N

N

From asynchronous to synchronous specification for
distributed program synthesis

Julien Bernet, David Janin

» To cite this version:

Julien Bernet, David Janin. From asynchronous to synchronous specification for distributed program
synthesis. SOFSEM, Jan 2008, Slovakia. pp.161-173. hal-00339740

HAL Id: hal-00339740
https://hal.science/hal-00339740
Submitted on 25 Nov 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00339740
https://hal.archives-ouvertes.fr

From Asynchronous to Synchronous
Specifications for Distributed Program Synthesis

Julien Bernet and David Janin

LaBRI, Université de Bordeaux I
351, cours de la Libération

33 405 Talence cedex FRANCE
{bernet|janin}@labri.fr

Abstract. Distributed games [7] allow the specification of various dis-
tributed program synthesis problems. In such games, a team of Pro-
cess players compete against a unique Environment player, each Process
playing on its own arena, without explicit communications with its team-
mates.

The standard definition of distributed games allows some degree of asyn-
chrony : the Environment can play only on part of the arenas, therefore
concealing to some Process players that the play is going on. While this
is convenient for modeling distributed problems (especially those that
themselves make use of asynchrony), these games are by no means easy
to manipulate, and the existing constructions are much more tedious.
In this paper, we provide a uniform reduction of any finite state dis-
tributed game, synchronous or asynchronous, to a synchronous one with
the same number of players. This reduction is shown to be correct in the
sense that it preserves the existence of finite state distributed winning
strategies for the team of Processes. It is uniform in the sense that it is
designed for arbitrary input distributed game without any prior knowl-
edge about its satisfiability. The size of the resulting synchronous game
is also linear in the size of the original asynchronous one and, moreover,
there is no blowup of the size of the winning strategies. Additional ex-
pected preservation properties (e.g. information flows) are studied. Sur-
prisingly, it seems that no such reduction exists for arbitrary (infinite
state) strategies.

Introduction

Asynchrony in a distributed environment can be defined in an abstract way as
the ability of some processes or agents to perform some action in the distributed
systems while other processes or agents not only perform no action but are even
not aware that they are staying idle. In other words, in a model where every
event in a process (e.g. a local action or an incoming or outgoing message) is
triggered by the tick of a local clock, asynchrony occurs when there is no global
clock on which local clocks are synchronized.

However, if the memory of a distributed system has finitely many possible
states, it is commonly understood that synchronous and asynchronous behaviors

are, to some extent, equivalent. In fact, the number of relevant asynchronous
events between any two synchronous events can be bounded by the number of
global states. More precisely, the (presumably asynchronous) distributed system
can be modeled (at a more abstract level) by an equivalent synchronous one.

For instance, within a distributed system with an asynchronous message
passing mechanism, if the number of messages that have been sent but not
yet received is bounded, there cannot be an unbounded number of (relevant)
asynchronous events between any two synchronizations.

Of course asynchrony makes a difference at the implementation level. For
instance communication protocols do have to cope with asynchrony to be correct.
However, at some more abstract level, provided the global memory of a system
is finite, it seems that, in some sense, asynchronous and synchronous systems
have the same computational power.

The main objective of this paper is to substantiate this intuition. More pre-
cisely, in the setting of distributed program synthesis problem, we aim at proving
that (1) when the distributed environment is finite state and (2) when one con-
siders only finite state programs, any synchronous or asynchronous distributed
program synthesis problem is equivalent to a synchronous distributed program
synthesis problem.

An immediate difficulty for this task is however to find the appropriate for-
malism.

In fact, there exists plenty of models of distributed systems and behaviors;
consider for instance the diversity of models of communications between pro-
cesses or agents: from communication via global shared memory mechanisms to
many types of message passing systems. For distributed program synthesis spec-
ification, where one not only aims at modeling a single behavior but a full class
of behaviors that may, or may not, fulfill the design objectives, there may be
even more formalisms. See for instance Pnueli and Rosner’s notion of distributed
architecture [10, 4] or Wonham et al.’s distributed control theory [5, 6].

In this paper, we choose to study the relationship between synchronous and
asynchronous distributed synthesis problems in a fairly abstract though general
model: the model of distributed games [7].

