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Abstract. In this paper, we consider discrete distributed synthesis prob-
lems, as defined by Pnueli and Rosner [17], on possibly cyclic architec-
tures with zero-delay semantics and global specifications.

We describe a uniform (and complete) translation of these problems into
distributed games problems. We prove the correctness of this transla-
tion and we also obtain, in this setting, a characterization of distributed
architectures with decidable synthesis problems.

It shall be noted that, as opposed to former approaches, zero-delay se-
mantics requires a specific treatment for modeling instantaneous value
propagation. Moreover, cyclic dependencies with zero-delay semantics
involve equations with potentially many solutions. Accordingly, several
variants of the distributed synthesis problem are proposed and studied.

Introduction

Automatic or semi-automatic synthesis of programs from specifications has been
for long a challenging research goal in formal methods.

In the context of distributed discrete events systems, Pnueli and Rosner gave
one of the first abstract definitions of this problem, proved its general undecid-
ability, and characterized a decidable class of problems: distributed synthesis on
the pipeline architecture [17].

Since then, distributed program synthesis has received a lot of attention: in
the framework defined by Pnueli and Rosner [5,10-12], in control theory [2,13,
1,4,20], or in the framework of true concurrency [7,6]. Many variations of this
problem have been considered and solved: cyclic or acyclic architectures, from
synchronous to asynchronous communications, interleaved or true concurrent
models, with or without zero-delay semantics, with point to point or broadcast
communication channels.

From a theoretical point of view, solving a distributed synthesis problem -
where programs to be synthesized only have local knowledge of the global state
of the system - amounts to solving a multiplayer game with partial information.
This general problem has been defined and studied already in [16, 19].

More recently, a regain of interest for distributed synthesis has led to a spe-
cialized version of multiplayer games, distributed games, that aims at defining a



common framework where distributed synthesis problems can be encoded and
solved [14]. In particular, these games have been equipped with various automata
based tools [3] that help in this process.

Objective of this Work

In this paper, we first aim at illustrating the relevance of this unifying approach
by giving a clear, uniform and complete reduction of distributed synthesis prob-
lems into distributed games. As a subgoal, we expect this reduction to be effi-
cient, both in the sense that decidable cases are strictly preserved, and in the
sense that the complexity of solving these problems does not increase through
the reduction.

In order to do so, we study the distributed synthesis problem in the case
of architectures with cycles, zero-delay semantics and branching time global
specifications; this case has not been considered so far. It occurs that zero-
delay semantics require a specific treatment for modeling instantaneous value
propagation. Moreover, cyclic dependencies with zero-delay semantics involve
equations with potentially many solutions. Accordingly, several variants of the
distributed synthesis problem are proposed and studied.

The relevance of studying cyclic architecture with zero-delay semantics first
comes from digital circuits design as illustrated, for instance, by the classical R/S
flip flop [8]. In this setting, one may consider extensions of Hardware Description
Languages such as VHDL [9] with modules for automatic program synthesis.
Studying zero-delay semantics also makes sense at the application level.

Investigating furthermore the relevance of this approach in various appli-
cation fields like telecommunication or web services, distributed database or
parallel scientific computing, etc..., is however not the purpose of this paper.
Following Pnueli and Rosner original works and motivations [17], we stick to a
level of abstraction that is application independent.

There is little doubt that application of automatic distributed synthesis still
requires a lot more research efforts for exhibiting both richer decidable frame-
works and more tractable solutions.

Organization of the Paper

A model of zero-delay synchronous behaviors is presented in the first section. On
architecture with cycles, it is shown that global behaviors may not be uniquely
defined by sets of local behaviors. Accordingly, three variants of the distributed
synthesis problem are defined: the angelic, the strict and the demonic variant.

The notion of hierarchical architectures is defined and studied in the second
section. It is equivalent to a similar notion defined in [5]. Our main result is
then stated: the angelic and strict variant of the distributed synthesis problem
with arbitrary MSO specification are decidable if and only if the underlying
architecture is hierarchical.

A proof of this theorem is given in the fourth part. More precisely, after briefly
reviewing the definition of distributed games, we prove that both variants of the



distributed synthesis problem can be encoded into distributed games that are
decidable when the underlying architecture is hierarchical.
Some open problems are presented as a conclusion.

