N

N

On the (high) undecidability of distributed synthesis
problems

David Janin

» To cite this version:

David Janin. On the (high) undecidability of distributed synthesis problems. SOFSEM, Jan 2007,
Czech Republic. pp.320-329. hal-00306387

HAL Id: hal-00306387
https://hal.science/hal-00306387
Submitted on 25 Jul 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00306387
https://hal.archives-ouvertes.fr

On the (high) undecidability of distributed
synthesis problems

David Janin

LaBRI, Université de Bordeaux I,
351, cours de la libération,
F-33 405, Talence cedex, France
janin@labri.fr

Abstract. The distributed synthesis problem [11] is known to be unde-
cidable. Our purpose here is to study further this undecidability.

For this, we consider distributed games [8], an infinite variant of Peterson
and Reif multiplayer games with partial information [10], in which Pnueli
and Rosner’s distributed synthesis problem can be encoded and, when
decidable [11, 6, 7], uniformly solved [8].

We first prove that even the simple problem of solving 2-process dis-
tributed game with reachability conditions is undecidable (£9-complete).
This decision problem, equivalent to two process distributed synthesis
with fairly restricted FO-specification was left open [8]. We prove then
that the safety case is IT?-complete. More generally, we establish a cor-
respondence between 2-process distributed game with Mostowski’s weak
parity conditions [9] and levels of the arithmetical hierarchy. finally, dis-
tributed games with general w-regular infinitary conditions are shown to
be highly undecidable (X1{-complete).

1 Introduction

In this paper, we study the undecidability of the distributed synthesis problem
as introduced by Pnueli and Rosner [11]. This problem can be stated as follows:

Given a distributed architecture (finitely many sites interconnected through
a given network with some specified global input channels and global
output channels) and a global specification of expected correct architec-
ture’s global behaviors (defining a set of mappings that map global input
sequences to global output sequences say in First Order (FO) or even
Monadic Second order (MSO) Logic), is there a distributed program (a
set. of mappings, one per site, that maps sequences of local inputs to
sequences of local outputs) which resulting global behavior satisfies the
global specification ?

With a specification language as simple FO, on the architecture defined by two
independent sites with independent (global) input channels and (global) output
channels (see Figure 1), this problem is known to be undecidable [11].

Analyzing Pnueli and Rosner’s proof, one can observe that with reachabil-
ity conditions (FO global specifications essentially stating that some properties
eventually occur) the distributed synthesis problem is 29-complete in the arith-
metical hierarchy, i.e. inter-reducible to the halting problem of Turing Machine
(TM).

Inputs *

P1 P2

* Outputs *

Fig. 1. An undecidable architecture

With safety conditions (FO global specification essentially stating that some
bad properties never occur, allowing thus infinitary behaviors) one may con-
jecture (although the two kinds of problems are not dual) that the distributed
synthesis problem is IT{-complete in the arithmetical hierarchy.

More generally, one may ask what is the relationship between the expres-
siveness of the global specification language (say within FO logic or even within
MSO logic with more advanced infinitary conditions) and the complexity of the
resulting distributed synthesis problems. In this paper, we give an answer to this
question.

Main results

We first prove the following refinement of Pnueli and Rosner’s result:

Theorem 1. The 2-process reachability distributed synthesis problem is X9-
complete even with fairly restricted global specification : universally quantified
k-local FO-properties.

Next, we prove that:

Theorem 2. The 2-process safety distributed synthesis problem with FO speci-
fication is I19-complete.

Since the set of finite state (or even computable) distributed programs is
X9_definable, this result also implies that :

Corollary 1. There exist safety distributed synthesis problems with distributed
solutions but no computable ones.

We study then relationships between more general infinitary conditions for
distributed synthesis problems and levels of the arithmetical (or the analytical)
hierarchy. More precisely, we show that:

Theorem 3. For every integer n > 1, solving distributed synthesis problem with
two (or more) processes and weak parity conditions (in the sense of Mostowski [9])
of range [0,n + 1] (resp. [1,n]) is II2-complete (resp. X°-complete).

With more complex infinitary conditions:

Theorem 4. The distributed synthesis problem with Biichi infinitary condition
(or more general parity infinitary condition) is highly undecidable (X1 -complete).

