.Let G = 〈P, E, T, e0,W〉 be a n-pro
esses distributed game. First, we aregoing to des
ribe the syn
hronous game G̃, then we will show that it is equivalentto G in terms of distributed strategies with �nite memory.For any set Ei, de�ne Êi as an equipotent set, su
h that Ei ∩ Êi = ∅;for any e ∈ Ei, denote by êi its image in Êi. Let Ê =

∏
i∈{1,...,n} Êi and let6



P̂ =
∏

i∈{1,...,n} P̂i (i.e. we restri
t to relevant pro
ess positions in a syn
hronousgame: pro
ess positions where every pro
ess is a
tive).Consider G̃ = 〈P̃ , Ẽ, T̃ , e0, W̃〉, whose positions are:
P̃i = Pi ∪ Êi ; Ẽi = Ei (for all i ∈ {1, . . . n})For any position x ∈ P ∪ E, denote by x̂ the position of P̃ obtained byrepla
ing in e ea
h 
omponent from Ei with their image in Êi , i.e. :

x̂[i] =

{
x̂[i] if x[i] ∈ Ei

x[i] if x[i] ∈ PiThe fun
tion that maps any x ∈ P ∪ E to its image x̂ in P̃ is trivially abije
tion. The moves of G̃ are de�ned as follows:
T̃ P

i = T P
i ∪ {(ê, e) : e ∈ Ei}

T̃ E = {(e, p̂) ∈ Ẽ × P̃ | (e, p) ∈ T E}

∪ {(e, ê) : e ∈ E}The fun
tion 
an
el(Ẽ · P̃ )∗ → (E ·P )∗ erases any asyn
hronous move from aglobal play: 
an
el(ǫ) = ǫ, 
an
el(w · e ·p) = 
an
el(w) · e ·p, and 
an
el(w · e · ê) =
an
el(w) (where p ∈ P , e ∈ E).This fun
tion is generalized to in�nite words by: 
an
el(x0 · x1 · · · · ) =
limi→∞ 
an
el(x0 · · ·xi) (it is a 
onverging sequen
e, in the sense of the pre�xtopology over words, as de�ned for instan
e in [8℄).The winning 
ondition of G̃ is then de�ned as follows:

W̃ = 
an
el−1(W) ∪ (Ẽ · P̃ )∗ · (E · Ê)ωRemark. The underlying bipartite graph of G is embedded into the one from
G̃. The graph of the arena of G̃ is a
tually nothing more than the subgraphindu
ed by this embedding, where on ea
h position of the environment a loop ofsize 2 has been added, 
orresponding to a totally asyn
hronous move. Moreover,the winning 
ondition W̃ is not mu
h more 
ompli
ated than W : amongst theusual in�nitary winning 
onditions (rea
hability, safety, parity, Muller, et
. ...),only the safety 
ondition in not preserved by this 
onstru
tion.Lemma 1 (From asyn
hronous to syn
hronous). For any distributed andwinning strategy for the Pro
ess team in G, there is a winning distributed strategyfor the Pro
ess team in G̃.The idea is a
tually to 
opy this strategy on G̃, ensuring in the pro
ess thatthe Pro
ess players do not take the asyn
hronous moves played onto their arenainto a

ount.For any i ∈ {1, . . . , n}, let us de�ne a fun
tion 
an
eli : (Ẽi · P̃i)

∗ → (Ei ·Pi)
∗that erases the lo
al asyn
hronous moves: 
an
eli(ǫ) = ǫ, 
an
eli(w · e · p) =7




an
eli(w) · e · p, and 
an
eli(w · e · ê) = 
an
eli(w) for any e ∈ Ei, p ∈ Pi, and
w ∈ (Ẽi.P̃i)

∗.Consider a winning distributed strategy σ = σ1 ⊗ · · · ⊗ σn over G. Thedistributed strategy σ̃ = σ̃1 ⊗ · · · ⊗ σ̃n is de�ned for any i ∈ {1, . . . , n}, for anylo
al play w ∈ Ẽi · (P̃i · Ẽi)
∗, and for any positions p ∈ Pi, e ∈ Ei by:

σ̃i(w · p) =

{
σi(
an
eli(w · p)) if 
an
eli(w · p) ∈ Dom(σi)undetermined otherwise.

