Comparing model performance of two rainfall-runoff models in the Rhine basin using different atmospheric forcing data sets - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Hydrology and Earth System Sciences Discussions Année : 2007

Comparing model performance of two rainfall-runoff models in the Rhine basin using different atmospheric forcing data sets

Résumé

Due to the growing wish and necessity to simulate the possible effects of climate change on the discharge regime on large rivers such as the Rhine in Europe, there is a need for well performing hydrological models that can be applied in climate change scenario studies. There exists large variety in available models and there is an ongoing debate in research on rainfall-runoff modelling on whether or not physically based distributed models better represent observed discharges than conceptual lumped model approaches do. In this paper, the hydrological models HBV and VIC were compared for the Rhine basin by testing their performance in simulating discharge. Overall, the semi-distributed conceptual HBV model performed much better than the distributed physically based VIC model (E=0.62, r2=0.65 vs. E=0.31, r2=0.54 at Lobith). It is argued here that even for a well-documented river basin such as the Rhine, more complex modelling does not automatically lead to better results. Moreover, it is concluded that meteorological forcing data has a considerable influence on model performance, irrespectively to the type of model structure and the need for ground-based meteorological measurements is emphasized.
Fichier principal
Vignette du fichier
hessd-4-4325-2007.pdf (1.23 Mo) Télécharger le fichier
Origine : Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-00298916 , version 1 (18-06-2008)

Identifiants

  • HAL Id : hal-00298916 , version 1

Citer

A. H. Te Linde, J. C. J. H. Aerts, R. T. W. L. Hurkmans, M. Eberle. Comparing model performance of two rainfall-runoff models in the Rhine basin using different atmospheric forcing data sets. Hydrology and Earth System Sciences Discussions, 2007, 4 (6), pp.4325-4360. ⟨hal-00298916⟩

Collections

INSU EGU
61 Consultations
124 Téléchargements

Partager

Gmail Facebook X LinkedIn More