These games, designed after Peterson and Reif’s partial information games [9],
rely on an explicit modeling of the local information - projection of the global
state - available to every agent (or process) for guiding its own behaviors. As a
matter of fact, no explicit communication is modeled, henceforth no commitment
has to be done in favor of such or such communication mechanism. Moreover,
most distributed synthesis problem can be encoded and solved within distributed
games problem [2, 7].

In a distributed game, a team of Process players compete against a unique
Environment player, each Process playing on its own arena - with its own projec-
tion of the global state of the system - while Environment player has a complete
knowledge of the global state.

Communications are implicitly modeled as follows. In a distributed game
definition, one may restrict Environment player. From a given global state -

partially known by every Process player - this may force the Environment player
to reach some global states with more informative local projections than other
global states.

Asynchrony, that induces an extra layer of partial information - absence of
global clock - is modeled as follows: in a distributed game, the Environment may
play only on part of the arenas, therefore concealing to some Process players that
the play is going on elsewhere.

In this paper we prove that, as far as finite systems and programs are con-
cerned, asynchrony does not yield extra expressive power.

More precisely, we provide a reduction of any asynchronous finite state dis-
tributed game to a synchronous one with the same number of players. This
reduction is shown to be correct in the sense that it preserves the existence of fi-
nite state distributed winning strategies for the team of Processes. The size of the
resulting synchronous game is also linear in the size of the original asynchronous
one and, moreover, there is no blowup of the size of the winning strategies. Addi-
tional expected preservation properties (e.g. information flows) are also studied.

For strategies with unbounded memory, it is conjectured that there is no
such a reduction. Still; one may ask whether such a result could be extended
to more general classes of programs with infinite memory such as, for instance,
pushdown strategies. This remains an open problem. However, even decidability
questions are yet not settled for these more general strategies.

1 Notations

For any finite alphabet A, a word over A is a function w : N — A whose domain
is an initial segment of N. The only word such with empty domain is called the
empty word, and denoted by e.

The following notations are used : A* is the set of finite words (i.e. whose
domain is finite) over A, A% is the set of infinite words over A, A® = A* U A%
is the set of finite and infinite words over 4, and AT = A* — {¢} is the set of
finite non-empty words over A.

For any finite word w, its length |w| is the cardinal of its domain. For any
words u € A* and v € A%, the word w - v is the concatenation of words v and
v. For any integer k, the word u”* is built by concatenating k copies of u. When
u # €, the infinite word u® is the infinite concatenation of u with itself.

These operations are extended to the languages. Given X C A* and Y C A,
we use the notations X - Y ={u-v : ue X,v e Y}, XO={e}, X' ={w-u :
we X1y e XY for any k>0, X* = Uk>0Xk and, when ¢ ¢ X, X“ for the
set of all words that can be defined as an infinite product of words of X. The
following additional notations are also used : X +Y = X UY, X - Y = X\Y
and X’ = {e} U X.

Given n sets X1q,...,X,, consider their direct product X = X; x --- x X,,.
For every set I = {iy,...,ix} € {1,...,n}, consider the natural projection
7w X — Xi, X -+ x X;, defined by 7;((z1,...,2r) = (24,...,x;,). For any
x € X, we also use the more convenient notation z[I] = m;(z).

Following the same idea, for any set Y C X, denote by Y[I] the set 7;(Y).
If R C X™ is a m-ary relation over X, we should also write use R[I] =
{(z1[I],...,zmI]) : (®1,...,2m) € R}. When I in an interval of integers of the
form [i, j] we use the notations x[i, j], Y[i, j], R[i, j]. Whenever T is reduced to a
single integer i, these notations simplify to x[i], Y[i], R[i].

Moreover, these notations are extended to words and languages : for any
word w = xg - 1 --- € X°°, then w[I] = zo[I] - z1[I] - -.

2 Distributed games

A n-process distributed arena is a game arena built from some product of n local
standard game arena.