σ̃i(w · ê) = eIt is 
lear that for any i ∈ {1, . . . , n}, the following diagram 
ommutes:
(Ẽ · P̃ )∗


an
el
−−−−−−−−→ (E · P )∗

πi

y
yviewi

(Ẽi · P̃i)
∗ 
an
eli−−−−−−−−→ (Ei · Pi)

∗Therefore, for any global play w ∈ Dom(σ̃), and for any Pro
ess i ∈ {1, . . . , n}su
h that w[i] ∈ Pi, we have:
σ̃i(w[i]) = σi(
an
eli(w[i]))

= σi(viewi
an
el(w))For any in�nite play w in G̃ whi
h is 
onsistent with σ̃, the 
orrespondingplay 
an
el(w) in G is 
onsistent with σ, hen
e belongs to W when in�nite. Then
w ∈ W̃ 
omes dire
tly. The strategy σ̃ is therefore winning over G.Lemma 2 (From syn
hronous to asyn
hronous). For any �nite state win-ning distributed strategy for the Pro
ess team over G̃ there exists a �nite statewinning distributed strategy for the Pro
ess team over G with a memory of thesame size.The problem in proving this lemma is that we will obviously have to 
ope withany lo
al strategy over G̃i (i ∈ {1, . . . , n}) has the ability to somehow 
ount theasyn
hronous moves, therefore getting additional information on the global play
omparing to a lo
al strategy over G.The answer 
onsists in showing that this 
ounting is in any 
ase useless, sin
eea
h time the Environment 
an 
hoose to play a totally asyn
hronous move. APro
ess i has therefore no interest in 
ounting the lo
al asyn
hronous moves,sin
e he does not know whether they are true asyn
hronous moves (
orrespond-ing to asyn
hronous moves in G) or totally asyn
hronous ones.The proof te
hnique we use 
onsists in saturating the memory of any dis-tributed strategy over G, building in the pro
ess a distributed strategy thatbehaves like the one over G would do if the Environment played a large numberof totally asyn
hronous moves ea
h time he has to play.8



Suppose the following distributed strategy with �nite memory is given: σ̃ =
σ̃1 ⊗ · · · ⊗ σ̃n, and suppose it is winning over G̃ with the following memories:

M̃i = 〈M̃i , m̃0,i ∈ M̃i , µ̃i : M̃i × (P̃i ∪ Ẽi) → M̃i , h̃i : M̃i × P̃i → Ẽi〉(for (i ∈ {1, . . . , n}).Sin
e there are �nitely many lo
al strategies, ea
h of them with �nite memory,pumping lemma arguments show that: there exists an integer L su
h that forany Pro
ess i ∈ {1, . . . , n}, for any memory element m in M̃i, for any position
e ∈ Ẽi, the following holds:

µ∗
i (m, (e · ê)L) = µ∗

i (m, (e · ê)k·L) for any integer k > 0 (1)Now, 
onsider the distributed strategy over G σ = σ1 ⊗ · · · ⊗ σn with �nitememory Mi = 〈Mi, m0,i, µi, hi〉, where Mi = M̃i, m0,i = m̃0,i, hi = h̃i, and:
µi(m, e) = µ̃i

∗(m, e · (ê · e)2·L−1)

µi(m, p) = µ̃i(m, p)for e ∈ Ei and p ∈ Pi.We are going to show that σ is winning over G. First of all, de�ne the fun
tion�ll : (E · P )∗ → (Ẽ · P̃ )∗ as follows:�ll(e0 · p0 · e1 · p1 · · · pn) = e0 · (ê0 · e0)
2·L−1 · p̂0 · e1 · (ê1 · e1)