Notations

A word on an alphabet A is a partial function w : w — A with downward-closed
domain, i.e. w(?) is the ¢ + 1th letter of word w. When dom(w) is finite, we say
w is a finite word, otherwise w is an infinite word. The length |w| of a word w
is the cardinality of its domain. The set of finite words (resp. finite non empty
words) over alphabet A is written A* (resp. AT), the set of infinite words is
written A, the set of finite or infinite words is written A*°. The empty word is
written . The concatenation of a word u € A* and a word v € A is written
..

Given alphabet B, a B-labeled A-tree is a partial function ¢ : A* — B with
prefix-closed domain.

Given two sets A and B, we write m4 (resp. mp) for the left (resp. right)
projection from A x B to A (resp. from A x B to B). These notations are
extended to any subset of A x B and words on A x B. Given P C A x B, (resp.
w € (A x B)*®), we may also write P[1] for m4(P) and P[2] for m5(P) (resp.
w(1] for ma(w) and w([2] for mp(w)). These notations are generalized to larger
products.

1 Distributed Program Synthesis with Zero-Delay
Semantics

In this section, we rephrase Pnueli and Rosner’s distributed synthesis problem
for zero-delay semantics and arbitrary - possibly cyclic - architectures. In this
context, behavior semantics and architecture structures are studied and interre-
lated one with the other.

1.1 Models of Behaviors

Programs considered in this paper produce a sequence of output events from a
sequence of input events. We assume moreover that programs are synchronous
and zero-delay: no output event is produced prior to any input event and every
input event produces one and only one output event.

Definition 1. A synchronous zero-delay behavior with input alphabet A and
output alphabet B is a mapping f : A* — B* such that there exists a mapping
k¢ : A* — (A — B), called the kernel of f such that f(c) = ¢ and, for every
ue A" anda € A, f(u.a) = f(u).kr(u)(a).

In the remainder of the text, a synchronous zero-delay behavior f : A* — B*
is simply called a sequential function and, for every u € A*, ky(u): A — B is
called the one-step behavior of function f after input u.



A sequential function f : A* — B* has finite memory when its kernel ky :
A* — (A — B) is eventually periodic, i.e. there are some integers m and n
such that, for every u € A* with |u| > m, for every v € A* with |[v| = n,
kr(uv) = ky(u).

One can easily check that each sequential function has a unique kernel and,
conversely, each mapping k : A* — (A — B) is the kernel of a unique se-
quential function. Specifying or synthesizing sequential functions thus amounts
to specifying and synthesizing their kernels. Moreover, since kernels are infinite
A — B-labeled A-trees, Monadic Second Order Logic (MSO) - or any of its
sub logics such as LTL, CTL or the mu-calculus - is available for specification
purposes and the related infinite tree-automata theory [18] can be applied for
synthesis algorithms.

Another interesting characteristic of this notion of kernel, especially for dis-
tributed synthesis, is the good behavior of kernels w.r.t. function composition
since, in some sense, it commutes with it. More precisely, writing f; g for the
composition go f, for all sequential functions f : A* — B* and g : B* — C* and
for every input sequence u € A*, one has ky.o(u) = k¢(u); kg(f(u)).

In other words, the one-step behavior of the sequential composition of func-
tion f with function g after some time is just the sequential composition of the
one-step behaviors of f with the next step behavior of g after the same amount
of time.

Remark. In the setting defined by Pnueli an Rosner [17] and considered in
subsequent works [5, 14, 10], a sequential behavior f : A* — B* is generated by
a A-branching B-labeled A-tree hy : A* — B (with irrelevant root value) by
f(e) = € and for every u € A* and a € A, f(u.a) = f(u).hf(u.a). In this model,
for every u € A", hy(u) € B is the last output produced after input sequence w.

It shall be clear that these two approaches are equivalent in the sense that
they both define the same sequential functions. However, dealing with the latter
definition is much harder when composing functions. In fact, for all sequential
functions f : A* — B* and g : B* — C* and for every input sequence u € A*,
one has hy,q(u) = hy(f(u)). This difficulty entails for instance, in the approach
presented in [14], an asynchronous encoding of synchronous distributed synthesis
problems into distributed games. This somehow artificial asynchronism is not
necessary as shown in the present paper.