Related works

These results are achieved by proving analogous statements for 2-process dis-
tributed games [8]. These games are a variant (with infinite behaviors) of Pe-
terson and Reif’s multiplayer games with partial information [10] into which
distributed synthesis problems can be encoded and, in most decidable cases [11,
6, 7], uniformly solved [8].

A 2-process distributed game is equivalent to a 2-site distributed synthesis
problem with fairly restricted specification. In fact, the global specification in a
distributed game is implicitly encoded into (1) the description of players possible
moves and (2) an infinitary condition specifying the allowed infinite behaviors.

In logical terms, moves are specified by universally quantified k-local for-
mulas. With reachability condition, i.e. when no infinite behavior is allowed, a
2-process distributed game is thus a fairly restricted 2-site distributed synthe-
sis problem. General 2-site distributed synthesis problems with arbitrary LTL
specification are not known to be reducible to 2-process distributed games [8].
The best known reduction is to add a third process that plays the role of (an
automaton translation of) the external (LTL or even MSO) specification [2].

This makes our undecidability result in the reachability case stronger than
Pnueli and Rosner’s result [11].

In Mohalik and Walukiewicz’s work [8], the decidability of 2-process dis-
tributed games was also left open. Our results show they are not decidable even
with the simplest infinitary conditions.

2 Background

A word on an alphabet A is a function w : w — A with prefix-closed domain.
When dom(w) is finite, we say w is a finite word, otherwise, w is an infinite
word. The set of finite words (resp. finite non empty words) on alphabet A is
written A* (resp. A1), the set of infinite words is written A%, the set of finite
or infinite words is written A°°. The empty word is written e. The catenation of
every word u € A* and every word v € A is written u.v.

Given two sets A and B, we write m4 or m (resp. 7 or m2) the projection
from A x B onto A (resp. from A x B onto B). These notations are extended
to any subset of A x B and words on A X B. Given P C A x B (resp. w €
(A x B)™), we also write P[1] = ma(P) and P[2] = np(P) (resp. w[l] = m4(w)
and w[2] = m(w)). Given w € (A + B)*>, we also write w4 (w) (resp. mp(w))
the word obtained from w by deleting all letters not in A (resp. not in B).

In the sequel, we will use languages of infinite words as infinitary acceptance
conditions. We first review here the definition we will use.

Definition 1 (Parity and weak parity condition [9]). Let L C A“ be a
language of infinite words. Language L is called a parity condition when there
are some integers m and n € IN with m < n and some priority mapping 2 : A —
[m,n] such that L = {w € A¥ : liminf 2(w) = 0(2)}, i.e. L is the set of infinite

sequences where the least priority that occurs infinitely often is even. Language
L is a weak parity condition when there is a priority mapping 2 : A — [m,n)
as above such that L is moreover restricted to sequence w € A“ such that 2(w)
is an increasing sequence of priorities.

In both cases, interval [m,n] is called the range of the parity condition.

A safety condition is a parity (or weak parity) condition with range [0] (hence
with L = A¥) and o reachability condition is a parity (or weak parity) condition
with range (1] (hence with L =0).

Distributed games [8] are special kind of multiplayer games with partial infor-
mation [10] extended to infinite plays with a cooperating Process team playing
against a unique Environment player.

Definition 2 (Distributed Game Arenas). A one-Process (two Players)
game arena is a quadruple G = (P, E,T,e) with set of Process positions P, set
of Environment positions E, set of possible transition moves T C Px FEUE x P
and initial position e € E.

Given n one-Process game arenas G; = (P;, E;, T;, e;) for i € [1,n], a syn-
chronous distributed game arena G built from the local game arenas Gy, ..., Gp,
is a game arena G = (P,E,T,e) with P =[], P, E =[], Ei, e = (e1, -, €pn)
and such that the set of moves T satisfies the following conditions: for every
ue Pandvek

— P-moves : (u,v) € T if and only if for every i € [1,n], (uli],v[i]) € T;
— E-moves : if (v,u) € T then for every i € [1,n], (u[i],v[i]) € T,

Observe that there is a unique distributed game arena built from the local
arenas Gy, ..., G, with maximal set of Environment moves. This arena, written
§1 ® -+ ® Gy, is called the free synchronous product of the games Gy, ..., G,.
Observe that any other distributed arena G built from the same local games can
just be seen as a subgame of the free product obtained by possibly disallowing
some Environment moves. We simply write G C G; ® - - - ® G,, to denote that.

