Size-frequency relation of earthquakes in load-transfer models of fracture - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nonlinear Processes in Geophysics Année : 1995

Size-frequency relation of earthquakes in load-transfer models of fracture

Résumé

Using Monte Carlo simulations of the process of breaking in arrays of elements with load-transfer rules, we have obtained the size- frequency relation of the avalanches occurring in 1- and 2-dimensional stochastic fracture models. The resulting power-law behaviour resembles the Gutenberg-Richter law for the relation between the size (liberated energy) of earthquakes and their number frequency. The value of the power law exponent is calculated as a function of the degree of stress dissipation present in the model. The degree of dissipation is implemented in a straightforward and simple way by assuming that only a fraction of the stress is transferred in each breaking event. The models are robust with respect to the degree of dissipation and we observe a consistent power-law behaviour for a broad range of dissipation values, both in ID and 2D. The value of the power-law exponent is similar to the phenomenological b- value (0.8 < b < 1.1) for intermediate magnitude earthquakes.
Fichier principal
Vignette du fichier
npg-2-131-1995.pdf (320.15 Ko) Télécharger le fichier
Origine : Accord explicite pour ce dépôt

Dates et versions

hal-00301773 , version 1 (18-06-2008)

Identifiants

  • HAL Id : hal-00301773 , version 1

Citer

J. B. Gómez, D. Iñiguez, A. F. Pacheco. Size-frequency relation of earthquakes in load-transfer models of fracture. Nonlinear Processes in Geophysics, 1995, 2 (3/4), pp.131-135. ⟨hal-00301773⟩

Collections

INSU EGU
55 Consultations
54 Téléchargements

Partager

Gmail Facebook X LinkedIn More