Definition. Given n arenas G; = (P;, E;, Tp;,Tr ;) for i € [1,n] with disjoint
sets of Process position P;, sets of Environment position E;, sets of Process
moves Tp; C P; x E; and sets of Environment moves T; C E; X P;, an n-
Process distributed game arena built from the local game arenas {Gi}ie1,n is
any game arena G = (P, E, Tp,Tg) such that:

— Environment positions : E = Hie[l’n] E;
— Processes positions : P =[],y ,/(Ei U P) = [Licpn Ei
— Processes moves : Tp is the set of all pairs (p,e) € (P x E) such that, for
ie€l,n]:
o either pli] € P; and (p[i], e[i]) € Tp, (Process i is active in p)
e or p[i] € E; and p[i] = e[i] (Process i is inactive in p),
— and Environment moves : Tg is some subset of the set of all pairs (e, p) €
(E x P) such that, for i € [[1,nl:
o either p[i] € P; and (e[i], p[i]) € Tp,; (Environment activates Process 7)
e or p[i] € E; and pli] = e[i] (Environment keeps Process i inactive).

3

3

When the set T of Environment moves is maximal, we call such an arena the free
asynchronous product of arenas {G;};c1) and it is written G1 ® G2 ®@ - - - @ G-
Remark. The essential idea behind this definition is to get a definition of
a multiplayer game in which a team of Processes compete against a unique
Environment to achieve some infinitary goal. The following point is important
: this definition allows the Environment to play only on a subset of the arenas,
therefore hiding that the play is going on to the Processes on which arenas it
does not play. This will be referred in the following as asynchronous move, and
allows to encode neatly many distributed synthesis problems from the literature,
such as [10,4] or [5].

In distributed games, asynchrony occurs when Environment player decides
to keep one or more Process players inactive. A synchronous distributed arena
can thus be defined as follows.

Definition. An n-process distributed arena G = (P, E, Tp, Tg) is a synchronous
distributed arena when T C E X Hie[lm] PJi].

Since a distributed arena is built upon n simple arenas, we need a definition
to speak about its local components:

Definition. Given a distributed arena G = (P, E,Tp,Tg) as above, given a
non empty set I C [1,...,n] we define the canonical projection G[I] of G on I

as the arena G[I] = (P', E',Tp, T},) given by: P’ = P[I] — E[I| (possibly smaller
than P[I]!), E' = E[I|, Tp =Tp[I|N (P’ x E'), and Ty, = Tg[I] N (E’ x P’).

A distributed game arena is, at first sight, a particular case of standard
discrete and turn base two player game arena. Standard notions of plays and
strategies are still defined. However, in order to avoid confusion with what may
happen in the local arena a distributed game is build upon, we shall speak now
of a global play and global and local strategy. Partial information is then captured
by means of the notion of local view of play and distributed strategy.
Definition. Given an n-process distributed arena G, a global play from an
initial position e € E is defined as a path in G (seen as a bipartite graph)
emanating from position e that is built alternatively by the Environment player
and the Process team.

More precisely, from a current position x € P U E, either x € F and it is
Environment player turn to play by choosing some position y € P such that
(z,y) € Ty or x € P and it is Process team turn to play by choosing some
position y € E such that (z,y) € Tp.

Accordingly, a global strategy for the Process team is a partial function o :
(E.P)™ — E such that for every play of the form w.p € dom(o) with w €
E.(P.E)* and p € P one has (p,o(w.p)) € Tp.

A play w is said compatible with strategy o when, for every integer n > 0
such that w[n] € P one has w[n + 1] = o(w[0,n]) where w[0, n] is the prefix of
w of length n + 1.

Definition. A game G = (P, E,Tg,Tp,eo, W) is a game arena (P, E,Tg,Tp)
equipped with an extra initial position ¢y € E and a distinguished set W C
(E + P)¥ called infinitary condition for the Process team.

We say that global strategy o is a winning strategy for the Process team from
position ey € E with condition W when every maximal plays starting in ey and
compatible with strategy o is either finite and ends in an environment position
or is infinite and belongs to W.

A strategy with finite memory for the Process team is given as a tuple M =
(M,mo,pp : M x (PUE) — M,h: M x P — E), where M is a finite set of
memory states, mqg is the initial memory, p is the update function, and h is
the hint function. The induced strategy oa : (E - P)t — E is then defined,
for any play w-p € (E - P)*, by oa = h(p*(mo,w), p) (where p* is defined by
w*(m,e) =m, and p*(m,w-x) = p(p*(m,w), z) for every m € M, w € (EUP)*,
x € (EUP)).