In [8], a more general notion of distributed with asynchronous moves is de-
fined. The additional expressiveness gained with asynchronism is not used in this
paper. Since we are essentially establishing lower bounds result, this fact makes
statements even stronger.

Definition 3 (Plays and strategies). Given a two player game arena G =
(P,E,T,e), astrategy for the Process player (resp. a strategy for the Environ-
ment player) is a mapping o : Pt — E (resp. a mapping 7: ET — P).

The play induced by strategies o and 7, written o * 7, is defined to be the
mazimal word w € (P + E)*™ such that w(0) = e and, for every i € dom(w)
with i >0, (w(i—1),w(i)) € T and, given w' = w(0)---w(i—1), ifw(i—1) € P
then w(i) = o omp(w’) and if w(i — 1) € E then w(i) = T omg(w’).

A process strategy o is non blocking when, for every counter strategy 7, oxT €
(P+E)*EU(P+ E)~.

Given an n-process game arena G C G1®- - -®G,,, a Process strategy o : P* —
E is o distributed strategy where there is a set of local process strategies {o; :
Pf — E}icii,n) such that, for every word w € Pt o(w) = (o10mp, (W), ,0p0
7p, (w). In other words, a Process strategy is distributed when every local Process
player only plays following its own local view of a global play.

Definition 4 (Games and winning strategies). A (weak or parity) game
is an tuple G = (P,E,T,e, Acc) where (P,E,T,e) is a game arena and Acc C
(P + E)“ is an additional (weak or parity) infinitary condition

A game G (resp. a distributed game) is winning for player P (resp. for
the Process team) when there is a Process strategy (resp. a distributed Pro-
cess strategy) o : P — E such that,for every counter strategy 7 : E* — P,
ocx7 € (P+ E)*.EU Acc, i.e. every mazximal play allowed by o is either finite
and ends in a position of player E, or is infinite and belongs to Acc.

3 Tilings and quasi-tilings

In order to prove lower bounds results in next section, we review in this section
the notions of finite and infinite tilings [1, 5].

Definition 5 (Tilings). Let {n,s,w,e} be the four cardinal directions of the
plan. Given a finite set of colors C' with a distinguished color # called the border
color, a tile is a mapping t : {n,s,w,e} — C that assigns to each cardinal
direction a color of C' with the additional requirement that t(s) # # and t(w) #
#, i.e. color # will only be used to define East or North borders.

MK 4 P[4
NX AR

Fig. 2. A finite set of tiles

Given a finite set S of tiles (see Figure 2), o tiling is a partial function
m:wxw — S such that dom(m) = [0, M —1]x [0, N—1] for some (M,N) € wxw
when m is a finite tiling or dom(m) = w X w when m is an infinite tiling, such
that: for all (i,5) € dom(m,), N/S-compatibility: if (i, + 1) € dom(m) then
m(i,j)(n) = m(i,j + 1)(s), E/W-compatibility: if (i + 1,7) € dom(m) then
m(i, j)(w) = m(i+1,7)(e), E-border condition: (i + 1,5) ¢ dom(m) if and only
if m(i,5)(e) = #, and N-border condition: (i,7 + 1) ¢ dom(m) if and only if
m(i,j)(n) = # (see Figure 3 with color black standing for the border color #).

Fig. 3. A tiling

Theorem 5 (Berger [1], Harel [5]). Given a set of colors C and a set S of
tiles with a distinguished tile to € S: (1) the problem of finding M and N and
a finite M x N-tiling m such that m(0,0) = to is X¥-complete, (2) the problem
of finding an infinite tiling m such that m(0,0) = to is II)-complete, and (3)
the problem of finding an infinite tiling m such that m(0,0) =ty and one given
color , say red, occurs infinitely often is X} -complete.