Remark. A sequential function is, by definition, zero-delay. Still, we can provide
a semantical definition of a one-delay behavior. A sequential function f: A* —
B* is one delayed when, for every u € A*, every a; and ay € A, f(u.a1) =
f(u.az), i-e. the output event produced after a given input event only depends
on the previous input events.

Observe that one-delay sequential functions have a very simple characteriza-
tion in terms of their functional kernel. In fact, a sequential function f : A* — B*
is one-delay if and only if, for every v € A*, the one-step behavior ks(u) is a
constant function.



1.2 Distributed Architectures

Our definition of distributed architecture is adapted from Pnueli and Rosner’s
definition [17] allowing single write/multiple read channels as in [5].

Definition 2. A distributed architecture H is defined as a tuple
H= <Ia Sa T, {AC}CEIUS>7

with a finite set I of (global) input channels, a disjoint finite set S of process
sites (identified with output channels), a mapping r : S — P(I U S) that maps
every process p € S to the set of channels r(p) where process p read input values,
and, for every channel ¢ € I U S, the finite alphabet A. of possible events on
channel c.

We always assume that alphabets are pairwise disjoint. We also always as-
sume that I C | J{r(p) : p € S}, i.e. any input is read by at least one process.

As a notation, we write A for the alphabet of all possible channel events at
a given time, i.e. A = I .crus- For every set of channels X C I U S, we write
Ax for the product alphabet Il.c x A.. In particular, A, is the input alphabet
of process p on the bigger channel formed by all channels of r(p).

Given any sequence w € A1 of channel input/output events in the archi-
tecture H, we write in(w) for the corresponding sequence of events w4, (w) on
architecture input channels and we write out(w) for the corresponding sequence
of events mag(w) on architecture output channels. Similarly, for every process
p € S, we also write in,(w) for the corresponding sequence of events wa, . (w) on
process p input channels, and out,(w) for the corresponding sequence of events
ma,(w) on process p output -.

As a particular case, when r(p) = (), we define A, () to be a singleton alphabet,
say Ay = {1}, with, in this case, in,(w) = 11*l. The intuition behind this case
is that, with no input channels, a process still receives time clicks.

Remark. Two processes that read on the same set of channels (and thus share
the same information) can be seen as a single process that writes on two distinct
channels.

1.3 Distributed Behaviors

In presence of loops, giving zero-delay semantics to a distributed architecture is
a priori non-trivial. Following Pnueli and Rosner [17], the intuitive idea would be
to define distributed behavior of an architecture as the global behavior resulting
from the composition of local sequential behaviors (one per process).

However, with zero-delay semantics, loops may create cyclic dependencies
between the values of the output channels, i.e. systems of equations that may
have several solutions. Zero, one or more global behaviors may be compatible
with a given set of local behaviors. Consider for instance the system drawn below,
where the left-hand process (resp. right-hand process) writes at each time the
logical OR, (resp. AND) of the last values it reads on its two inputs. Suppose



now that the value of z is 0 (in short © = 0) and that y = 1. Then, one can
either have a =0 and b =0, or a = 1 and b = 1 ; hence there are several global
behaviors corresponding to this set of local behaviors.

——0, O

Thus the notion of distributed realization of a global behavior defined by
Pnueli and Rosner [17] is no longer functional.

Definition 8. Let H = (I, 5,7, {Ac}eerus) be a distributed architecture. A global
behavior f : A7 — A% of architecture H is realizable by a set of local behaviors
fp: A:(p) — A}, one per process p € S, when the following condition is satisfied:
for every global input/output u € A* with out(w) = f(in(w)), for every
p € S, one has outp(w) = fp(iny(w)).

The set of local behaviors {f,}pes is incoherent (resp. ambiguous) when it real-
izes no (resp. more than one) global behavior.

In order to solve distributed synthesis problem, we need a more local defini-
tion of realizable behavior.

Definition 4 (One-step realizability). A global one-step behavior k: A; —
Ags is one-step realized by a set of local one-step behaviors k, : A,,) — Ay,
one per process p € S, when the following condition is satisfied:

for every global input/output events a € A, such that out(a) = k(in(a)),
one has, for every process p € S, outy(a) = ky(outy(a)).