In distributed games, it is intended that, within the Process team, every
process has only a partial view of a global play. Not only every process only sees
its own projection of every global positions, but, when idle, a process is even not
aware that the play is going on. This intention is formally defined as follows.
Definition. The local view Process i has of a global play in a distributed game
G is given by the map view; : (E-P)* - E’ — (E; - P;)* - E} defined in the
following way:

— view;(e) = €
— view;(z) = z[i]

. view;(w - x) if x[7] = y[i
~ viewi(w-z-y) = {m‘ewigw . x§ . y[l][]other[vx]/ise.

A play w € (E - P)" is said to be active for Process i when w ends in a
position p € P such that p[i] € P[i].
Remark. Observe that in a synchronous distributed arena, as expected, for
every play w € (E.P)*.E’ one has view;(w) = w[i], i.e. the local view of a
global play is just the projection of this play.
Definition. A global strategy o for the Process team is a distributed strategy
when, for every i € [1,n], there is a process strategy o; : (E[i].P[i])" — EJi] in
the local game G[i], from now on called local strategy for Process i, such that,
for any play of the form w-p € (E - P)*, given the set I C {1,...,n} of active
processes in the global Processes position p, o(w - p) = e if and only if

- e[z] oi(view;(w) - p[i]) for i € I
eli] =pli] fori € {1,...,n} —1I

In this case, we write 01 ® 02 ® - -+ ® g, for the distributed strategy o.
Remark. Observe that when G is synchronous, the distributed strategy o =
01 ® -+ ® oy, can simply be defined for any global play w € (E - P)* by :

o(w) = (o1 (w[l]), ..., on(w[nl))

Remark. Global strategies are not always distributed. In particular, there are
distributed games where Process team has a winning global strategy, but no
winning distributed strategy. For more details, the reader can refer to [7].

3 From asynchronous game to synchronous game

We prove here that every (asynchronous) distributed game is equivalent in some
sense to a synchronous distributed game. More precisely:

Theorem 1. There exists a mapping that maps every distributed game G to
exists a distributed game G such that the Process team have a distributed winning
strategy with finite memory in G if and only if they have one in G. Moreover,
game G has the same number of Process players as game G with only a linear
increase of number of positions. Moreover, this mapping is defined uniformly on
distributed games, be them winning for the process team or not.

The remaining of this section is devoted to the proof of this result.

Let G = (P, E,T,eq, W) be a n-processes distributed game. First, we are
going to describe the synchronous game é, then we will show that it is equivalent
to G in terms of distributed strategies with finite memory. .

For any set E;, define F; as an equipotent set, such that E; N E; = 0;

for any e € F;, denote by ¢; its image in F;. Let E = Hie{l o} E; and let

P = Hie{l n} P; (i.e. we restrict to relevant process positions in a synchronous
game: process positions where every process is active).
Consider G = (P, E, T, ep, W), whose positions are:

P=PUE, ; E, =FE (for all i € {1,...n})

For any position z € P U E, denote by ¥ the position_of P obtained by
replacing in e each component from F; with their image in E; | i.e. :

ozl if z]i] € E;
il = {x[i] if 2[i] € P;

The function that maps any x € P U E to its image Z in Pis trivially a
bijection. The moves of G are defined as follows:

TP =TP U{(Ee): e € E;}
TE = {(e,p) € E x P | (e,p) € TE}
U {(e,e):e€ E}

The function canceI(E . }5)* — (E- P)* erases any asynchronous move from a
global play: cancel(e) = ¢, cancel(w-e-p) = cancel(w) - e p, and cancel(w-e-€) =
cancel(w) (where p € P, e € E).

This function is generalized to infinite words by: cancel(zg - 1 - -++) =
lim; o cancel(xg - - - x;) (it is a converging sequence, in the sense of the prefix
topology over words, as defined for instance in [8]).

The winning condition of G is then defined as follows:

W = cancel '(W) U (E-P)*- (E-E)*

Remark. The underlying bipartite graph of G is embedded into the one from
G. The graph of the arena of G is actually nothing more than the subgraph
induced by this embedding, where on each position of the environment a loop of
size 2 has been added, corresponding to a totally asynchronous move. Moreover,
the winning condition W is not much more complicated than W : amongst the
usual infinitary winning conditions (reachability, safety, parity, Muller, etc. ...),
only the safety condition in not preserved by this construction.