4 Towards the proofs : quasi-tilings

The notion of quasi-tiling defined below and encoded into one process game is
essential for our encoding (in the remaining sections) of tilings into 2-process
distributed games.

Definition 6 (Quasi-tilings). A function m : w x w — S is a quasi-tiling (see
Figure 4) when it satisfies N/S-compatibility and N-border condition on every
column, E-border condition on every line, and E /W -compatibility on the first
line.

Fig. 4. A quasi-tiling

It occurs that, for every finite set of tiles S and initial tile ¢y € S, there exists
a one process (two player) game Gg 4, that encodes all quasi-tiling m : wxw — S
as non blocking strategies for player F.

Definition 7 (Quasi-tiling games). Given a finite set of color C, a finite set
of C-colored tiles S and an initial tile to, let Gs 1, = (P, E, T, i) be the two player
game arena defined by:

— P=({e,n} x Sx{Proc})U{L}, E= ({e,n} x S x {Env})U{*} and i = x,

— T is the set of all pairs of the form ((d,t, Proc),(d,t', Env)) € P x Env
such that, if d = e then t'(w) = t(e) and if d = n then ¢'(s) = t(n) and
t'(e) = # if and only if t(e) = # (Process moves) plus the set of all pairs
of the form (x,(x,to, Proc)) or ((z,t,Env), L) plus all pairs of the form
((d,t, Env),(d',t, Proc)) € E x P such that, if d = e then d’' € {e,n} and if
d=n ort(e) = # and then d' = n (Environment moves).

The intuition behind this definition is that player E chooses along a word
of the form e’.n* and, for every prefix e’.n/ of this word, player P answers by
choosing a tile for position (4, 7). Since player E chooses where to turn the full
set w X w is potentially covered. It turns out, as precisely stated in next Lemma,
that player P non blocking strategies just define all quasi-tilings.

Lemma 1 (Quasi-tilings and strategies). For every non blocking strategy
o: Pt — E, in game Gs 4, there is a unique quasi-tiling m, : w X w — S such
that for all (i,7) € wxw, (i,7) € dom(m,) if and only if there is counter strategy
7:ET — P such that myonp(ox7) = e'.n? and ma(mp(o*7)(i+ 7)) = me (i, 5)
(with in particular, m,(0,0) = o).

Conwversely, for every quasi-tiling m such that m(0,0) = ¢y there is a non
blocking strategy 0., in game G, +, such that m,, , = m.

Proof. By construction, in every play, player E’s task is to chose, at every step, a
direction e or n and, when direction n has been chosen, or when the East border
is reached, to choose repeatedly direction n. It follows that every (blocking)
strategy for player E that avoids position | can be described by (1) choosing
some (i,7) € w X w and (2) playing the successive directions described by the
word e'.n/ - provided player P does not create the East border.

Against player E, player P’s strategy just amounts to choose, for every
(', 5") <z (i,7) a tile t; j. It should be clear that this choice is independent
from (7, j) (chosen but by player F but unknown to player P) so we can define
me (i, 7)) = tir 5.

The fact that m, is a quasi-tiling immediately follows from game Gg, defi-
nition. The converse property is also immediate. (]

Observe that, in game Gg +,, player P chooses to define a tiling bounded in
the East direction by choosing the first tile ¢ such that t(e) = #-.

5 Undecidability results: ground cases

Theorem 6 (Safety case). The problem of finding a winning distributed strat-
egy in a 2-process distributed game with safety condition is IIY-complete.

Proof. Clearly, solving a safety distributed game is I7?. It remains to prove that
it is also I1{-hard. In order to do so, we encode the infinite tiling problem into
a safety distributed game.

Let S be a finite set of tiles and let ¢y € S be a given initial tile. The idea
is to build a distributed game G from the free product Gs:, ® Gg ¢, With safety
condition in such a way that player E checks that (1) if a distributed strategy
01 ® 09 is non blocking then o1 = o2, and (2) a distributed strategy of the form
0 ® o is winning if and only if the quasi-tiling m, : w x w — S is also a tiling of
w X w, i.e. it satisfies the E/W-compatibility condition on all lines.