A set of local one-step behavior {kp}pcs is called incoherent (resp. ambiguous)
when it realizes no (resp. more than one) global one-step behavior.

Remark. From this definition, one may be tempted to (re)define realizable
global behaviors as sequential functions f : A7 — A% such that, for every u € A7,
the one-step global behavior ky(u) has a one-step realization.

Unfortunately, such a definition would be wrong as it would miss the fact
that, for every process p, after any sequence of global input/output w € A* with
out(w) = f(in(w)), the one-step behavior of every process p can only depend on
the input sequence in,(w) actually read by process p.

Both definitions of one-step and general realizability are still related as fol-
lows:

Lemma 1. A global behavior f: A7 — A% of architecture H is realizable by a
set of local behaviors f, : A:(p) — Ay, one per process p € S, if and only if, for
every global input/output sequence of events w € A* with out(w) = f(in(w)),
the set of one-step local behaviors {ky,(in,(w))}pes realizes the global one-step
behavior ky(in(w)).



Proof. For any w € A*, for any v € A with f(in(w.v)) = out(w.v), for any
process p € S, one has f,(in,(w.v)) = outp(w.v), thus :

kg, (inp(w))(inp(v)) = outy(w).outy(v)

Since fp(inp(w)) = outy(w), it is clear that the global one-step behavior k¢ (in(w))
is realized by the set of local one-step behaviors {ky, (in,(w))}pes. The converse
is clearly true. O
Remark. Observe that, on acyclic architecture, a set of zero-delay local be-
haviors is always coherent and non ambiguous. Observe also that, on arbitrary
architecture, a set of one-delay local behaviors is also always coherent and non
ambiguous.

1.4 Distributed Synthesis Problems

The distributed synthesis problem is the following: given a specification of an
expected global behavior find a distributed realization of it, i.e. a set of local
behaviors, one for each process site, such that the corresponding global behaviors
meet the specification.

With arbitrary zero-delay local behaviors several cases are possible. This
leads us to consider three possible semantics for the synthesis problem.

Definition 5 (Distributed synthesis problem). Given an architecture H =
(I,S,r,{Ac}cerus), given a specification ¢ of sequential functions with input
alphabet A; and output alphabet Ag, the angelic, strict or, resp. demonic dis-
tributed synthesis problem for (H, ) is to find a set of finite memory local se-
quential behavior { fp}pes such that :

— angelic case: there is at least one function [ realized by {f,}pes such that

fE®

— strict case: there is a unique function f realized by {f,}pes and, moreover,
fE e

— or, demonic case: the set of local behaviors { f,}pes is coherent and for every
function f realized by {fp}pes, one has f = ¢.

Remark. The intuition behind these definitions is the following. In the angelic
case, the programmer has the opportunity to add extra (hopefully limited) con-
trol channels in the architecture that allow control over the choice of the global
behavior to be realized. In the strict case, these extra control channels described
above are no longer needed: the architecture and the global specification are per-
missive enough to allow their (implicit) encoding within the architecture itself.
Last, in the demonic case, extra control is just not available.

Observe that a distributed synthesis problem that has a solution with strict
semantics also has a solution with demonic semantics. The main issues about
these three semantics is the decidability problem.

It occurs that, as shown in the next section, both angelic and strict dis-
tributed synthesis problem are, as in the one-delay or the acyclic case, decidable
on architectures called hierarchical. The demonic case remains an intriguing open
problem.



2 Distributed Synthesis on Hierarchical Architectures

We review here the notion of knowledge of a process in an architecture. This leads
to define hierarchical architecture and to state our main result in the angelic and
strict case.

2.1 Process Knowledge

A similar notion is defined by Finkbeiner and Schewe in [5]. Both lead to equiv-
alent notions of hierarchical architectures on the class of architecture common
to both approaches. However, since this notion is somehow subtle and for the
sake of completeness, we give here our own definition and related intuition.

Definition 6. Given architecture H as above, for every process p € S, we define
the knowledge of process p to be the greatest set of channels K, C I US such
that:

for all ¢ € K, either ¢ € I and q € r(p), or q € S with ¢ # p and
r(q) € Kp.

The knowledge relation <4, is then defined on S to be the relation defined by
p =x q when q € K,, meaning, informally, that process p potentially knows
more than process q.