2·L−1 · p̂1 · · · p̂n�ll 
an be generalized to in�nite words in the same fashion than 
an
el.Remark. �ll is 
learly a map from the plays where the Pro
esses have to play in
G to the plays of G̃. It is moreover easy to �gure out that 
an
el ◦ �ll, restri
tedto the plays of G, is the identity fun
tion, and that therefore �ll(w) ∈ W̃ implies
w ∈ W .Last, the following fa
t tells that σ behaves over G exa
tly like σ̃ does over
G̃ if the Environment plays 2 ·L−1 totally asyn
hronous moves ea
h time it hasto play.Fa
t 21 For any in�nite play w in G 
onsistent with σ, the play �ll(w) is 
on-sistent with σ̃.Knowing that σ̃ is winning, and using remark above, we 
on
lude that σ iswinning.Remark. σ is not more 
omplex than σ̃; it a
tually uses a memory of exa
tlythe same size.4 Syn
hronizing linear gameIt is known that, in general, 
he
king the existen
e of a winning distributedstrategy for the Pro
ess team is unde
idable, even in the 
ase there are only twoPro
ess players with rea
hability (W = ∅) or safety (W = (E + P )ω) winning9




ondition [3℄. However, when the information �ows satis�es some linearity 
ondi-tion des
ribed below, the problem be
omes de
idable though non elementary [9℄.In view of these properties, it o

urs that our redu
tion of asyn
hronousdistributed games to equivalent syn
hronous one is not that satisfa
tory. In fa
t,by introdu
ing global non deterministi
 Environment moves everywhere, thelinearity of the information �ows in game G is lost in game G̃.We provide in this se
tion a modi�
ation of our 
onstru
tion that do preservesu
h a linearity property (built upon the notion of i-sequentiality in [7℄).De�nition. Given an n-Pro
ess distributed game G = 〈P, E, TP , TE, e0,W〉,we say that game G is a distributed linear game when for every i ∈ [1, n], forevery Environment positions e and f , for every Pro
ess team positions p and
q ∈ P su
h that (e, p) ∈ TE and (f, q) ∈ TE :If e[1, i] = f [1, i] and if p[i] = q[i] ∈ P [i] or p[i] ∈ E[i] or q[i] ∈ E[i] then

p[1, i] = q[1, i].This (lo
al) linearity property �rst ensures that before every Environmentmoves, if a Pro
ess player i knows (in the epistemi
 sense) not only his own posi-tion e[i] but also the position e[1, i− 1] of positions of every Pro
ess player withlower index, then this remain the 
ase after any (syn
hronous or asyn
hronous)Environment move.Moreover, sin
e Pro
ess players knows ea
h other strategies, this propertiesalso ensures that, from a given starting position, given a �xed distributed strat-egy, every Pro
ess player knows (again in the epistemi
 sense), at any time heis a
tive during a play, the position of every Pro
ess player of smaller index.The next de�nition gives a 
onstru
tion on distributed games that, whenapplied to linear games, 
an be seen as a normalization pro
ess shifting fromimpli
it knowledge to expli
it knowledge.De�nition. Let G = 〈P, E, TP , TE , e0,W〉 be an n-pro
ess distributed game,and let lin(G) = 〈P ′, E′, T ′
P , T ′

E, e′0,W
′〉, 
alled the linearization of G, be thegame de�ned from game G as follows:1. for every i ∈ [1, n]:(a) P ′

i = P [1, i] − E[1, i] + {⊥i},(b) E′
i = E[1, i],(
) T ′
P,i = TP [1, i] ∩ (P ′

i × E′
i),2. and, for every e ∈ E′ =

∏
i∈[1,n] E

′
i:(a) either position e is 
oherent w.r.t. game G in the sense that for every

i ∈ [1, n] one has e[i] = (e[n])[1, i], then we put (e, p) ∈ T ′
E for every

p ∈ P ′ su
h that ∀i ∈ [1, n], (e[i], p[i]) ∈ TE[1, i],(b) or position e is in
oherent then we put (e,⊥) ∈ T ′
E with⊥ = (⊥1, · · · ,⊥n).3. e′0 = (e0[1], e0[1, 2], · · · , e0[1, n− 1], e0[1, n]),4. and W ′ = {w ∈ (P ′ + E′)ω : w[n] ∈ W}.Remark. Observe that, in game lin(G) any time the Pro
ess team rea
h anin
oherent position e, Environment player moves to position ⊥ where the Pro-
ess team looses. It follows that relevant positions in game lin(G) (positions10