This is done as follows. We first assume, without lost of generality, that
every position in game game Gg, is (1) extended with a new bit value that is
positioned by Environment player’s first move as explained below and (2) also
extended in such a way the last two tiles ¢ (current) and ¢’ (previous) chosen by
player Process are readable in Environment positions.

Environment moves in the product Gs:, ® Gs ¢, are then defined as follows.
From the initial position (x, *) player E moves to a position with an arbitrary pair
of bit values (one on every side), and, according to these values (that remained
unchanged later on):

1. with bit values (0,0), (0,1) or (1,0) : player E plays the same directions in
both local games and checks process strategy equality,

2. with bit values (1,1) : player E delays by one step the North turn in the
second local game and, after this turn, repeatedly check that t{(e) = t2(w)
where ¢} is the “previous” choice of tiles made by player P; and ¢ is the
“current” choice of tiles made by player Ps.

Player E moves to (L, L) if any of these checks fails or if any of the Process
players chooses a tile that contains the border color #.

The winning condition for the Process team is to avoid position (L, 1). This
is a safety condition.

Let then 0; ® o2 be a distributed winning strategy on such a game. By
checking equality with bit values (0,0), (0,1) or (1,0) Environment makes sure
that Process player does play the same strategy o = 01 = o4 regardless of the
initial bit value that he has chosen. Given then the induced quasi-tiling m,
(see Lemma 1), one can check that when bit values are (1,1) Environment does
indeed check E/W-compatibility. It follows that m, is a tiling, infinite by the
safety condition.

Conversely, for any infinite tiling m such that m(0,0) = ¢y, one can check
that o, ® o, is a winning distributed strategy.

We conclude applying Theorem 5. O

Theorem 7 (Reachability case). The problem of finding a winning distributed
strategy in a 2-process distributed game with reachability condition is X9 -complete.

Proof. Again, clearly, this problem is X7. It remains to prove that it is X?-hard.
In order to do so, we encode into reachability distributed games the finite tiling
problem.

The encoding is similar to the encoding in the proof of Theorem 6 except
that (1) player E now allows players P; and P, to play tiles that contains the
border color # and (2) the winning condition for Process team is to reach, at
the end of every local play, a tile ¢t with t(n) = #.

Observing that player P will force the East-border by playing a tile ¢ with
t(e) = # makes it clear that there is a winning distributed strategy in the new
(reachability) distributed game G if and only if there is a finite tiling m such
that m(O, 0) =t U

6 Within and above the arithmetical hierarchy

The relationship with the arithmetical hierarchy is achieved through the obser-
vation that, by Post’s Theorem, every level of the arithmetical hierarchy has
a computational interpretation by means of Alternating Turing Machines [3]
extended with infinite runs and weak parity acceptance conditions.

Theorem 8. For every integer n > 0, a language L C X* is I10-definable (resp.
X9_definable) if and only if it is definable by an Alternating Turing Machine with
infinitary weak parity condition with range [0,n — 1] (resp. [1,n]).

Proof. By ATM we mean here ATM with universal and existential states only
(no negation states). ATM are extended with infinite runs (with infinitary condi-
tions) in the following sense: a computation tree of an ATM is accepting if every
finite branch ends in an accepting control state, and, for every infinite branches,
the corresponding infinite sequence of control states satisfies the infinitary con-
dition.

Applying [3], we know that standard ATM (with reachability conditions)
capture the level X9 of the arithmetical hierarchy. By duality, ATM with safety
conditions (hence infinite runs) capture the level II7.

For higher levels, the proof is based on the observation that alternation allows
a machine to (1) guess the answer of an oracle and, at the same time, to (2)
start a computation of the oracle (or its complement) that checks the guessing
is correct. By construction, since no acknowledgment is expected, the resulting
infinitary conditions are weak in the sense of Mostowski [9]. Post’s Theorem
ensures such a construction captures, level by level, the arithmetical hierarchy.
]

Theorem 9 (The weak case). For every integer n > 0, the problem of solving
2-process distributed weak game with Mostowski range [0,n — 1] (resp. [1,n]) is
II?-complete (resp. X°-complete).

Proof. (sketch) Upper bounds should be clear. It remains to prove the lower
bound. The main idea is to encode into (winning) distributed strategy the (ac-
cepting) runs of ATM. This can be achieved as follows.