Lemma 1 (From asynchronous to synchronous). For any distributed and
winning strategy for the Process team in G, there is a winning distributed strategy
for the Process team in G.

The idea is actually to copy this strategy on é, ensuring in the process that
the Process players do not take the asynchronous moves played onto their arena
into account. .

For any i € {1,...,n}, let us define a function cancel; : (E;- P;)* — (E;- P;)*
that erases the local asynchronous moves: cancel;(e) = ¢, cancel;(w - e-p) =

cancel;(w) - e - p, and cancel;(w - e - €) = cancel;(w) for any e € E;, p € P;, and
Consider a winning distributed strategy ¢ = 01 ® -+ ® o, over G. The
distributed strategy 0 = o1 ® - - - ® 7, is defined for any ¢ € {1,...,n}, for any

local play w € E; - (}31 - E;)*, and for any positions p € P;, e € E; by:

o;(cancel;(w - p)) if cancel;(w - p) € Dom(o;)
undetermined otherwise.

ci(w-p)={

gi(w-e)=e

It is clear that for any ¢ € {1,...,n}, the following diagram commutes:
(E)]5)* cancel (E- P)*
ml lviewi
(E .]’51)* cancel; (E; - P,)*

Therefore, for any global play w € Dom(c), and for any Process i € {1,...,n}
such that w(i] € P;, we have:

a;(wli]) = o;(cancel; (w[i]))

= o;(view;cancel(w))

For any infinite play w in G which is consistent with o, the corresponding
play cancel(w) in G is consistent with o, hence belongs to W when infinite. Then
w € W comes directly. The strategy o is therefore winning over G.

Lemma 2 (From synchronous to asynchronous). For any finite state win-
ning distributed strategy for the Process team over G there exists a finite state
winning distributed strategy for the Process team over G with a memory of the
same size.

The problem in proving this lemma is that we will obviously have to cope with
any local strategy over G; (i € {1,...,n}) has the ability to somehow count the
asynchronous moves, therefore getting additional information on the global play
comparing to a local strategy over G.

The answer consists in showing that this counting is in any case useless, since
each time the Environment can choose to play a totally asynchronous move. A
Process i has therefore no interest in counting the local asynchronous moves,
since he does not know whether they are true asynchronous moves (correspond-
ing to asynchronous moves in G) or totally asynchronous ones.

The proof technique we use consists in saturating the memory of any dis-
tributed strategy over G, building in the process a distributed strategy that
behaves like the one over G would do if the Environment played a large number
of totally asynchronous moves each time he has to play.

Suppose the following distributed strategy with finite memory is given: o =
01 ® -+ ® 0y, and suppose it is winning over G with the following memories:

M, = (M; , mo; € My , i : My x (P;UE;) — M; , h; : M; x P, — E;)

(for (1 € {1,...,n}).

Since there are finitely many local strategies, each of them with finite memory,
pumping lemma arguments show that: there exists an integer L such that for
any Process ¢ € {1,...,n}, for any memory element m in M;, for any position

ec E; the following holds:
wi(m, (e-e)r) = pi(m, (e-)FL) for any integer k > 0 (1)

Now, consider the distributed strategy over G 0 = 01 ® - - - ® o,,_with finite
memory M; = (M;, mg i, i, h;), where M; = M;, mo,; = mo, hi = h;, and:
pi(m,e) = ;" (m,e- (€-¢)*7)

pi(m, p) = pi(m, p)

for e € F; and p € P;.
We are going to show that o is winning over G First of all, define the function
fill: (E-P)* — (E- P)* as follows:

2.L—1 2L—1 ~ _

fill(eo - po-e1-p1---pu) = €0 - (@ - 0" - fo-er- (@ - 1) - fi oo
fill can be generalized to infinite words in the same fashion than cancel.
Remark. fill is clearly a map from the plays where the Processes have to play in
G to the plays of G. It is moreover easy to figure out that cancel o fill, restricted
to the plays of G, is the identity function, and that therefore fill(w) € W implies

weW.
_ Last, the following fact tells that o behaves over G exactly like o does over
G if the Environment plays 2- L — 1 totally asynchronous moves each time it has

to play.

Fact 21 For any infinite play w in G consistent with o, the play fill(w) is con-
sistent with o.