One can check that the knowledge relation <4 is a preorder, i.e. it is reflexive
and transitive. In the sequel, we write ~4, for the induced equivalence relation,
i.e. p ~9 q when p <4y ¢ and q <y p.

At every moment in an running distributed architecture, the immediate
knowledge of a process p is just the sequence of inputs it is receiving on channels
of r(p) and the sequence of outputs it is producing on channel p. The intended
meaning of the knowledge relation is to capture a notion of deducible knowledge
process p may have from its own immediate knowledge.

The following lemma gives a semantical characterization of the knowledge
relation defined above:

Lemma 2. For every process p, K, is the set of channels q such that, for ev-
ery k 1 A; — Ag that is one-step realizable, for every a; and as € A, such
that out(a1) = k(in(a1)) and out(az) = k(in(az)), if inp(a1) = iny(az) then
ing(a1) = ing(az).

Proof. The full proof is omitted here due to space restrictions. Essentially, it
suffices to remark that each process site g that is not in K, is such that there
exists an input channel x ¢ r(p) and a path from z to ¢ that avoids p. Using the
fact that there is a one-step realization of k, one can show that in,(a1) = inp,(asz)
and ing(aq) # ing(az) if and only if g satisfies this path condition. O



2.2 Hierarchical Architectures

We (re)define here the notion of hierarchical architectures that is induced by the
notion of process knowledge.

Definition 7. An architecture is called hierarchical when the knowledge relation
is total, i.e. for every p and q € S, either p <y q or q <y p. Equivalently, an
architecture is hierarchical when the quotient set S/ ~4 is linearly ordered by
the relation <.

It shall be clear that, on architectures that are common to both definitions,
the definition presented here and the one of Finkbeiner and Schewe [5] are the
same.

P1 @

@ ®

In the above example, one has p; ~ po < p3 =< ps =~ ps : it is therefore hierarchi-
cal.

2.3 Main Result

Theorem 1. The angelic or strict distributed synthesis problem for architec-
ture H is decidable with arbitrary global MSO specification o if and only if the
architecture H is hierarchical.

Proof. In section 3, both angelic and demonic distributed synthesis problem on
hierarchical architectures are encoded into pipeline distributed games (in the
sense of [14, 3]) that are thus decidable.

Conversely, any non hierarchical architecture contains an undecidable pattern
(in the sense of [11]) or an information fork (in the sense of [5]) hence it is
undecidable (even with one-delay semantics). O

Since the one-delay semantics is a particular case of (say strict) zero-delay
semantics (the one-delay assumption can be encoded into the global specifica-
tion) this result generalizes previous result for distributed synthesis problems on
architecture with global specification.

3 Game Encodings of Distributed Synthesis Problems

In this section, we show that (strict or angelic) distributed synthesis problems can
be encoded into distributed games. On hierarchical architecture one gets pipeline
games. Since these games are decidable, this induces a decision procedure for the
distributed synthesis problem for hierarchical architectures (for both strict and
angelic semantics). .



3.1 Distributed Games

Distributed games [14] are a special kind of multiplayer games with partial infor-
mation [15] extended to infinite plays. In short, two-player games are played on
a bipartite graph, in which each position belongs to either the first player (called
the Process) or to the second player (called the Environment). Distributed games
are an extension of two-player games, where n Process players play together
against one Environment player.

Definition 8 (Game arenas). A one-Process (or two players) game arena is
a tuple G = (P,E,T,s) where P is a set of Process position, E is a set of
Environment position, T C P x EUE X P is a set of possible transition moves,
and s € PU FE is an initial position.

Given n one-Process game arenas G; = (P;, E;, Ty, s;) for i € [1,n], a syn-
chronous distributed game arena G built from the local game arenas Gi, ...,
Gn, is a game arena G = (P,E,T,s) with P = [[,P;, E = [[, E; and s =
(81,--,8n), and such that the set of moves T satisfies the following conditions:
for everyu € P andv € E:

— Process team: (u,v) € T if and only if for every i € [1,n], (u[i], v[z]) e T,
— Environment: if (v,u) € T then for every i € [1,n], (v[i],u[i]) €

Remark. Observe that there is a unique distributed game arena built from the
local arenas Gy, ..., G, with maximal set of Environment moves. This arena,
written 1 ® - -+ ® G,, is called the free synchronous product of the arenas G,

s Gn.-

Observe that any other distributed arena G built from the same local arenas
can just be seen as a subgame of the free product obtained by possibly disallowing
some Environment moves. It follows that, in the sequel, we will use the notation
GC G ®- - ®G, to denote this fact.