At first sight, the tiling encoding defined in the previous section fails to apply
here since a tiling only encode the run of a non alternating TM (say with TM
configurations encoded by means of east colors of tiles in a line).

However, in this encoding, somehow as in a solitaire domino game, the pro-
cess team defines (playing identically in copies of local game Gs,) one tiling
(equivalently one accepting TM run) while player E’s role is bound to check
that all required space is covered and all tiling rules are satisfied (equivalently
it checks that the process team defines indeed a TM run). The idea to encode
the run of an ATM is thus to let player E chooses some of the tiles, say one over
two in a line, in a modified local game gsf In this shift from a solitaire to a
two player domlno like game, all branches of an ATM run are encoded by the
many tilings that are produced following player E’s moves.

An analogous synchronization (restriction of player £’s global moves) in a
distributed game G C Gs to ® Gs +, can force both Environment and Process
players to play only real tilings (and not quasi-tilings). As the infinitary condition
of the ATM immediately transfers to an infinitary condition of the distributed
game, this concludes the proof. O

Theorem 10 (The Biichi case). The problem of solving a 2-process (or more)
distributed game with Biichi condition (or higher parity condition) is X7 -complete.

Proof. Tt should be clear that solving an n-process distributed game with an
arbitrary w-regular infinitary condition is X}. Conversely, we encode the con-

struction of an infinite tiling with infinitely many occurrences of color red (see
Theorem 5).

From the encoding of the infinite tiling problem in the proof of Theorem 6,
the idea is to add in local game Gs;, a non deterministic tree automaton [12,
4] that checks that, given a local strategy o followed by player P, the induced
quasi-tiling m, (seen as a a sub tree of the binary tree ¢ : (e + t)* — S) uses
infinitely many tiles with color red.

Such an automaton can be defined with Biichi acceptance criterion that, in
turn, defines the winning condition for the Process team. O

7 Conclusion

We have established a correspondence between infinitary conditions in distributed
games and levels of the arithmetical (or analytical) hierarchy. These results al-
ready hold for the 2-process case (implying undecidability in this very restricted
setting).

Strictly speaking, they have no application. However, a clear understanding
of the source of undecidability may help, in future work, to extend the known
decidable classes of distributed synthesis problem (or distributed games).

Acknowledgment

Thanks to Anne Dicky for her help revising a former version of this paper.

References

1. R. Berger. The undecidability of the dominoe problem. Memoirs of the American
Mathematical Society, 66:1-72, 1966.

2. J. Bernet and D. Janin. Tree automata and discrete distributed games. In Founda-
tion of Computing Theory, volume 3623 of LNCS, pages 540-551. Springer-Verlag,
2005.

3. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114-133, january 1981.

4. E. Griadel, W. Thomas, and T. Wilke, editors. Automata, Logics and Infinite
Games, volume 2500 of LNCS Tutorial. Springer, 2002.

5. D. Harel. Effective transformations on infinite trees, with applications to high
undecidability. J. ACM, 33(1):224-248, 1986.

6. O. Kupferman and M. Y. Vardi. Synthesizing distributed systems. In IEEE Symp.
on Logic in Computer Science (LICS), pages 389-398, 2001.

7. P. Madhusudan. Control and Synthests of Open Reactive Systems. PhD thesis,
University of Madras, 2001.

8. S. Mohalik and I. Walukiewicz. Distributed games. In Found. of Soft. tech and
Theor. Comp. Science, volume 2914 of LNCS, pages 338-351. Springer-Verlag,
2003.

9. A. W. Mostowski. Hierarchies of weak automata on weak monadic formulas. The-
oretical Comp. Science, 83:323-335, 1991.

10. G.L. Peterson and J.H. Reif. Multiple-person alternation. In 20th Annual IEEE
Symposium on Foundations of Computer Sciences, pages 348-363, october 1979.

11. A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In
IEEE Symposium on Foundations of Computer Science, pages 746—757, 1990.

12. M. O. Rabin. Decidability of second order theories and automata on infinite trees.
Trans. Amer. Math. Soc., 141:1-35, 1969.