Knowing that ¢ is winning, and using remark above, we conclude that o is
winning.
Remark. o is not more complex than o; it actually uses a memory of exactly
the same size.

4 Synchronizing linear game

It is known that, in general, checking the existence of a winning distributed
strategy for the Process team is undecidable, even in the case there are only two
Process players with reachability (W =) or safety (W = (E + P)“) winning

condition [3]. However, when the information flows satisfies some linearity condi-
tion described below, the problem becomes decidable though non elementary [9].

In view of these properties, it occurs that our reduction of asynchronous
distributed games to equivalent synchronous one is not that satisfactory. In fact,
by introducing global non deterministic Environment moves everywhere, the
linearity of the information flows in game G is lost in game G.

We provide in this section a modification of our construction that do preserve
such a linearity property (built upon the notion of i-sequentiality in [7]).
Definition. Given an n-Process distributed game G = (P, E,Tp,Tg, eg, W),
we say that game G is a distributed linear game when for every i € [1,n], for
every Environment positions e and f, for every Process team positions p and
q € P such that (e,p) € Tg and (f,q) € Tg:

If e[1,4] = f[1,4] and if p[i] = g[i] € P[i] or p[i] € E[i] or ¢[i] € E[i] then
p[l,i] = q[L,4].

This (local) linearity property first ensures that before every Environment
moves, if a Process player i knows (in the epistemic sense) not only his own posi-
tion e[i] but also the position e[1, 7 — 1] of positions of every Process player with
lower index, then this remain the case after any (synchronous or asynchronous)
Environment move.

Moreover, since Process players knows each other strategies, this properties
also ensures that, from a given starting position, given a fixed distributed strat-
egy, every Process player knows (again in the epistemic sense), at any time he
is active during a play, the position of every Process player of smaller index.

The next definition gives a construction on distributed games that, when
applied to linear games, can be seen as a normalization process shifting from
implicit knowledge to explicit knowledge.

Definition. Let G = (P, E,Tp,Tg,ep, VW) be an n-process distributed game,
and let lin(G) = (P, E',Tp, T, e, W'), called the linearization of G, be the
game defined from game G as follows:

1. for every i € [1,n]:
(a) Pil = P[l,i] - E[lvi] + {J-i}:
(b) E} = E[1,d],
(¢) Th, = TolL,i] N (P! x E),
2. and, for every e € E' =[],y ,,) Ei:
(a) either position e is coherent w.r.t. game G in the sense that for every
i € [1,n] one has e[i] = (e[n])[1,4], then we put (e,p) € T}, for every
p € P’ such that Vi € [1,n], (e[i], p[i]) € Tr[1,1],
(b) or position e is incoherent then we put (e, L) € T with L = (Lq,---, L,).
3. el = (eo[1],e0[l,2], - ,eo[l,n —1],e0[1,n]),
4. and W ={w € (P'+ E')¥ : wn] € W}.

Remark. Observe that, in game lin(G) any time the Process team reach an
incoherent position e, Environment player moves to position 1 where the Pro-
cess team looses. It follows that relevant positions in game lin(G) (positions

10

where the Process team will play to win) are only coherent positions that is
to say position z € E’ 4+ P’ such that, given y = z[n] € P + E, one has
x = (y[1],y[1,2],--- ,y[l,n—1],y[1,n]). In other words, in every global coherent
position z of game lin(G), Process i explicitly knows position z[j] for every index
7 such that 1 <5 <4.

More formally, distributed strategies in game G and lin(G) can be related as
stated in the following two lemmas.

Lemma 3. For every winning distributed strateqy o1 ® - - - ® o, in game G, the
distributed strategy o} @ --- ® o, in game lin(G) defined, for every i € [1,n], by
ol =01® - ® 0y, is a winning distributed strategy in game lin(G).

Proof. Immediate from definitions and remark above.

In general, there is no converse to such a lemma. In fact, games of the form
lin(@) are linear henceforth existence of winning distributed strategies is decid-
able which is not true for arbitrary game G. If, however game G is itself linear,
a converse hold.

Lemma 4. If game G is linear, for every winning distributed strategy o} ®---®
ol in game lin(G) there is a winning distributed strategy o1 ® - -+ ® o, in game
G such that, for everyi € [1,n], ol =01 ® - ® 0;.

