A daily salt balance model for representing stream salinity generation process following land use change - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Hydrology and Earth System Sciences Discussions Année : 2005

A daily salt balance model for representing stream salinity generation process following land use change

Résumé

We developed a coupled salt and water balance model to represent the stream salinity generation process following land use changes. The conceptual model consists of three main components with five stores: (i) Dry, Wet and Subsurface Stores, (ii) saturated Groundwater Store and (iii) a transient Stream zone Store. The Dry and Wet Stores represent the salt and water movement in the unsaturated zone and also the near-stream dynamic saturated areas, responsible for the generation of salt flux associated with surface runoff and interflow. The unsaturated Subsurface Store represents the salt bulge and the salt fluxes. The Groundwater Store comes into play when the groundwater level is at or above the stream invert and quantifies the salt fluxes to the Stream zone Store. In the stream zone module, we consider a "free mixing" between the salt brought about by surface runoff, interflow and groundwater flow. Salt accumulation on the surface due to evaporation and its flushing by initial winter flow is also incorporated in the Stream zone Store. The salt balance model was calibrated sequentially following successful application of the water balance model. Initial salt stores were estimated from measured salt profile data. We incorporated two lumped parameters to represent the complex chemical processes like diffusion-dilution-dispersion and salt fluxes due to preferential flow. The model has performed very well in simulating stream salinity generation processes observed at Ernies and Lemon experimental catchments in south west of Western Australia. The simulated and observed stream salinity and salt loads compare very well throughout the study period. The model slightly over predicted annual stream salt load by 6.2% and 6.8%, with R2 of 0.95 and 0.96 for Ernies and Lemon catchment, respectively.
Fichier principal
Vignette du fichier
hessd-2-1147-2005.pdf (1.74 Mo) Télécharger le fichier
Origine : Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-00298678 , version 1 (18-06-2008)

Identifiants

  • HAL Id : hal-00298678 , version 1

Citer

M. A. Bari, K. R. J. Smettem. A daily salt balance model for representing stream salinity generation process following land use change. Hydrology and Earth System Sciences Discussions, 2005, 2 (4), pp.1147-1183. ⟨hal-00298678⟩

Collections

INSU EGU
68 Consultations
49 Téléchargements

Partager

Gmail Facebook X LinkedIn More