Remark. In [14] or in [3], a more general notion of distributed with asyn-
chronous moves is defined. For the study presented here, the additional expres-
siveness gained with asynchronism is not used in this paper. Since we are essen-
tially establishing lower bounds result, this fact makes our result even stronger.

Definition 9. Given a two player game arena G = (P, E,T,s), a strategy for
the Process player (resp. a strategy for the Environment player) is a mapping
o: Pt — E (resp. a mapping 7: ET — P).

From the initial position s € E + T, the play induced by strategies o and T
from position s, written o * T is defined to be the mazimal word w € (P + E)™®
such that w(0) = s and for every i € dom(w) with i > 0, (w(i — 1),w(z)) € T
and, given w' = w(0)---w(i—1), if w(i—1) € P then w(i) = o omp(w') and if
w(i—1) € E then w(i) =T omg(w').

Strategy o for Process is non blocking when, for every counter strategy T, if
o * T is finite then it ends in an Environment position.

Given an n-process game arena G C G ®- - -®G,,, a Process strategy o : PT —
E is o distributed strategy where there is a set of local process strategies {o; :



P" — E}ic1,n such that, for every word w € P+, o(w) = (o107p, (w), -+, 0,0
TP, (w) .

In other words, a Process strategy is distributed when every local Process
player only plays following its own local view of the global play.

Until now, we didn’t specify how to win in such a game. For any play w that
ends in a position without successor, the convention we use is to declare that w is
won by the Processes (resp. by the Environment) if and only if the last position
of w belongs to F (resp. to P). This corresponds to the idea that whenever a
player may not make a game move anymore, it looses the play.

Since loops are allowed in the game arena, a Process strategy may also induce
infinite plays. A winning condition for a distributed arena G = (P, E, T, s) should
therefore be defined as a set Acc of infinite plays won by the Process, i.e. infinite
words from (P+E)“. In order to describe such a set in a finite way, one can either
use some decidable logic over infinite words (either monadic second order logic
MSO, or one of its specializations, such as p-calculus or LTL). In the scope of
this paper, however, we do not want to be specific about the formalism chosen for
the specification; therefore we simply assume that Acc is an w-regular language
(equivalently a language definable in MSO).

Definition 10 (Distributed games and winning strategies). A distributed
game is a tuple G = (P, E, T, s, Acc) where (P, E,T, s) is a distributed arena, and
Acc C (P + E)¥ is an w-regular winning condition.

A distributed Process strategy o in game G is a winning strategy when it is
non blocking and for any strategy T for the Environment, if the play o 7 (from
initial position s) is infinite then it belongs to Acc.

Observe that o distributed game arena can just be seen as a distributed game
with infinitary winning condition Acc = (P+E)“. In this case, winning strategies
and non blocking strategies are the same.

3.2 Distributed Games for the Strict Case

We prove here that unambiguous realizable behaviors can be encoded as dis-
tributed non blocking strategies in distributed arenas.

Definition 11. Let H = (I, S,r,{Ac}tcerus) with S = {1,...,n} a n-process
distributed architecture. We define the n-process strict distributed arena g% =
(P,E,T,s) from a free synchronous product arena G ® --- ® G,, of the game
arenas G; as follows.

For every p € {1,---,n}, the game arena G, = (P,, E,, T}, sp) is defined by
taking

1. P, = {*p, J_p} U Ar(p)

2. By = (Arp) — Ap),

3. T, is the union of the sets (P, — {L,}) X E, and E, X (P, — {*,}),
4. and s, = %,



The intended meaning of this game arena is that, at every step, Process p chooses
a one-step local behavior (in A,y — Ap) and Environment answers by choosing
one local direction.

The distributed arena G, is then defined from the free product by restricting
Environment global moves as follows: from an Environment distributed position

€= (kp)pe[l,n] )

1. Environment checks that the set of one-step local behaviors {ky} e 5 s an
unambiguous one-step realization of a global one-step behavior k.,

2. if so, Environment chooses a global input event a = (a.)cer, compute the
corresponding global output event (a.)ces = ke(a), and distribute back to
processes their corresponding local inputs, i.e. Environment moves to Process
distributed position (bp)pe(i,n) with by = (ac)cer(p)), otherwise Environment
moves to the final position (Lq, Lo,---, L,).