Proof. Observe first that, because the distributed strategy o ®- - -®o7, is winning
in game lin(G) it only goes to coherent positions. Without lost of generality we
can thus assume that the local strategies are themselves coherent. In other words,
we can assume that, for every ¢ and j with 1 <14 < j < n, for every global finite
play w in game lin(G), o}(view;(w)) = o} (view;(w))[1, 1]

Now, the statement follows from the study of linear games presented in [1].
The distributed strategy o1 ® - - - ® oy, is defined inductively.

First, strategy o7 is just defined to be strategy o}. In fact, up to position 11,
local games lin(G)[1] and G[1] are essentially isomorphic.

Next, for every i € [2, n], strategy o; is inductively built from strategy o,_, =
01 ® - ® 0,1 and strategy o, as follows. The key idea is to simulate, from the
knowledge of the initial position eg, the knowledge of strategy o._; and any
local play w; in G[i], the (unique by linearity) play w that has been played on
the projection G[1,i] such that w; = view;(w). Then, we put o;(w;) = ol (w).
Linearity ensures that this simulation can indeed be performed. 0.

Now, it occurs that

Theorem 2. For every n-Process linear distributed game G the game lin(QG)
is linear and equivalent to game G in the sense that Process team has a finite
memory winning strategy in game G if and only if it has one in game lin(Q).

Proof. The proof arguments are similar to the proof arguments for Theorem 1.
There, they have been detailed. Here, we only give a sketch of them.

11

First, any winning distributed strategy o1 ® - - - ® g3, induces, by composing
it with function cancel, a winning strategy in game G that, in turn, applying
Lemma 3, induces a winning strategy in game lin(G).

Conversely, assuming there is a finite state distributed winning strategy o
for the Process team in game lin(G), it occurs that one can build, using similar
pumping argument, a finite state distributed winning strategy o’ for the Process
team in game lin(G). Then, in turn, this strategy induces a finite state winning
distributed strategy by applying Lemma 4.

References

1. J. Bernet and D. Janin. Tree automata and discrete distributed games. In Maciej
Liskiewicz and Riidiger Reischuk, editors, Fundamentals of Computation Theory,
volume 3623 of LNCS, pages 540-551, Liibeck, August 2005. Springer.

2. J. Bernet and D. Janin. Distributed synthesis in zero-delayed architectures with
cycles. In E. Najm, J.-F. Pradat-Peyre, and V. V. Donzeau-Gouge, editors, 26th
IFIP WG 6.1 International Conference on Formal Methods for Networked and
Distributed Systems (FORTE 2006), volume 4229 of LNCS, pages 175 190, Paris,
September 2006. Springer.

3. D. Janin. On the (high) undecidability of distributed synthesis problems. In Int.
conf. on Current Thrends in Theo. and Prac. Comp. Science (SOFSEM), volume
4362 of LNCS, pages 320 329. Springer, 2007.

4. O. Kupferman and M. Y. Vardi. Synthesizing distributed systems. In In Proc.
IEEE Symposium on Logic in Computer Science (LICS’01), pages 389 398, 2001.

5. F. Lin and M. Wonham. Decentralized control and coordination of discrete
event systems with partial observation. IEEE Transactions on automatic control,
33(12):1330 1337, 1990.

6. P. Madhusudan and P.S. Thiagarajan. Distributed controller synthesis for local
specifications. In 28th International Colloguium on Automata, Languages and Pro-
gramming (ICALP’01), volume 2076 of LNCS, pages 396 407. Springer, 2001.

7. S. Mohalik and I. Walukiewicz. Distributed games. In P. K. Pandya and J. Rad-
hakrishnan, editors, In Proc. 23th Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS’08), volume 2914 of LNCS,
pages 338-351. Springer, 2003.

8. D. Perrin and J.E. Pin. Infinite Words ; Automata, Semigroups, Logic and Games,
volume 141 of Pure and Applied Mathematics. Elsevier, 2004.

9. G.L. Peterson and J.H. Reif. Multiple-person alternation. In 20th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’79), pages 348-363, oc-
tober 1979.

10. A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In
In Proc. 31th IEEE Symposium on Foundations of Computer Science (FOCS’90),
pages 746 757, 1990.

12