where the Pro
ess team will play to win) are only 
oherent positions that isto say position x ∈ E′ + P ′ su
h that, given y = x[n] ∈ P + E, one has
x = (y[1], y[1, 2], · · · , y[1, n−1], y[1, n]). In other words, in every global 
oherentposition x of game lin(G), Pro
ess i expli
itly knows position x[j] for every index
j su
h that 1 ≤ j ≤ i.More formally, distributed strategies in game G and lin(G) 
an be related asstated in the following two lemmas.Lemma 3. For every winning distributed strategy σ1 ⊗ · · · ⊗ σn in game G, thedistributed strategy σ′

1 ⊗ · · · ⊗ σ′
n in game lin(G) de�ned, for every i ∈ [1, n], by

σ′
i = σ1 ⊗ · · · ⊗ σi, is a winning distributed strategy in game lin(G).Proof. Immediate from de�nitions and remark above.In general, there is no 
onverse to su
h a lemma. In fa
t, games of the form

lin(G) are linear hen
eforth existen
e of winning distributed strategies is de
id-able whi
h is not true for arbitrary game G. If, however game G is itself linear,a 
onverse hold.Lemma 4. If game G is linear, for every winning distributed strategy σ′
1⊗· · ·⊗

σ′
n in game lin(G) there is a winning distributed strategy σ1 ⊗ · · · ⊗ σn in game

G su
h that, for every i ∈ [1, n], σ′
i = σ1 ⊗ · · · ⊗ σi.Proof. Observe �rst that, be
ause the distributed strategy σ′

1⊗· · ·⊗σ′
n is winningin game lin(G) it only goes to 
oherent positions. Without lost of generality we
an thus assume that the lo
al strategies are themselves 
oherent. In other words,we 
an assume that, for every i and j with 1 ≤ i < j ≤ n, for every global �niteplay w in game lin(G), σ′

i(viewi(w)) = σ′
j(viewj(w))[1, i]Now, the statement follows from the study of linear games presented in [1℄.The distributed strategy σ1 ⊗ · · · ⊗ σn is de�ned indu
tively.First, strategy σ1 is just de�ned to be strategy σ′

1. In fa
t, up to position ⊥1,lo
al games lin(G)[1] and G[1] are essentially isomorphi
.Next, for every i ∈ [2, n], strategy σi is indu
tively built from strategy σ′
i−1 =

σ1 ⊗ · · · ⊗ σi−1 and strategy σ′
i as follows. The key idea is to simulate, from theknowledge of the initial position e0, the knowledge of strategy σ′

i−1 and anylo
al play wi in G[i], the (unique by linearity) play w that has been played onthe proje
tion G[1, i] su
h that wi = viewi(w). Then, we put σi(wi) = σ′
i(w).Linearity ensures that this simulation 
an indeed be performed. 2.Now, it o

urs thatTheorem 2. For every n-Pro
ess linear distributed game G the game lin(G̃)is linear and equivalent to game G in the sense that Pro
ess team has a �nitememory winning strategy in game G if and only if it has one in game lin(G̃).Proof. The proof arguments are similar to the proof arguments for Theorem 1.There, they have been detailed. Here, we only give a sket
h of them.11



First, any winning distributed strategy σ1 ⊗ · · · ⊗ σn indu
es, by 
omposingit with fun
tion 
an
el, a winning strategy in game G̃ that, in turn, applyingLemma 3, indu
es a winning strategy in game lin(G̃).Conversely, assuming there is a �nite state distributed winning strategy σ̃for the Pro
ess team in game lin(G̃), it o

urs that one 
an build, using similarpumping argument, a �nite state distributed winning strategy σ′ for the Pro
essteam in game lin(G). Then, in turn, this strategy indu
es a �nite state winningdistributed strategy by applying Lemma 4.Referen
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