Motion of flux transfer events: a test of the Cooling model - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Annales Geophysicae Année : 2007

Motion of flux transfer events: a test of the Cooling model

Résumé

The simple model of reconnected field line motion developed by Cooling et al. (2001) has been used in several recent case studies to explain the motion of flux transfer events across the magnetopause. We examine 213 FTEs observed by all four Cluster spacecraft under a variety of IMF conditions between November 2002 and June 2003, when the spacecraft tetrahedron separation was ~5000 km. Observed velocities were calculated from multi-spacecraft timing analysis, and compared with the velocities predicted by the Cooling model in order to check the validity of the model. After excluding three categories of FTEs (events with poorly defined velocities, a significant velocity component out of the magnetopause surface, or a scale size of less than 5000 km), we were left with a sample of 118 events. 78% of these events were consistent in both direction of motion and speed with one of the two model de Hoffmann-Teller (dHT) velocities calculated from the Cooling model (to within 30° and a factor of two in the speed). We also examined the plasma signatures of several magnetosheath FTEs; the electron signatures confirm the hemisphere of connection indicated by the model in most cases. This indicates that although the model is a simple one, it is a useful tool for identifying the source regions of FTEs.
Fichier principal
Vignette du fichier
angeo-25-1669-2007.pdf (2.97 Mo) Télécharger le fichier
Origine : Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-00330141 , version 1 (18-06-2008)

Identifiants

  • HAL Id : hal-00330141 , version 1

Citer

R. C. Fear, S. E. Milan, A. N. Fazakerley, C. J. Owen, T. Asikainen, et al.. Motion of flux transfer events: a test of the Cooling model. Annales Geophysicae, 2007, 25 (7), pp.1669-1690. ⟨hal-00330141⟩
245 Consultations
100 Téléchargements

Partager

Gmail Facebook X LinkedIn More