Unambiguous distributed behaviors of architecture H are encoded as non
blocking distributed strategies in the distributed arena gﬁ as follows. Every
process p € S defines, step by step, in game G,,, the local behavior process p will
have in architecture H. The environment player checks that these choices are
compatible one with another in such a way that the resulting global behavior is
well defined (and thus has a coherent and unambiguous distributed realization).

Theorem 2. A distributed strategy 0 = 01 @ --- ® o, is non blocking in the
game arena gﬁ if and only if the set {5, },cs of the behaviors defined on local
games Gi, ..., G, by strategies o1, ..., o, is the distributed realization of an
unambiguously realizable sequential function f, : A} — A%.

In particular, a strategy o is finite memory if and only if the sequential func-
tion [, is finitely generated (i.e. it has a finite memory kernel).

Proof. Let 0 : P* — E be a non blocking distributed strategy for the process
team withc =01 ® -+ - ® 7.

By definition, from every coherent and unambiguous e € E there is a unique
mapping k. : A; — Ag locally realized by e. Moreover, for every input value
a € Ay, there is one and only one position p., € P where environment player
can move to and, moreover, value a can be read in values stored in p. , hence
all positions {pe q}aca, are distinct one from the other.

It follows that there is a unique mapping h, : A} — P* such that h,(g) =
(*1,---,%,) and, for every u € A}, for every a € Ay, given e = o(hs(u)), one
has h(u.a) = ho(u).peqo-

We define then the mapping k, : A} — (A;r — Ag), the functional kernel
of the sequential function induced by strategy o, by taking, for every u € Ay,
ko(u) = ke with e = o(hy(u)).

By construction, k, is the functional kernel of an unambiguously realizable
behavior f, of architecture H. In fact, for every u € A7, the environment position
o(hs(u)) is the local realization of k, (u) since it is a coherent and unambiguous
position hence Lemma 1 applies.



Conversely, let f : A7 — A% be a distributed architecture behavior realized
by a coherent and unambiguous set of local process behaviors {f,}pecs. Given,
for every p € S a non blocking strategy o, in game G, that corresponds to
behavior f, it is not hard to see that the distributed strategy oy =01 ®---® oy,
is non blocking in the distributed arena Gy . O

3.3 Distributed Games for the Angelic Case

We prove here that coherent realizable behaviors can be encoded as non blocking
distributed strategies in distributed arenas.

Definition 12. Again, let H = (I, S,r,{Ac}ccrus) with S = {1,...,n} an n-
process distributed architecture. We define the n + 1-process angelic distributed
arena gﬁ = (P,E,T,s) from a free synchronous product arena Go @G ® -G,
as follows.

For every p € {1,---,n}, the game arena G, = (P,, E,, T}, s,) is defined as
in the strict case (see Definition 12) and the game arena Gy = (Po, Eo, To, So) 18
defined as follows:

1. Py = {*0, J_()} UA;

2. E() = (A] — As),

3. Ty is defined to be the union of the sets (Po—{Lo})x Eo and Egx (Po—{*0}),
4. and sg = *q.

The intended meaning of this game arena is that, at every step, Process 0 chooses
a one-step global behavior and Environment answers by choosing one global
input.

The distributed arena g;;‘, is then defined from the free product by restricting
Environment global moves as follows: from an Environment distributed position

e = (kp)pefo,ns

1. Environment checks that the set of one-step local behaviors {kp}pcp n) 15 @
one-step realization of the global one-step behavior kg,

2. if so, Environment chooses a global input event a = (a.)cer, compute the
corresponding global output event (ac)ces = ke(a), and distributes back to
processes their corresponding local inputs, i.e. Environment moves to Process
position (by)pcio,n] With b, = (ac)eer(p) when p € [1,n] and b, = a when p =
0, otherwise Environment moves to the final position (Lo, L1, Lo, -+, L,).

Coherent distributed behaviors of architecture H are encoded as non blocking
distributed strategies in the distributed game Gy, as follows. Every process p € S
defines, step by step, in game G,, the local behavior process p will have in
architecture H, and process 0 defines, step by step, the intended global realizable
behavior. The environment player checks that these choices are compatible one
with the other in such a way that the chosen global behavior defined by player 0
is realizable by the coherent (though possibly ambiguous) set of local behaviors
that are built by the other players.



Theorem 3. A distributed strategy o = 09 ® 01 ® -+ - ® g, is non blocking in
game gﬁ if and only if the set { fo,}pc1,n) of the local behaviors defined on local
games G, ..., G, by strategies o1, ..., o, is a distributed realization of the
global behavior fo, : A7 — A% defined on local game Gy.

In particular, strategy o is finite memory if and only if the sequential function
foo 1 finitely generated (i.e. it has a finite memory kernel).

Proof. The argument are essentially the same as in the proof of Theorem 2. [J

3.4 Distributed Synthesis Problem in Distributed Games

Now we show that any n-process strict distributed synthesis problem on hierar-
chical architecture can be encoded into a n-process pipeline distributed game.
The first step is to prove that:

Lemma 3. If architecture H is hierarchical then both distributed games th and
g;‘} are pipeline game arenas in the sense of [14, 3].

Proof. This follows immediately from the definition of hierarchical architecture
(see section 2.2), Lemma 2 and Definitions 11 or Definition 12. In fact, Envi-
ronment always transmit local inputs to Process players. It follows that any
linearization of the knowledge order on processes will give an order that process
the game is a pipeline game [14].

In the angelic case, Process 0 knows the global input and the global behavior.
It follows that he also knows every other process inputs. It is thus already a leader
(see [14, 3]) and can be added as the least element in this total order. O

It follows:

Theorem 4. For every hierarchical architecture H = (I, S,7,{Ac}ccrus) withn
Process players and every MSO specification ¢ of (kernel of) sequential function
from A% to A% there is an n + 1-process for the strict case (resp. n + 2-process
for the angelic case) decidable distributed game ngW (resp. g{;w,)) such that
there is an unambiguously realizable (resp. realizable) behavior for H that satis-
fies specification o if and only if there is a (finite memory) distributed winning
strategy for the process team in game Q<SH#)> (resp. Q@‘%w).

Proof. First, one can easily translate the global specification ¢ to a global strat-
egy specification v that is satisfied only by global strategies that encode global
behaviors that satisfy ¢. Then the result immediately follows from Theorem 2,
Theorem 3, Lemma 3 and the fact that, as described in [3], pipeline games with
such external conditions are decidable. O

4 Conclusion

We have shown that strict and angelic distributed synthesis problem are decid-
able on hierarchical architectures with zero-delay semantics.



The demonic case remain, so far, an open problem. For proving decidability,
one may try to adapt the above proof to this case by letting Environment (in-
stead of player 0 in the angelic case) choose any behaviors realized by the local
behaviors built by Processes. But this would break the pipeline structure of the
resulting game so this approach would be non conclusive.

On the other side, for proving undecidability in the presence of a cycle in the
architecture, one may try to force - by means of the external specification - some
subset of processes to choose coherent, but ambiguous, local behaviors that would
induce equations with multiple solutions. Then, following demonic semantics,
Environment could pick arbitrary values among these solutions, creating thus
another arbitrary input in the architecture that could behave such as a typical
undecidable architecture. But this approach is inconclusive too since we do not
know, so far, how to force in a global specification such a kind of set of ambiguous
local behaviors.

Less directly related with our proposal, one may observe that, in the case
of non hierarchical architecture, with the notable exception of local specifica-
tions[12], hardly any restriction on the global specification have been established
for increasing the class of decidable distributed synthesis problems. This is cer-
tainly a open research direction that could be followed. The notion of process
knowledge could be tuned to take into account the global specification. Dis-
tributed games, where both architecture and specification have been merged,
could serve as a tool to achieve new results in this direction.

Even more distant from our present work, but still related, one can also
observe that asynchronous behaviors, with fairness assumption that guarantees
only finitely many output events are produced after every single input event,
can be encoded by extending the notion of kernels to mapping from A* to A —
B*. Though the resulting vertex labeling would be on an infinite alphabet, the
distributed game techniques that are used here could be extended to this case.
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